1394 выход. FireWire или чем ещё помогла цифровому миру компания Apple

03.05.2019

Высокопроизводительная последовательная шина (High Performance Serial Bus) IEEE 1394 — FireWire создавалась как более дешевая и удобная альтернатива параллельным шинам (SCSI) для соединения равноранговых устройств. Шина позволяет связать до 63 устройств без применения дополнительной аппаратуры (хабов). Устройства бытовой электроники — цифровые камкордеры (записывающие видеокамеры), камеры для видеоконференций, фотокамеры, приемники кабельного и спутникового телевидения, цифровые видеоплееры (CD и DVD), акустические системы, цифровые музыкальные инструменты, а также периферийные устройства компьютеров (принтеры, сканеры, устройства хранения данных) и сами компьютеры могут объединяться в единую сеть. Шина не требует управления со стороны компьютера. Шина поддерживает динамическое реконфигурирование — возможность «горячего» подключения и отключения устройств. События подключения/отключения вызывают сброс и реинициализацию: определение структуры шины (дерева), назначение физических адресов всем узлам и, если требуется, выборы мастера циклов, диспетчера изохронных ресурсов и контроллера шины. Через доли секунды после сброса все ресурсы становятся доступными для последующего использования, и каждое устройство имеет полное представление обо всех подключенных устройствах и их возможностях. Благодаря наличию линий питания, интерфейсная часть устройства может оставаться подключенной к шине даже при отключении питания функциональной части устройства.

По инициативе VESA шина позиционируется как основа «домашней сети», объединяющей всю бытовую и компьютерную технику в единый комплекс. Эта сеть является одноранговой (peer-to-peer), чем существенно отличается от USB .

Основные свойства шины FireWire перечислены далее:

Шина IEEE 1394 поддерживает два типа передач данных:

  • асинхронные передачи без каких-либо требований к скорости и задержке доставки. Целостность данных контролируется CRC-кодом. По адресации различают две разновидности:
  1. направленная асинхронная передача адресуется конкретному узлу, гарантированную доставку обеспечивает механизм квитирования и повторов;
  2. широковещательная асинхронная передача адресуется всем узлам и выполняется без гарантии доставки (квитирование и повторы не применяются).
  • Изохронные передачи с гарантированной пропускной способностью. Целостность данных контролируется CRC-кодом, гарантии доставки нет — квитирование и повторы не применяются.

Направленные асинхронные передачи являются основой для выполнения асинхронных транзакций — логически завершенных обменов между парами узлов. Протокол шины позволяет узлам с помощью асинхронных транзакций обращаться к памяти (регистрам) друг друга в режиме прямого доступа (DMA). При этом они не нуждаются в памяти и процессорных ресурсах «третьих лиц».

Изохронные передачи представляют собой потоки пакетов данных. Эти передачи ведутся широковещательно и адресуются через номер канала, передаваемый в каждом пакете. На шине может быть организовано до 64 изохронных каналов, передачи всех каналов «слышат» все устройства шины, но из всех пакетов принимают только данные интересующих их каналов. По шине могут передаваться и асинхронные потоки, для которых, в отличие от изохронных, не предоставляется гарантированная полоса пропускания.

Арбитраж определяет, какому из узлов, запрашивающих передачу, предоставляется это право. Арбитраж обеспечивает гарантированную пропускную способность для изохронных передач и справедливое предоставление доступа узлам для асинхронных транзакций. Арбитраж на шине IEEE 1394 выполняется перед посылкой любого пакета запроса (синхронного или изохронного) или ответа. Исключением является соединенная (concatenated) форма выполнения транзакций. Пакеты квитирования посылаются без арбитража — право на их передачу разыгрывать не надо, поскольку квитанцию посылает только тот единственный узел, к которому адресовался подтверждаемый пакет запроса или ответа.

Арбитражем занимается физический уровень каждого узла шины. Арбитраж выполняется распределенно иерархически: им занимаются все узлы, «верховным» арбитром является корневой узел (root node), автоматически выбираемый на этапе конфигурирования шины.

Физический уровень (PHY) предоставляет канальному уровню (LINK) следующие сервисы арбитража, перечисленные в порядке нарастания приоритетности:

  • справедливый арбитраж (fair arbitration service), используемый для передачи обычных асинхронных пакетов;
  • приоритетный арбитраж (priority arbitration service), используемый для передачи пакетов начала цикла и приоритетных асинхронных пакетов;
  • немедленный арбитраж (immediate arbitration service), используемый для передачи пакетов квитирования;
  • изохронный арбитраж (isochronous arbitration service), используемый для передачи изохронных пакетов.

Приоритет в арбитраже на шине IEEE 1394 определяется длительностью зазора арбитража (arbitration gap) — временем, в течение которого узел наблюдает покой шины перед началом передачи запроса арбитража. Чем меньше этот зазор, тем больше шансов у узла получить право на передачу. Исходная схема арбитража 1394 усовершенствовалась дважды: в 1394a были введены механизмы ускоренного арбитража, а в 1394b с его дуплексными соединениями был введен новый механизм — BOSS-арбитраж. Все усовершенствования направлены на снижение непродуктивных затрат времени.

Если на шине используются изохронные передачи, то все транзакции организуются в последовательность циклов — интервалов времени с номинальной длительностью 125 мкс. Начало каждого цикла отмечается широковещательным пакетом начала цикла (Cycle Start). Эти пакеты посылает узел, являющийся мастером циклов. Право на передачу этого пакета мастер получает через арбитраж, используя высокий приоритет. Организация циклов представлена на рисунке, где изображена работа двух изохронных каналов (Ch#J и Ch#K) и передача асинхронных пакетов A и B. После пакета начала цикла каждый узел, которому выделены изохронные каналы, имеет право передать по одному пакету для каждого канала (до прихода следующего пакета начала цикла). Для изохронных передач используется короткий зазор арбитража, так что асинхронные транзакции, использующие более длинный зазор, в изохронную часть цикла вклиниться не могут. После того как иссякнут изохронные пакеты данного цикла, выполняются асинхронные передачи, у которых для арбитража используются более длинные зазоры. Когда наступает пора посылки следующего пакета начала цикла, мастер цикла, дождавшись освобождения шины, снова получает право доступа (пользуясь своим приоритетом, обусловленным его положением в корне дерева) и посылает следующий пакет начала цикла. Таким образом, длительность цикла может отклоняться от номинального значения 125 мкс. Отклонения длительности цикла от номинального не страшны, поскольку пакет начала цикла несет значение системного времени точно на момент фактической передачи этого пакета.

Если на шине не используются изохронные передачи, то мастер циклов может отсутствовать и пакетов начала цикла на шине не будет. В этом случае все время на шине может заполняться асинхронными передачами с их длинными зазорами арбитража.

Конфигурирование шины IEEE 1394 выполняется в различных ситуациях:

  • автоматически при изменении конфигурации — при подсоединении и отсоединении устройств, а также включении/выключении их PHY-уровня;
  • при обнаружении каким-либо узлом фатальной ошибки — «зависания» шины;
  • по инициативе какого-либо узла, желающего, например, изменить топологию (сменить корневой узел).

Конфигурирование состоит из трех последовательных этапов.

  1. Сброс (Bus Reset), с момента которого прекращается передача полезного трафика.
  2. Идентификация дерева (Tree Identification), во время которой узлы выстраиваются в иерархическую структуру.
  3. Самоидентификация узлов (Self Identification), во время которой узлы присваивают себе уникальные физические идентификаторы.

Конфигурирование шины приводит ее в состояние, пригодное для передачи полезного трафика. Конфигурирование шины осуществляется исключительно аппаратными средствами PHY-уровня каждого узла (LINK-уровень конфигурируемых узлов может быть и отключен). Программные средства в этом процессе не участвуют. Благодаря чисто аппаратной реализации автоконфигурирование производится настолько быстро, что возможно сохранение непрерывности изохронных потоков.

В первоначальной версии шины самое большое время во всей процедуре конфигурирования занимал сброс. В физический уровень 1394 вносились усовершенствования, направленные на минимизацию потерь времени при сбросе. Остальные этапы конфигурирования происходят быстрее, но в случае образования петлевого соединения идентификация дерева никогда не закончится. Эта ситуация обнаруживается любым узлом, и сообщение о ней доводится до пользователя. В 1394b приняты меры по автоматическому исключению петлевых соединений.

Свойства любого узла сконфигурированной шины наблюдаемы и управляемы через его архитектурные регистры и память конфигурации. Они доступны со стороны шины через асинхронные транзакции к определенным адресам. Архитектурные регистры определяют поведение узла на шине. Память конфигурации раскрывает «прикладную ценность» узла и обеспечивает его уникальную идентификацию, не зависящую от непостоянного физического идентификатора.

Шина IEEE 1394, обеспечивая равноранговые взаимодействия между узлами, нуждается в централизованном управлении некоторыми функциями. Управляющие функции могут брать на себя разные узлы шины; в зависимости от наличия реализации тех или иных функций различают следующие варианты шины IEEE 1394:

  • неуправляемая шина, нуждающаяся только в корневом узле (root), управляющем арбитражем. Корень, который становится «верховным арбитром», выбирается на этапе идентификации дерева. Первоначальный кандидат на эту «должность» выбирается исходя из топологии соединений, с возможным случайным розыгрышем этого права между двумя победителями предпоследнего тура. После завершения выборов корня производится самоидентификация (и назначение физических адресов) узлов, после чего шина становится готовой к асинхронным транзакциям между узлами. Впоследствии программным путем (через асинхронные сообщения по шине) возможно переназначение корня (с определением новой структуры дерева и адресов узлов);
  • частично управляемая шина, которая в дополнение к корню должна иметь узлы, выполняющие роль мастера циклов и диспетчера изохронных ресурсов. Их работа обеспечивает возможность использования шины для изохронных передач;
  • полностью управляемая шина, которая должна иметь узел-диспетчер шины, обеспечивающий дополнительные сервисы управления.

Мастер циклов

Мастер циклов (Cycle Master) отвечает за регулярную передачу пакетов начала цикла. Для этого он должен быть устройством с поддержкой изохронных обменов, иметь регистры CYCLE_TIME и BUS_TIME. В информационном блоке BUS_INFO_BLOCK его памяти конфигурации должен быть установлен бит cmc (Cycle Master Capable) — признак способности к исполнению этой роли. Текущим мастером циклов является узел, у которого в регистре состояния (STATE) установлен бит cmstr (Cycle Master). Все узлы, кроме корневого, во время идентификации дерева (после сброса) должны обнулить у себя этот бит; корневой узел должен сохранять значение, которое было до сброса.

Если выбранный корневой узел не способен быть мастером циклов, а требуются изохронные передачи, то из узлов, способных быть мастером (судя по биту cmc), выбирается новый кандидат на роль корня. Для этого посылается широковещательный PHY-пакет конфигурирования с идентификатором нового кандидата и установленным битом R. Этот узел установит у себя бит RHB, а остальные его сбросят, что и обеспечит выбор данного узла новым корнем во время идентификации, вызванной посылкой этого пакета.

Мастер циклов является источником системного времени; для этого он имеет регистры CYCLE_TIME и BUS_TIME. Текущее значение регистра CYCLE_TIME передается мастером циклов в пакетах начала цикла. Сброс на шине (в любой форме) на значения этих регистров не влияет.

Регистр CYCLE_TIME (32 бита, рис. а) состоит из трех полей, соответствующих значениям трех счетчиков, соединенных каскадно:

  • cycle_offset — 12-битный счетчик по модулю 3072 (максимальное значение 3071, после него обнуляется), считающий импульсы с частотой 24,576 МГц. Период этого счетчика соответствует номинальной длительности цикла — 125 мкс;
  • cycle_count — 13-битный счетчик по модулю 8000, считающий циклы. Период этого счетчика — 1 с;
  • second_count — 7-битный счетчик, считающий секунды; период счета — 128 с.

Регистр BUS_TIME (32 бита, рис. б) содержит значение системного времени в секундах. Его младшие 7 бит (second_count_lo) отображают поле second_count предыдущего регистра. Остальные 25 бит (second_count_hi) отсчитывают 128-секундные интервалы. Период счетчика составляет 232 = 4 294 967 296 с (около 136 лет).

IEEE 1394

IEEE 1394 Interface
Тип Последовательная связь
История
Разработчик Apple Computer (сейчас Apple, Inc.)
Разработано 1995
Производитель Разнообразный
Произведено 1995–н.в
Спецификации
Длина 4.5 м максимально
Ширина 1
Подключение на ходу Да
Внешнее Да
Макс. напряжение 30 В
Макс. ток 1.5 A
Сигнал данных Да
Полоса пропускания 400–3200 Мбит /с (50–400 Мбайт/с)
Выводы 4, 6, 9

IEEE 1394 (FireWire, i-Link) - последовательная высокоскоростная шина , предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

  • Apple - FireWire
  • Sony - i.LINK
  • Yamaha - mLAN
  • - Lynx
  • Creative - SB1394

История

  • в 1986 году членами Комитета по Стандартам Микрокомпьютеров (Microcomputer Standards Committee) принято решение объединить существовавшие в то время различные варианты последовательной шины (Serial Bus)
  • в 1992 году разработкой интерфейса занялась Apple
  • в 1995 году принят стандарт IEEE 1394

Преимущества

  • Горячее подключение - возможность переконфигурировать шину без выключения компьютера
  • Различная скорость передачи данных - 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.
  • Гибкая топология - равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера)
  • Высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени
  • Поддержка изохронного трафика
  • Поддержка атомарных операций - сравнение/обмен, атомарное увеличение (операции семейства LOCK - compare/swap, fetch/add и т. д.).
  • Открытая архитектура - отсутствие необходимости использования специального программного обеспечения
  • Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт.
  • Подключение до 63 устройств.

Шина IEEE 1394 может использоваться для:

  • Создания компьютерной сети .
  • Подключения аудио и видео мультимедийных устройств.
  • Подключения принтеров и сканеров .
  • Подключения жёстких дисков , массивов RAID .

Основные сведения

Кабель представляет собой 2 витые пары - А и B, распаянные как A к B, а на другой стороне кабеля как B к A. Также возможен необязательный проводник питания.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии - 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля - к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идет трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, а также ориентацию каждого порта - не подключен/к главному/от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции - это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение - запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции - это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путем инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требует выделения изохронных ресурсов - номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Использование

Сеть поверх 1394

Около 1998 г. содружество компаний, в том числе Microsoft, развивали идею обязательности 1394 для любого компьютера и использования 1394 внутри корпуса, а не только вне него. Существовали даже карты контроллеров с одним из разъемов, направленным внутрь корпуса. Также существовала идея Device Bay, то есть отсека для устройства со встроенным в отсек разъемом 1394 и поддержкой горячей замены.

Все это прослеживается в материалах Microsoft той поры, предназначенных для разработчиков компьютеров. Можно сделать вывод, что 1394 предлагали как замену ATA, то есть на роль, ныне выполняемую SATA.

Все эти идеи быстро кончились провалом, одна из главных причин - лицензионная политика Apple, требующего выплат за каждый чип контроллера.

MiniDV видеокамеры

Исторически первое использование шины. Используется и по сей день как средство захвата фильмов с MiniDV в файлы. Возможен и захват с камеры на камеру.

Видеосигнал, идущий по 1394, идет практически в том же формате, что и хранится на видеоленте. Это упрощает камеру, снижая требования к ней по наличию памяти.

Использование 1394 c miniDV положило конец проприетарным платам видеозахвата.

Отладчики

Интересным свойством контроллеров 1394 является способность читать и писать произвольные адреса памяти со стороны шины без использования процессора и ПО. Это проистекает из богатого набора асинхронных транзакций 1394, а также из ее структуры адресации.

Эта возможность чтения и редактирования памяти через 1394 без помощи процессора послужила причиной использования 1394 в двухмашинном отладчике ядра Windows - WinDbg. Такое использование существенно быстрее последовательного порта, но требует ОС не ниже Windows XP с обеих сторон. Также возможность используется в отладчиках для других ОС, например firescope для linux.

Организация устройств IEEE 1394

Устройства IEEE 1394 организованы по трехуровневой схеме - Transaction, Link и Physical, соответствующие трем нижним уровням модели OSI .

Transaction Layer - маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения.

Link Layer - формирует пакеты данных и обеспечивает их доставку.

Physical Layer - преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

IEEE 1394a

В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств.

Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходный процесс установки надёжного подсоединения или отсоединения устройства.

IEEE 1394b

IEEE 1394c

Появившийся в 2006 году стандарт 1394c позволяет использовать кабель Cat 5e от Ethernet . Возможно использовать параллельно с Gigabit Ethernet , то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина - 100 м, Максимальная скорость соответствует S800 - 800 Мбит/с.

Разъёмы

Существуют четыре (до IEEE 1394c - три) вида разъёмов для FireWire:

  • 4pin (IEEE 1394a без питания) стоит на ноутбуках и видеокамерах. Витая пара (два контакта) для передачи сигнала (информации) и вторая витая пара (др. два контакта) - для приема.
  • 6pin (IEEE 1394a). Дополнительно два провода для питания.
  • 9pin (IEEE 1394b). Дополнительно два контакта для экранов витых пар (приёма и передачи информации). И еще один контакт - резерв.
  • RJ-45 (IEEE 1394c).

См. также

Примечания

Ссылки

  • Интерфейс IEEE 1394 По материалам курса Kramer AV Academy - Архив журнала «625» № 7/2005 картинки, грамотно показаны как функциональные схемы, дерево узлов, схемы арбитража, так и разрез кабеля и смысл переходников.
  • 1394 Trade Association (англ.)
  • Рабочая группа IEEE p1394c (англ.)

История

На выставке Comdex’93 было впервые продемонстрировано небывалое по тем временам достижение: компьютер в одном окне показывал видеоклип с жесткого диска, а в другом - полномасштабную видеозапись в реальном времени, которая считывалась с цифровой видеокамеры. Процессор компьютера при этом не тратил вычислительные ресурсы на показ видео в реальном времени, поскольку в видеопамять по шине 1394 поступала уже сформатированная картинка.

Изобретателем нового высокоскоростного последовательного интерфейса является фирма Apple. Еще в 1986 году она предложила использовать подобный метод при построении системной шины, а также внешнего и внутреннего интерфейса для подключения отдельных компонентов и высокоскоростных периферийных устройств для компьютеров Macintosh. FireWire (такое название дала ему фирма Apple) вначале разрабатывался как высокоскоростной последовательный вариант SCSI. Взяв за основу относительно медленную шину, инженеры Apple сначала увеличили скорость передачи данных до 50 Мбит/с, а затем еще в два раза.

Основными требованиями при разработке этого интерфейса были следующие: двунаправленная скорость передачи до 400 Мбит/с (в настоящее время готовятся к выходу устройства, работающие на скоростях до 800 Мбит/с), а также возможность «горячего» подключения, то есть подсоединения внешних устройств без перезагрузки системы. Общее число подключенных устройств в одном бридже может достигать 63.

Решение Apple «открыть» стандарт привело к сотрудничеству с заинтересованными в таком проекте разработчиками из Texas Instruments, Stewart Connector, Molex, Adaptec и Western Digital (впоследствии к ним присоединился IBM, представитель которого и возглавил работы над всем проектом).

В стандарте кабелей FireWire существует два варианта кабелей с общим экраном: 6-проводной со скоростью обмена до 400 Мбит/с и 4-проводной (без проводов питания) со скоростью обмена до 100 Мбит/с. Они заканчиваются небольшими компактными разъемами.

Техническое описание этой шины в виде стандарта IЕЕЕ-1394 (IEEE, Institute of Electrical and Electronics Engineers) вышло в 1990 году. А к моменту публикации окончательного варианта стандарта на шину IEEE-1394 максимальная скорость обмена данных по шине достигла 400 Мбит/с.

Массовое распространение новинка получила главным образом после заключения в конце апреля 1995 года лицензионного соглашения между фирмами Apple и Adaptec, в результате чего вскоре появились контроллеры Adaptec IEEE-1394, а чуть позже - и цифровые DV-камеры фирмы Sony с вариантом соединения по FireWire-интерфейсу (i.Link). Таким образом, данный интерфейс начал широко применяться в области цифрового видео, хотя основным его назначением и областью его развития и совершенствования были и остаются компьютерные технологии.

Зачем нужен новый интерфейс

Прежде всего, посмотрите на заднюю стенку своего компьютера. Там можно найти множество всяких разъемов: последовательный порт для модема, принтерный порт для принтера, разъемы для клавиатуры, мыши и монитора, SCSI-интерфейс, предназначенный для подключения внешних носителей информации и сканеров, разъемы для подключения аудио и MIDI устройств, а также для устройств захвата и работы с видеоизображениями. Это изобилие сбивает с толка пользователей и создает беспорядок из соединительных кабелей. Причем, нередко производители ноутбуков используют и другие типы коннекторов.

Новый интерфейс призван избавить пользователей от этой мешанины и к тому же имеет полностью цифровой интерфейс. Таким образом, данные с компакт-дисков и цифровых магнитофонов смогут передаваться без искажений, потому что в настоящее время эти данные сначала конвертируются в аналоговый сигнал, а затем обратно оцифровываются устройством-получателем сигнала. Кабельное телевидение, радиовещание и видео CD передают данные также в цифровом формате.

Цифровые устройства генерируют большие объемы данных, необходимые для передачи качественной мультимедиа-информации. Например:

Высококачественное видео Цифровые данные = (30 frames / second) (640 x 480 pels) (24-bit color / pel) = 221 Mbps

Видео среднего качества Цифровые данные = (15 frames / second) (320 x 240 pels) (16-bit color / pel) = 18 Mbps

Высококачественное аудио Цифровые данные = (44,100 audio samples / sec) (16-bit audio samples) (2 audio channels for stereo) = 1.4 Mbps

Аудио среднего качества Цифровые данные = (11,050 audio samples / sec) (8-bit audio samples) (1 audio channel for monaural) = 0.1 Mbps

Обозначение Mbps - мегабит в секунду.

Для решения всех этих проблем и высокоскоростной передачи данных была разработана шина IEEE 1394 (Firewire).

Преимущества

Горячее подключение - возможность переконфигурировать шину без выключения компьютера

Различная скорость передачи данных - 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.

Гибкая топология - равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера)

Высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени

Поддержка изохронного трафика

Поддержка атомарных операций - сравнение/обмен, атомарное увеличение (операции семейства LOCK - compare/swap, fetch/add и т. д.).

Открытая архитектура - отсутствие необходимости использования специального программного обеспечения

Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт.

Подключение до 63 устройств.

Шина IEEE 1394 может использоваться для:

Создания компьютерной сети.

Подключения аудио и видео мультимедийных устройств.

Подключения принтеров и сканеров.

Подключения жёстких дисков, массивов RAID.

Основные сведения

Шесть контактов FireWire подсоединены к двум проводам, идущим к источнику питания, и двум витым парам сигнальных проводов. Каждая витая пара и весь кабель в целом экранированы.

Провода питания рассчитаны на ток до 1,5 А при напряжении от 8 до 40 В, поддерживают работу всей шины, даже когда некоторые устройства выключены. Они также делают ненужными кабели питания во многих устройствах. Не так давно инженеры Sony разработали еще более тонкий четырехпроводный кабель, в котором отсутствуют провода питания. (Они намерены добавить свою разработку к стандарту.) Этот так называемый AV-разъем будет связывать небольшие устройства, как "листья" с "ветками" 1394.

Гнездо разъема имеет небольшие размеры. Ширина его составляет 1/10 ширины гнезда разъема SCSI, у него всего шесть контактов (у SCSI - 25 или 50 разъемов).

К тому же кабель 1394 тонкий - приблизительно в три раза тоньше, чем кабель SCSI. Секрет тут прост - ведь это последовательная шина. Все данные посылаются последовательно, а не параллельно по разным проводам, как это делает шина SCSI.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии - 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля - к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идет трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, а также ориентацию каждого порта - не подключен/к главному/от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции - это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение - запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции - это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путем инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требует выделения изохронных ресурсов - номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Топология

Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет "корневое" устройство, от которого происходит ветвление к логическим "узлам", находящимся в других физических устройствах.

Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине.

Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе - 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х10244 байт) для каждого узла.

Конструкция шины удивительно проста. Устройства могут подключаться к любому доступному порту (на каждом устройстве обычно 1 - 3 порта). Шина допускает "горячее" подключение - соединение или разъединение при включенном питании. Нет также необходимости в каких-либо адресных переключателях, поскольку отсутствуют электронные адреса. Каждый раз, когда узел добавляется или изымается из сети, топология шины автоматически переконфигурируется в соответствии с шинным протоколом.

Однако есть несколько ограничений. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. К тому же для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м.

Протокол

Интерфейс позволяет осуществлять два типа передачи данных: синхронный и асинхронный. При асинхронном методе получатель подтверждает получение данных, а синхронная передача гарантирует доставку данных в необходимом объеме, что особенно важно для мультимедийных приложений.

Протокол IEEE 1394 реализует три нижних уровня эталонной модели Международной организации по стандартизации OSI: физический, канальный и сетевой. Кроме того, существует "менеджер шины", которому доступны все три уровня. На физическом уровне обеспечивается электрическое и механическое соединение с коннектором, на других уровнях - соединение с прикладной программой.

На физическом уровне осуществляется передача и получение данных, выполняются арбитражные функции - для того чтобы все устройства, подключенные к шине Firewire, имели равные права доступа.

На канальном уровне обеспечивается надежная передача данных через физический канал, осуществляется обслуживание двух типов доставки пакетов - синхронного и асинхронного.

На сетевом уровне поддерживается асинхронный протокол записи, чтения и блокировки команд, обеспечивая передачу данных от отправителя к получателю и чтение полученных данных. Блокировка объединяет функции команд записи/чтения и производит маршрутизацию данных между отправителем и получателем в обоих направлениях.

"Менеджер шины" обеспечивает общее управление ее конфигурацией, выполняя следующие действия: оптимизацию арбитражной синхронизации, управление потреблением электрической энергии устройствами, подключенными к шине, назначение ведущего устройства в цикле, присвоение идентификатора синхронного канала и уведомление об ошибках.

Чтобы передать данные, устройство сначала запрашивает контроль над физическим уровнем. При асинхронной передаче в пакете, кроме данных, содержатся адреса отправителя и получателя. Если получатель принимает пакет, то подтверждение возвращается отправителю. Для улучшения производительности отправитель может осуществлять до 64 транзакций, не дожидаясь обработки. Если возвращено отрицательное подтверждение, то происходит повторная передача пакета.

В случае синхронной передачи отправитель просит предоставить синхронный канал, имеющий полосу частот, соответствующую его потребностям. Идентификатор синхронного канала передается вместе с данными пакета. Получатель проверяет идентификатор канала и принимает только те данные, которые имеют определенный идентификатор. Количество каналов и полоса частот для каждого зависят от приложения пользователя. Может быть организовано до 64 синхронных каналов.

Шина конфигурируется таким образом, чтобы передача кадра начиналась во время интервала синхронизации. В начале кадра располагается индикатор начала и далее последовательно во времени следуют синхронные каналы 1, 2… На рисунке изображен кадр с двумя синхронными каналами и одним асинхронным.

Оставшееся время в кадре используется для асинхронной передачи. В случае установления для каждого синхронного канала окна в кадре шина гарантирует необходимую для передачи полосу частот и успешную доставку данных.

При разработке идеального ПК особо важное значение приобретает правильный выбор шины для подключения периферийных устройств. Этот канал связи между компьютером и его компонентами оказывает существенное влияние на производительность ПК и его стоимость.

Ieee 1394 (Firewire, iLink)

IEEE 1394 (Firewire, iLink) – это последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. Эта шина также идеально подходит для работы мультимедийных приложений в реальном времени. Интерфейс IEEE-1394 разрабатывался для того, чтобы обеспечить высокоскоростной доступ, главным образом к устройствам хранения информации, таким как жесткие диски, приводы CD и DVD.

Технические характеристики ieee 1394

Скорость передачи данных до 400 Mbits/s по стандарту IEEE-1394a и 800 Mbits/s по стандарту IEEE-1394b,

16-ти разрядный адрес позволяет адресовать до 64K узлов на шине

Предельная теоретическая длина шины 224 метра

- "горячее" подключение/отключение без потери данных

Автоматическое конфигурирование, аналогичное Plug&Play

Произвольная топология шины - по аналогии с локальными сетями может использоваться как "звезда" так и общая шина (только в виде цепочки, в отличие от сети на коаксиальном кабеле)

Отсутствие терминаторов (при подключении к SCSIна последнем устройстве необходим терминатор)

Возможность обмена с гарантированной пропускной способностью, что крайне необходимо для передачи видеоизображений

Максимальное расстояние между двумя устройствами в цепочке по IEEE-1394a - 4.5 м, по IEEE-1394b - 100 м.

При этом шина обеспечивает:

1. цифровой интерфейс - позволяет передавать данные между цифровыми устройствами без потерь информации

2. небольшой размер - тонкий кабель заменяет груду громоздких проводов

3. простота в использовании - отсутствие терминаторов, идентификаторов устройств или предварительной установки

4. небольшая стоимость для конечных пользователей

5. возможность обработки мультимедиа-сигнала в реальном времени

6. открытая архитектура - отсутствие необходимости использования специального программного обеспечения

Работа шины ieee 1394

Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет "корневое" устройство, от которого происходит ветвление к логическим "узлам", находящимся в других физических устройствах. Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине.

рис. 1. Пример топологии IEEE-1394.

Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе – 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х10244 байт) для каждого узла. Конструкция шины удивительно проста. Устройства могут подключаться к любому доступному порту (на каждом устройстве обычно 1 – 3 порта). Шина допускает "горячее" подключение – соединение или разъединение при включенном питании. Нет также необходимости в каких-либо адресных переключателях, поскольку отсутствуют электронные адреса.

Каждый раз, когда узел добавляется или изымается из сети, топология шины автоматически переконфигурируется в соответствии с шинным протоколом. Однако есть несколько ограничений. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. К тому же для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м. С технической точки зрения работа по подключению устройств к сети тривиальна.

IEEE-1394 (называемый также FireWire) представляет собой высокоскоростной цифровой последовательный интерфейс, предназначенный для передачи любых цифровых данных. На сегодняшний день его активно используют в самых разных устройствах, включая не только PC, но и множество мобильных гаджетов.

Где он используется?

Разработка IEEE-1394 осуществлялась для того, чтобы предоставить пользователям высокоскоростной доступ к различным устройствам хранения данных, включая жесткие диски, а также CD- и DVD-приводы. При этом в планах было сделать такой интерфейс, который будет действительно универсальным, после чего использовать его в различных устройствах ввода, включая сканеры, фото- или же видеокамеры, а также прочую аудиовизуальную аппаратуру. Но при этом его превосходные параметры, такие как гибкость и предельная простота использования, вместе с возможностью при надобности отдавать при передаче приоритет той информации, для которой синхронизация по времени представляет собой критический фактор, в конечном итоге были признаны оптимальными для обеспечения нормальной передачи цифрового видео, вследствие чего по сегодняшний день не существует им какой-либо альтернативы. Первым аппаратным решением, в котором использовался интерфейс IEEE-1394, стали всевозможные платы, предназначенные для работы с цифровым видео.

Что он дает?

Данный стандарт позволяет комбинировать программные и для того, чтобы передавать информацию в потоке 100, 200 или 400 Мбит/с, при этом последние реализации обеспечивают еще более высокую скорость передачи. Связь между несколькими устройствами с интерфейсом IEEE-1394 активируется и выключается непосредственно в процессе работы (что получило название «горячее подключение»). Другими словами, им не требуется отключение питания или же перезагрузка.

Sony и ее разработки

Впервые преимущества IEEE-1394 начала использовать в своих разработках компания Sony, обратившая внимание на масштабируемость, скорость передачи информации, возможность обработки данных в реальном времени, простоту подключения, и при этом достаточно небольшую стоимость. Вследствие этого активно началась разработка специализированных заточенных под этот стандарт.

После выпуска своих специалисты компании Sony начали разрабатывать разнообразные решения, предназначенные для персональных компьютеров, цифровых приемников спутникового ТВ, цифровых видеомагнитофонов, а также различных винчестеров и приводов CD или DVD. Все эти устройства существенно расширяют общие возможности подключения различной видео- или аудиоаппаратуры к компьютерам, вследствие чего появилась возможность создания полноценной домашней аудиовизуальной сети.

Как это можно использовать?

Уже сегодня можно свободно интегрировать разнообразное оборудование с компьютером, обеспечивая таким образом эффективное управление любыми устройствами непосредственно со своего ПК. Из данного оборудования могут формироваться целые системы, объединенные стандартным соединением нескольких устройств между собой при помощи кабеля. Затем, используя персональный компьютер, выступающий в данном случае в качестве контроллера, можно проводить запись с CD-проигрывателя на небольшие мини-диски, проводить запись цифровых радиопередач, а также вводить любые видеофайлы в ПК, для того чтобы потом их монтировать и редактировать. Конечно, при этом будет сохранена возможность непосредственного обмена между видео- и аудиоборудованием без необходимости использования компьютера или же, наоборот, взаимообмена информацией между несколькими компьютерами точно так же, как в локальных сетях на основе стандартных Ethernet-технологий.

NEC и ее чип

Корпорация NEC практически сразу после выпуска стандарта IEEE-1394 объявила о том, что начинает разрабатывать чип, который будет использоваться для поддержки аппаратной маршрутизации между несколькими сетями, основанными на данном стандарте, а также обеспечивающего их нормальное взаимодействие в широкополосных домашних сетях данного стандарта. Такой двухпортовый чип оснащался специализированным микропрограммным программным обеспечением, в автоматическом режиме конфигурирующим сеть, а также предоставляющим возможность установки соединения между различными сетевыми устройствами, включая также устройства мобильной связи. В связи с этим есть возможность расширения домашней сети за границы какого-то определенного дома на дальность до одного километра.

Ответ от Sony

В это время компания Sony продолжает развитие концепции домашней сети, основывающейся на FireWire IEEE-1394, при этом в ближайших планах компании присутствует также дальнейшее поддержание разработок, отличающихся практической направленностью, а также собирается заниматься производством более скоростных, емких, а также компактных комплектующих, имеющих незначительное потребление энергии. Такие устройства должны будут отличаться достаточно широким диапазоном применений, а также дальнейшей интеграции в системные чипсеты, и компания уже давно предоставляет своим клиентам самую разнообразную бытовую технику, подключающуюся к домашней сети. Такая архитектура получила название HAVi, создавая своеобразный цифровой дом, основанный на FireWire IEEE-1394.

Стандарт в компьютерах

Стандарт IEEE-1394, фото кабеля с которым вы сможете увидеть ниже, привлек к себе внимание не только со стороны производителей различного медиаоборудования, но также и разработчиков, занимающихся изготовлением устройств для персональных компьютеров. С течением времени он превратился в основной сетевой стандарт, который существенно приблизил цифровую эпоху.

После того как вышла операционная система Windows Millennium, разработчики изначально одобрили поддержку локальных сетей, основанных на контроллерах IEEE-1394, характеристики которого на тот момент были более чем соответствующими. Такая сеть отличается достаточно высокой которая была в четыре раза больше по сравнению с использующимся на тот момент по сравнению с а также является предельно удобной для малого офиса или дома. Единственным удобством в процессе построения данной сети является то, что здесь присутствует небольшая предельная длина каждого сегмента. Для того чтобы устранить данный недостаток IEEE-1394, обзор и характеристики устройства показали, что наиболее оптимальным будет использовать специализированные усилители сигнала, а также всевозможные размножители-концентраторы, работающие на несколько портов. Такие устройства получили название «репитеры».

USB 2.0 vs IEEE-1394

Практически сразу выпущенный интерфейс USB 2.0 начал конкурировать с IEEE-1394. Обзор устройств показал, что первого интерфейса показывала 480 Мбит/с на тот момент, что было гораздо больше по сравнению с первой версией USB.

Шина USB сразу стала достаточно популярной, благодаря тому что являлась достаточно дешевым вариантом, имеющим поддержку контроллера, который можно встроить прямо в чипсеты для различных материнских плат. При этом практически сразу было заявлено, что скоростной формат сможет реализоваться в виде контроллера, встроенного в чипсет. Несмотря на все это, компания Microsoft сказала о том, что более приоритетным для нее является именно IEEE-1394 (порт), при этом USB отличается асинхронной передачей, вследствие чего нормально конкурировать с форматом FireWire с точки зрения передачи цифрового видео он не может.

Другими словами, любые устройства, использующие данный интерфейс, могут прекрасно взаимодействовать с различными персональными компьютерами, имеющими такой интерфейс, а также между собой. Таким образом, пользователи получили возможность высокоскоростной передачи, обработки и сохранения информации, не вызывая никаких ухудшений качества.

Контроллеры

В продаже появилась масса контроллеров, выпущенных самыми разными производителями. Первоначально получили широкое распространение контроллеры, поддерживающие стандарт OHCI, так как это было необходимо для обеспечения нормальной поддержки операционной системы Windows 2000, являющейся основной на тот момент.

Цены на различные адаптеры, поддерживающие IEEE-1394 интерфейс, являлись достаточно низкими и были доступны практически каждому. В частности были устройства, стоимость которых ниже 35. $

Сложно ли его устанавливать?

Установка данного контроллера являлась предельно простой, ведь, как уже говорилось выше, в Microsoft изначально предусматривалась поддержка именно этого интерфейса, и поэтому в операционной системе присутствовали все нужные компоненты. Достаточно было просто вставить диск с записанным на него дистрибутивом системы, и потом, если будет нужно, заниматься установкой всех нужных компонентов.

В преимущественном большинстве случаев контроллер FireWire разделял прерывание с USB-контроллером, однако никаких конфликтов не возникало даже в том случае, если они работали одновременно.

Стоит отметить несколько плат, которые в некоторых компьютерах присутствуют даже по сегодняшний день.

Datavision DV Capture

Данная плата является стандартной для семейства плат IEEE-1394, область применения которой достаточно широка. В преимущественном большинстве случаев она представляет собой PCI-плату, имеющую два или даже три дополнительных внешних порта, а также один внутренний. В первоначальной поставке предусматривается безликое программное обеспечение, предназначенное для монтажа видеофайлов. Такие платы использовались многими производителями, но все они были одинаковыми. Цены их разные, и в комплекте может присутствовать или отсутствовать кабель, предназначенный для подключения различных FireWire-устройств.

DVeasy

Данная плата является практически такой же, как предыдущая, однако в данном случае отсутствуют внутренние порты IEEE-1394. Что это такое, понимали немногие, так как есть масса причин, обуславливающих необходимость присутствия хотя бы одного внутреннего порта, однако производители данных плат посчитали иначе, при этом стоимость платы установили точно такую же, как и в стандартных устройствах.

Отличием данной платы среди остальных является то, что в ней присутствует достаточно нетрадиционное программное обеспечение, предназначенное для монтажа видео, и интерфейс его является больше похожим на фактический стандарт в данной области. В частности,стоит отметить, что данное ПО предусматривало разнообразные полезные элементы, включая фоновый рендеринг, помогающий «скрасить» ожидание конечного результата.

Dazzle DV-Elitor

После того как скорость обработки данных ноутбуками практически сравнялось со скоростью работы персональных компьютеров, разнообразные портативные решения начали все чаще использоваться для того, чтобы обеспечивать ввод и дальнейшее редактирование видео прямо на ходу, а также для использования множества другой FireWire-периферии. Такие комплекты предоставляют возможность пользователям ноутбука подключать абсолютно любые устройства, использующие стандарт IEEE-1394, к карточке PCMCIA Type II. В стандартном комплекте данной карты присутствует специализированный четырехпроводной кабель. К сожалению, есть достаточно большое количество устройств с данным интерфейсом, для которых нужно использовать шестипроводной кабель, вследствие чего работать они с этой картой не смогут.

В комплекте поставки присутствует упрощенная версия программы Video Studio 4, которая предназначается для того, чтобы редактировать и вводить видеофайлы. Программа является достаточно простой в освоении, но благодаря специализированной технологии SmartRender значительно снижается общее время работы, что обеспечивается предельно детальным просчетом эффектов только в процессе финального экспорта уже готового файла.

Карта является достаточно доступной в плане стоимости большинству современных пользователей, а также оснащается интегрированным кабелем. Однако при этом стоит отметить, что отсутствие питания серьезно ограничивает функциональность данной карты по сравнению с аналогичными устройствами.

Таким образом, у пользователей есть возможность выбрать одну из нескольких карт, сравнить их характеристики и определиться с тем, какой именно вариант является наиболее подходящим под их условия. Но в общем и целом его использование является не таким актуальным при существующих интерфейсах USB 3.0 и других.

Похожие статьи