Локальная шина VESA Local Bus. Системные и локальные шины

24.06.2019

Локальная шина (Local bus)

Все описанные ранее шины имеют общий недостаток — сравнительно низкую пропускную способность. Это связано с тем, что шины разрабатывались в расчете на медленные процессоры. В дальнейшем быстродействие процессора возрастало, а характеристики шин улучшались в основном "экстенсивно", за счет добавления новых линий. Препятствием для повышения частоты шины являлось огромное количество выпущенных плат, которые не могли работать на больших скоростях обмена (МСА это касается в меньшей степени, но в силу вышеизложенных причин эта архитектура не играла заметной роли на рынке). В то же время в начале 90-х годов в мире персональных компьютеров произошли изменения, потребовавшие резкого увеличения скорости обмена с устройствами:

Очевидным выходом из создавшегося положения является следующий: осуществлять часть операций обмена данными, требующих высоких скоростей, не через шину ввода/вывода, а через шину процессора, примерно так же, как подключается внешний кэш. Такая конструкция получила название локальной шины (Local Bus). Рисунки наглядно демонстрируют различие между обычной архитектурой и архитектурой с локальной шиной.

Локальная шина не заменяла собой прежние стандарты, а дополняла их. Основными шинами в компьютере по-прежнему оставались ISA или EISA, но к ним добавлялись один или несколько слотов локальной шины. Первоначально эти слоты использовались почти исключительно для установки видеоадаптеров, при этом к 1992 году было разработано несколько несовместимых между собой вариантов локальных шин, исключительные права на которые принадлежали фирмам-изготовителям. Естественно, такая неразбериха сдерживала распространение локальных шин, поэтому VESA (Video Electronic Standard Association) — ассоциация, представляющая более 100 компаний — предложила в августе 1992 года свою спецификацию локальной шины.

Локальная шина VESA (VL-bus)

Основные характеристики VL-bus таковы.

  • Поддержка процессоров серий 80386 и 80486. Шина разработана для использования в однопроцессорных системах, при этом в спецификации предусмотрена возможность поддержки х86-несовместимых процессоров с помощью моста (bridge chip).
  • Максимально число bus master — 3 (не включая контроллер шины). При необходимости возможна установка нескольких подсистем для поддержки большего числа masterов.
  • Несмотря на то, что изначально шина была разработана для поддержки видеоконтроллеров, возможна поддержка и других устройств (например, контроллеров жесткого диска).
  • Стандарт допускает работу шины на частоте до 66 MHz, однако электрические характеристики разъема VL-bus ограничивают ее до 50 MHz (это ограничение, естественно, не относится к интегрированным в материнскую плату устройствам).
  • Двунаправленная (bi-directional) 32-разрядная шина данных поддерживает и 16-разрядный обмен. В спецификацию заложена возможность 64-разрядного обмена.
  • Поддержка DMA обеспечивается только для bus masters. Шина не поддерживает специальных "инициаторов" DMA.
  • Максимальная теоретическая пропускная способность шины — 160 МВ/сек (при частоте шины 50 MHz), стандартная — 107 МВ/сек при частоте 33 MHz.
  • Поддерживается пакетный режим обмена (для материнских плат 80486, поддерживающих этот режим). 5 линий используется для идентификации типа и скорости процессора, сигнал Burst Last (BLAST#) используется для активизации этого режима. Для систем, не поддерживающих этот режим, линия устанавливается в 0.
  • Шина использует 58-контактный разъем МСА. Максимально поддерживается 3 слота (на некоторых 50-мегагерцовых шинах возможна установка только 1 слота).
  • Слот VL-bus устанавливается в линию за слотами ISA/EISA/MCA, поэтому VL-платам доступны все линии этих шин.
  • Поддерживается как интегрированный кэш процессора, так и кэш на материнской плате.
  • Напряжение питания — 5 В. Устройства с уровнем выходного сигнала 3.3 В поддерживаются при условии, что они могут работать с уровнем входного сигнала 5 В.

Шина VL-bus явилась огромным шагом вперед по сравнению с ISA как по производительности, так и по дизайну. Одним из преимуществ шины являлось то, что она позволяла создавать карты, работающие с существующими чипсетами и не содержащие большого количества схем дорогостоящей управляющей логики. В результате VL-карты получались дешевле аналогичных EISA-карт. Однако и эта шина не была лишена недостатков, главными из которых являлись следующие.

  • Ориентация на 486-ой процессор. VL-bus жестко привязана к шине процессора 80486, которая отличается от шин Pentium и Pentium Pro/Pentium II.
  • Ограниченное быстродействие. Как уже было сказано, реальная частота VL-bus — не больше 50 MHz. Причем при использовании процессоров с множителем частоты шина использует основную частоту (так, для 486DX2-66 частота шины будет 33 MHz).
  • Схемотехнические ограничения. К качеству сигналов, передаваемых по шине процессора, предъявляются очень жесткие требования, соблюсти которые можно только при определенных параметрах нагрузки каждой линии шины. По мнению Intel, установка недостаточно аккуратно разработанных VL-плат может привести не только к потерям данных и нарушениям синхронизации, но и к повреждению системы.
  • Ограничение количества плат. Это ограничение вытекает также из необходимости соблюдения ограничений на нагрузку каждой линии.

Несмотря на существующие недостатки, VL-bus была несомненным лидером на рынке, так как позволяла устранить узкое место сразу в двух подсистемах — видеоподсистеме и подсистеме обмена с жестким диском. Однако лидерство было недолгим, поскольку корпорация Intel разработала свою новинку — шину PCI. По мнению компании, VL-bus базировалась на технологиях 11-летней давности и являлась всего лишь "заплаткой", компромиссом между производителями. Правда, VESA заявляла, что обе шины могут "уживаться" совместно в одной системе. Intel соглашалась, что такое соседство возможно, но задавала встречный убийственный вопрос: "А зачем?". Справедливости ради, надо сказать, что PCI действительно была избавлена от большинства недостатков, присущих VL-bus.

СПЕЦИФИКАЦИИ

ЛОКАЛЬНОЙ ШИНЫ

ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА

Узкое место современных

персональных компьютеров -

шина ввода-вывода. Две кон-

курирующие спецификации

предназначены для увеличе-

ния пропускной способности

шины ввода-вывода.


Всередине июня 1992г. корпорация Intel и ассоциация по стантартизации в области видеоэлектроники VESA (Video Electronic Standarts Association, Сан-Хосе, шт. Калифорния) предложили проекты спецификаций локальных шин, решающих задачу увеличения производительности персональных компьютеров за счет совершенствования подсистемы ввода-вывода данных.

Компания Intel представила свою спецификацию интерфейса PCI (Peripheral Component Interconnect), а ассоциация VESA - локальной шины VL-Bus. И фирма Intel, и ассоциация VESA надеются, что предлагаемые ими технические решения станут промышленным стандартом.

Спецификации не совместимы друг с другом и будут, по всей видимости, вести борьбу за симпатии разработчиков. Некоторые обозреватели отмечают, что промышленность, воз-можно, ждет некоторое повторение "войны шин", разразившееся несколько лет назад между шинами EISA и MCA.

Локальная шина предназначена для обеспечения непосредственного доступа процессора к переферийным устройствам (например, графическим или сетевым адаптерам), минуя арбитраж, предусмотренный в шинах ISA, EISA или MCA. Теоретически 32-разрядная локальная шина может обеспечить передачу и прием данных от переферийных устройств на максимальной скорости ЦП 386 или 486.

Шина PCI разработана корпорацией Intel с целью предоставить изготовителям комплексного оборудования и системных плат стандартный способ подключения к системной плате ПК дополнительных схем, обеспечивающие максимальные скоростные характеристики системы. Например, при помощи находящейся на системной плате локальной шины фирма-изготовитель может подключить к компьютеру сетевой интерфейс или графический адаптер.

Шина VL-Bus Ассоциации VESA призвана играть роль стандартного аппаратного интерфейса, позволяющего устанавливать адаптеры независимых фирм непосредственно в гнезда системной платы, а так-же размещать на системной плате дополнительные компоненты.

УСТРАНЕНИЕ УЗКИХ МЕСТ

По мере того, как растет быстродействие микропроцессоров, узким местом становится шина ввода-вывода, что отрицательно сказывается на общих скоростных характеристиках системы. Производительность современных настольных ПК обычно сдерживается низкой скоростью обработки графических изображений и доступа к дисковым накопителям. Пропускную способность ЛВС определяют сетевой график, протокол обмена и время доступа к накопителям.

В настоящее время функции ввода-вывода в ПК реализуются при помощи стандартных шин расширения ISA, EISA или MCA. Эффективную пропускную способность этих машин можно повысить только с помощью дополнительных интеллектуальных средств и встроенных специализированных процессоров.

Сегодня от стандартных шин расширения никто не собирается отказываться, однако вполне очевидно, что можно получить существенный выигрыш в быстродействии за счет подключения графических адаптеров, сетевых контроллеров, дисковых накопителей и контроллеров интерфейса SCSI к локальной шине, которая является каналом непосредственного обмена данными с ЦП.

Некоторые изготовители комплексного оборудования и печатных плат уже анонсировали изделия, содержащие оригинальные локальные шины, однако развитие этого направления до сих пор сдерживается отсутствием стандартного интерфейса. Такое положение вещей для потребителя означает высокую стоимость подобных систем и ограниченные возможности выбора.

ШИНА VL-BUS

АССОЦИАЦИИ VESA

Спецификации шины VL-Bus - это по существу стандарт аппаратного интерфейса. Как утверждает Рон Маккейб, председатель подкомитета по разработке шины VL-Bus ассоциации VESA, эта спецификация регламентирует требования к архитектуре и физическим компонентам интерфейса с ЦП.

Через локалную шину центральный процессор

компьютера получает непосредственный

доступ к периферийным устройствам.

В выработке проекта спецификации VL-Bus принимали учатие 40 компаний. По словам официальных представителей VESA, окончательный вариант должен был быть готов предположительно в 1994г. Первоначально эта шина применялась для построения сетевых серверов, систем обработки изображений и multimedia.

Шина VL-Bus обладает высокой пропускной способностью свыше 130 Мбайт/с. Специалисты ассоциации VESA утверждают, что в зависимости от типа переферийного устройства ожидаемое повышение быстродействия составит от 50 до 600%. Шина VL-Bus расчитана на работу на частоте до 66 Мгц. На частоте 33 Мгц она позволяет без тактов ожидания выполнять операции записи и с одним тактом ожидания операции чтения, а на частоте 66 Мгц - операции записи и чтения с одним тактом ожидания. Имеется режим захвата шины, при котором устройство берет на себя управление системными ресурсами без участия ЦП.

Установка дискового контроллера с интерфейсом SCSI и шиной VL-Bus в сетевой сервер может повысить скоростные характеристики сети на 15% благодаря увеличению скорости обмена с накопителями. Это происходит за счет уменьшения вероятностей столкновений и повторных попыток передачи данных. Реальная скорость передачи информации по линии не изменится, но уменьшение вероятности ожидания означает, что сеть способна на более интенсивную нагрузку и более эфективно реагирует на события. Один из ключевых элементов, отличающих спецификацию VL-Bus от спецификации PCI компании Intel, - наличие стандартного разьема. Конструкция разьемов аналогична конструкции соеденителей шины MCI. К шине через разьемы можно подключать до трех плат.

Недостатком шины VL-Bus является сложность схемной реализации и необходимость разработки новых наборов интегральных схем. Изготовителям системных плат и комплексного оборудования приходется проектировать новые изделия в соответствии с новой спецификацией. Это, однако, не требует переработки программного обеспечения.

Ассоциации VESA удается привлеч достаточное число изготовителей комплексного оборудования и переферийных устройств. Наборы интегральных схем появились в конце 1992г., а изделия для конечного пользователя - в 1993г.

Сейчас спецификация расширяется - вводится режим обмена 64-разрядными данными и существуют ИС преобразователь (для связи ЦП и переферийного устройства), благодаря чему шина VL-Bus совместима с шиной PCI компании Intel.

ЛОКАЛЬНАЯ ШИНА PCI

КОМПАНИИ INTEL

По случайному совпадению компания Intel анонсировала свою спецификацию шины PCI тоже в июне 1992г. на выставке PC Expo.

Локальная шина компании Intel - типичная внутренняя шина, которая позволяет изготовителям комплексного оборудования устанавливать компоненты непосредственно на системную плату, минуя шину ЦП-память. Спецификация требует, чтобы сопряжение ЦП и подключаемого переферийного устройства проводилось с помощью так называемой мостовой (Bridge) интегральной схемы.

Такое решение, как указывает Майкл Бейли, менеджер по маркетингу средств PCI компании Intel, обеспечивает необходимую для ввода-вывода пропускную способность и в то же время не задерживает работу ЦП. Процессор при этом может работать с основной памятью на полной скорости.

Специалисты компании Intel говорят, что PCI - это мультиплексная 32-разрядная шина, предусматривающая расширение до 64-х разрядов. Шина способна работать в синхронном режиме на частотах до 33 Мгц. Для 32-разрядного варианта шины пропускная способность составляет 132 Мбайт/c.

При обмене данными ЦП получает непосредственный доступ к подключенным к шине PCI устройствам, которые могут распологаться в адресном пространстве памяти или в пространстве устройства ввода-вывода. В режиме захвата шины главные абоненты шины PCI получают прямой доступ к основной памяти. Мостовая интегральная схема тоже может обеспечивать факультативные функции буферизации и централизованного арбитража шины.

Тип соеденителя для печатных плат спецификации PCI в явном виде не определен, однако компания Intel заявляет, что при разработке этой спецификации она ориентировалась на конкретный тип разьема. В будущем в спецификацию планируется включить требования к средствам управления мощьностью потребления для машин с батарейным питанием и схемам управления напряжением питания для низковольтных микросхем.

КТО ПЕРВЫЙ?

По мнению промышленных опозревателей, с технической точки зрения шины VL-Bus и PCI различаются незначительно. Они обеспечивают сравнимые скорости передачи данных, одинаковую разрядность передаваемой информации, прямой доступ к памяти при задержках 1 или 0,5 такта.

Реальный успех шины будет определятся и определяется тем, насколько удачно построены драйверы обмена данными и задействован режим прямого доступа к памяти.

"Шина VL-Bus выходит вперед" - говорит Джон Педди, издатель и редактор бюллетеня The PC Graphics Report. Причина проста: Эта шина не какая-то фантазия, она уже существует. Главный довод в пользу спецификации ассоциации VESA состоит в том, что соеденитель для шины уже выбран.

ЛИТЕРАТУРА:

1. Computer Sources, August 1994 (Magazine)

2. PS Magazine, N1 1995

3. Мир ПК, N3,5 1994


С повышением тактовых частот и разрядности процессоров настала насущная проблема в повышении скорости передачи данных в шинах (какой смысл использовать камень с тактовой частотой, скажем, 66 МГц, если шина работает на частоте лишь 8,33 МГц). В одних случаях, например клавиатуре или мышке, высокая скорость ни к чему. Но инженеры фирм производителей плат расширения готовы были изготовлять устройства со скоростью, которую шины не могли предоставить.

В
ыход из создавшегося положения был найден следующий: часть операций обмена данными, требующих высоких скоростей, должна осуществляться не через стандартные разъемы шины ввода/вывода, а через дополнительные высокоскоростные интерфейсы - шину процессора, примерно так же, как подключается внешний кэш.

Дело в том, что эти самые высокоскоростные интерфейсы подключаются к шине процессора. Из этого следует, что подключаемые платы будут иметь доступ непосредственно к процессору через его шину. Такая конструкция получила название локальной шины (LB, Local Bus). Локальная шина не заменяла собой прежние стандарты, а дополняла их. Рисунок демонстрирует различие между обычной архитектурой и архитектурой с локальной шиной. Между прочим, первые шины ISA как раз и были локальными, но когда их тактовая частота превысила 8 МГц, произошло разделение.

Основными шинами в компьютере по-прежнему оставались ISA или EISA, но к ним добавлялись один или несколько слотов локальной шины. Первоначально эти слоты использовались почти исключительно для установки видеоадаптеров, при этом к 1992 году было разработано несколько несовместимых между собой вариантов локальных шин, исключительные права на которые принадлежали фирмам-изготовителям.

Такое разнообразие сдерживала распространение локальных шин, поэтому Ассоциация по стандартам в области видеоэлектроники VESA (Video Electronic Standard Association), представляющая более 100 компаний, предложила в августе 1992 года свою спецификацию локальной шины VESA Local Bus (VL-bus или VLB) , которая не изменяла, а дополняла существующие стандарты. Шина VLB разработана с целью увеличить пропускную способность между основным процессором и видеокартой, для этого просто к основным шинам добавлялось несколько новых быстродействующих локальных слотов. Основная функция, для которой была предназначена новая шина, – обмен данными с видеоадаптером.

Представляла собой 32-битную шину, которая использовала третий и четвёртый разъём в виде продолжения обычного слота ISA. Шина работала на номинальной частоте 33 МГц и обеспечивала существенный прирост производительности по сравнению с ISA. В дальнейшем шину VLB стали использовать производители контроллеров жестких дисков и других устройств, требующих высокоскоростной передачи данных. Выпускались даже 100-мегабитные Ethernet контроллеры с шиной VLB. Широкое распространение шины VESA обусловила ее относительная дешевизна и совместимость “сверху вниз” со своей предшественницей – шиной ISA. Разъем VLB есть разъем ISA с “продолжением”.

Основные характеристики VL-bus таковы:


  • поддержка процессоров серий 80386 и 80486. Шина разработана для использования в однопроцессорных системах, при этом в спецификации предусмотрена возможность поддержки х86-несовместимых процессоров с помощью моста (bridge chip);

  • максимальное число bus master - 3 (не включая контроллер шины). При необходимости возможна установка нескольких подсистем для поддержки большего числа master. Несмотря на то что изначально шина была разработана для поддержки видеоконтроллеров, возможна поддержка и других устройств (например, контроллеров жесткого диска);

  • допускается работа шины на частоте до 66 МГц, однако электрические характеристики разъема VL-bus ограничивают ее до 50 МГц (это ограничение, естественно, не относится к интегрированным в материнскую плату устройствам);

  • двунаправленная (bi-directional) 32-разрядная шина данных поддерживает и 16-разрядный обмен. В спецификацию заложена возможность 64-разрядного обмена;

  • поддержка DMA обеспечивается только для bus masters. Шина не поддерживает специальных "инициаторов" DMA;

  • максимальная теоретическая пропускная способность шины 160 Мб/с (при частоте шины 50 МГц), стандартная - 107 Мб/с при частоте 33 МГц;

  • поддержка пакетного режима обмена (для материнских плат 80486, поддерживающих этот режим). Пять линий используется для идентификации типа и скорости процессора, сигнал Burst Last (BLAST#) используется для активизации этого режима. Для систем, не поддерживающих этот режим, линия устанавливается в 0;

  • использование 58-контактного разъема МСА. Максимально поддерживается 3 слота (на некоторых 50-мегагерцовых шинах возможна установка только 1 слота). Слот VL-bus устанавливается в линию за слотами ISA/EISA/MCA, поэтому VL-платам доступны все линии этих шин;

  • поддержка, как интегрированного кэш- процессора, так и кэша на материнской плате. Напряжение питания - 5 В. Устройства с уровнем выходного сигнала 3,3 В поддерживаются при условии, что они могут работать с уровнем входного сигнала 5 В.
Конструктивно шина VLB представляет собой дополнительный разъем (116-контактный) при разъеме ISA. Электрически шина выполнена в виде расширения локальной шины процессора - большинство входных и выходных сигналов процессора передаются непосредственно VLB-платам без промежуточной буферизации.

Эта 32/32-разрядная шина разрабатывалась для машин с 386, 486 и Pentium процессорами. Наиболее широкое распространение шина VLB получила на материнских платах 486. На них VESA – это линии адреса, данных и управления процессора, выведенные на разъем. Это обстоятельство накладывает значительные ограничения на VLB- карты расширения – временные и нагрузочные параметры должны быть четко выдержаны. Как указано в инструкциях на многие материнские платы, число VLB- карт при тактовой частоте 25 МГц не должно превышать трех, при 33 МГц – двух, при 40 и 50 МГц – одной. В случае нарушения этих требований система будет работать нестабильно, поскольку превышена нагрузочная способность процессора.

Для оценки скорости шины можно привести следующий расчет: если карта расширения работает на частоте 50 МГц, тогда пропускная способность шины будет равна 32*50*10 6 = 1,6*10 9 Мбит/с = 200 Мбайт/с, что довольно много. Однако не следует забывать, что такая скорость почти никогда не может быть востребована, поскольку данные из видеопамяти не могут читаться с такой скоростью. Кроме того, во время обращения к VLB- карте процессор не может больше заниматься ничем, сколько бы медленным не было устройство на этой карте (например, последовательный порт).

Шина VL-bus явилась огромным шагом вперед по сравнению с ISA как по производительности, так и по дизайну. Одним из преимуществ шины являлось то, что она позволяла создавать карты, работающие с существующими чипсетами и не содержащие большого количества схем дорогостоящей управляющей логики. В результате VL-карты получались дешевле аналогичных EISA-карт. Однако и эта шина не была лишена недостатков, главными из которых являлись следующие:


  • ориентация на 486-й процессор. VL-bus жестко привязана к шине процессора 80486, которая отличается от шин Pentium и Pentium Pro /Pentium II.

  • ограниченное быстродействие. Как уже было сказано, реальная частота VL-bus - не больше 50 МГц. Причем при использовании процессоров с множителем частоты шина использует основную частоту (так, для 486DX2-66 частота шины будет 33 МГц);

  • схемотехнические ограничения. К качеству сигналов, передаваемых по шине процессора, предъявляются очень жесткие требования, соблюсти которые можно только при определенных параметрах нагрузки каждой линии шины. По мнению Intel, установка недостаточно аккуратно разработанных VL-плат может привести не только к потерям данных и нарушениям синхронизации, но и к повреждению системы;

  • ограничение количества плат. Это ограничение вытекает также из необходимости соблюдения ограничений на нагрузку каждой линии.
Несмотря на существующие недостатки, VL-bus была несомненным лидером на рынке, так как позволяла устранить узкое место сразу в двух подсистемах - видеоподсистеме и подсистеме обмена с жестким диском. Однако лидерство было недолгим, поскольку корпорация Intel разработала свою новинку - шину PCI. По мнению компании, VL-bus базировалась на технологиях 11-летней давности и являлась всего лишь "заплаткой", компромиссом между производителями. Справедливости ради надо сказать, что PCI действительно была избавлена от большинства недостатков, присущих VL-bus.

Популярность шины VLB продлилась до 1994 года. Главная особенность шины, которая позволяла достичь высокой производительности, послужила и причиной ухода VLB с рынка. Шина являлась прямым расширением шины 486 процессора/памяти, работающим на той же скорости, что и процессор (отсюда и имя - локальная шина - local bus). Прямое соединение означает, что подключение слишком большого числа устройств приводило к опасности создания помех самому процессору, особенно если сигналы проходили через слот. VESA рекомендовала использовать не более двух слотов на тактовых частотах 33 МГц или трёх слотов, если они использовали специальный буфер. На более высоких тактовых частотах следовало подключать не более двух устройств, а на частоте 50 МГц оба устройства VLB должны быть встроены в материнскую плату.

Поскольку шина VLB работает синхронно с процессором, увеличение частоты процессора приводило к появлению проблем с периферией VLB. Чем быстрее должна была работать периферия, тем она дороже стоила по причине трудностей, связанных с производством высокоскоростных компонент. Лишь немногие устройства VLB поддерживали скорость выше 40 МГц.

Современные вычислительные системы характеризуются:

□ стремительным ростом быстродействия микропроцессоров и некоторых внеш­них устройств (так, для отображения цифрового полноэкранного видео с высо­ким качеством необходима пропускная способность 22 Мбайт/с);

□ появлением программ, требующих выполнения большого количества интер­фейсных операций (к примеру программы обработки графики в Windows, мультимедиа).

В этих условиях пропускной способности шин расширения, обслуживающих од­новременно несколько устройств, оказалось недостаточно для комфортной рабо­ты пользователœей, поскольку компьютеры стали подолгу ʼʼзадумыватьсяʼʼ. Разра­ботчики интерфейсов пошли по пути создания локальных шин, подключаемых непосредственно к шинœе МП, работающих на тактовой частоте МП (но не на внутренней рабочей его частоте) и обеспечивающих связь с некоторыми ско­ростными внешними по отношению к МП устройствами: основной и внешней памятью, видеосистемами и т. д.

Сейчас существуют три базовых стандарта универсальных локальных шин: VLB, PCI и AGP.

Шина VLB (VL-bus, VESA Local Bus) представлена в 1992 году ассоциацией стан­дартов видеоэлектроники (VESA - торговая марка Video Electronics Standards Association) и в связи с этим часто ее называют шиной VESA. Шина VLB, по существу, является расширением внутренней шины МП для связи с видеоадаптером и реже - с жестким диском, платами мультимедиа, сетевым адаптером. Разрядность шины для данных - 32 бита͵ для адреса - 30, реальная скорость передачи данных по VLB - 80 Мбайт/с, теоретически достижимая - 132 Мбайт/с (в версии 2 - 400 Мбайт/с).

Недостатки шины VLB:

□ ориентация только на МП 80386, 80486 (не адаптирована для процессоров класса Pentium);

□ жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту до 33 МГц);

□ малое количество подключаемых устройств - к шинœе VLB может подклю­чаться только 4 устройства;

□ отсутствует арбитраж шины - бывают конфликты между подключаемы­ми устройствами.

Шина PCI (Peripheral Component Interconnect, соединœение внешних компонен­тов) - самый распространенный и универсальный интерфейс для подключения различных устройств. Разработана в 1993 году фирмой Intel. Шина PCI являет­ся намного более универсальной, чем VLB; допускает подключение до 10 уст­ройств; имеет свой адаптер, позволяющий ей настраиваться на работу с любым МП от 80486 до современных Pentium. Тактовая частота PCI - 33 МГц, разряд­ность - 32 разряда для данных и 32 разряда для адреса с возможностью расшире­ния до 64 бит, теоретическая пропускная способность 132 Мбайт/с, а в 64-бито­вом варианте - 264 Мбайт/с. Модификация 2.1 локальной шины PCI работает на тактовой частоте до 66 МГц и при разрядности 64 имеет пропускную способ­ность до 528 Мбайт/с. Осуществлена поддержка режимов Plug and Play, Bus Mastering и автоконфигурирования адаптеров.

Конструктивно разъем шины на системной плате состоит из двух следующих подряд секции по 64 контакта (каждая со своим ключом). С помощью этого интер­фейса к материнской плате подключаются видеокарты, звуковые карты, модемы, контроллеры SCSI и другие устройства. Как правило, на материнской плате име­ется несколько разъемов PCI. Шина PCI, хотя и является локальной, выполняет и многие функции шины расширения. Шины расширения ISA, EISA, MCA (а она совместима с ними) при наличии шины PCI подключаются не непосредственно к МП (как это имеет место при использовании шины VLB), а к самой шинœе PCI (через интерфейс расширения). Благодаря такому решению шина является незави­симой от процессора (в отличие от VLB) и может работать параллельно с шиной процессора, не обращаясь к ней за запросами. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, загрузка шины процессора существенно снижается. К примеру, процессор работает с системной памятью или с кэш-памятью, а в это время по сети на жесткий диск пишется информация. Конфигурация системы с шиной PCI показана на рис. 5.8.

Шина AGP (Accelerated Graphics Port - ускоренный графический порт) - интер­фейс для подключения видеоадаптера к отдельной магистрали AGP, имеющей

Глава 5. Микропроцессоры и системные платы

выход непосредственно на системную память. Разработана шина на базе стандар­та PCI v2.1. Шина AGP может работать с частотой системной шины до 133 МГц и обеспечивает высочайшую скорость передачи графических данных. Ее пиковая пропускная способность в режиме четырехкратного умножения AGP4x (передают­ся 4 блока данных за один такт) имеет величину 1066 Мбайт/с, а в режиме восьми­кратного умножения AGP8x - 2112 Мбайт/с. По сравнению с шиной PCI, в шинœе AGP устранена мультиплексированность линий адреса и данных (в PCI для уде­шевления конструкции адрес и данные передаются по одним и тем же линиям) и усилена конвейеризация операций чтения-записи, что позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

Рис. 5.8. Конфигурация системы с шиной PCI

Шина AGP имеет два режима работы: DMA и Execute. В режиме DMA основ­ной памятью является память видеокарты. Графические объекты хранятся в сис­темной памяти, но перед использованием копируются в локальную память кар­ты. Обмен ведется большими последовательными пакетами. В режиме Execute системная память и локальная память видеокарты логически равноправны. Гра­фические объекты не копируются в локальную память, а выбираются непосред­ственно из системной. При этом приходится выбирать из памяти относительно малые случайно расположенные куски. Поскольку системная память выделяется динамически, блоками по 4 Кбайт, в данном режиме для обеспечения приемлемого быстродействия предусмотрен механизм, отображающий последовательные адре­са фрагментов на реальные адреса 4-килобайтовых блоков в системной памяти. Эта процедура выполняется с использованием специальной таблицы (Graphic Address Re-mapping Table или GART), расположенной в памяти. Интерфейс выполнен в виде отдельного разъема, в который устанавливается AGP-видео-адаптер.
Размещено на реф.рф
Конфигурация системы с шиной AGP показана на рис. 5.9.

Внутримашинные системный и периферийный интерфейсы

Рис. 5.9. Конфигурация системы с шиной AGP

Все сказанное выше в отношении шин обобщается в табл. 5.4. Таблица 5.4. Основные характеристики шин

Локальные шины - понятие и виды. Классификация и особенности категории "Локальные шины" 2017, 2018.

Похожие статьи