Структуры данных: общее понятие, реализация. Простейшие структуры данных: очередь, стек. Использование стека и обратная польская запись. Типы структур данных

19.08.2019

Аннотация: Дается общее понятие структуры данных как исполнителя, который организует работу с данными: хранение, добавление и удаление, поиск и т.п. Рассматриваются реализации одних структур на базе других, в частности, реализации на базе массива. Приводятся наиболее важные из простейших структур данных: очередь и стек, а также их непрерывные реализации на базе массива. Даются многочисленные примеры использования стека в программировании. Рассматривается обратная польская запись формулы (знак операции после аргументов) и способ ее вычисления на стековой машине. В качестве примера использования обратной польской записи рассматривается графический язык PostScript. Материал иллюстрируется проектом "Cтековый калькулятор", реализованным на языке Си.

Структуры данных

"Алгоритмы + структуры данных = программы". Это - название книги Никлауса Вирта, знаменитого швейцарского специалиста по программированию, автора языков Паскаль , Модула-2, Оберон. С именем Вирта связано развитие структурного подхода к программированию. Н.Вирт известен также как блестящий педагог и автор классических учебников.

Обе составляющие программы, выделенные Н.Виртом, в равной степени важны. Не только несовершенный алгоритм , но и неудачная организация работы с данными может привести к замедлению работы программы в десятки, а иногда и в миллионы раз. С другой стороны, владение теорией программирования и умение систематически применять ее на практике позволяет быстро разрабатывать эффективные и в то же время эстетически красивые программы.

Общее понятие структуры данных

Структура данных - это исполнитель , который организует работу с данными, включая их хранение, добавление и удаление, модификацию, поиск и т.д. Структура данных поддерживает определенный порядок доступа к ним. Структуру данных можно рассматривать как своего рода склад или библиотеку. При описании структуры данных нужно перечислить набор действий, которые возможны для нее, и четко описать результат каждого действия. Будем называть такие действия предписаниями . С программной точки зрения, системе предписаний структуры данных соответствует набор функций, которые работают над общими переменными.

Структуры данных удобнее всего реализовывать в объектно-ориентированных языках. В них структуре данных соответствует класс , сами данные хранятся в переменных-членах класса (или доступ к данным осуществляется через переменные-члены), системе предписаний соответствует набор методов класса. Как правило, в объектно-ориентированных языках структуры данных реализуются в виде библиотеки стандартных классов: это так называемые контейнерные классы языка C++, входящие в стандартную библиотеку классов STL , или классы, реализующие различные структуры данных из библиотеки Java Developer Kit языка Java .

Тем не менее, структуры данных столь же успешно можно реализовывать и в традиционных языках программирования, таких как Фортран или Си . При этом следует придерживаться объектно-ориентированного стиля программирования: четко выделить набор функций, которые осуществляют работу со структурой данных, и ограничить доступ к данным только этим набором функций. Сами данные реализуются как статические (не глобальные) переменные. При программировании на языке Си структуре данных соответствуют два файла с исходными текстами:

  1. заголовочный, или h-файл, который описывает интерфейс структуры данных, т.е. набор прототипов функций, соответствующий системе предписаний структуры данных;
  2. файл реализации, или Си-файл, в котором определяются статические переменные, осуществляющие хранение и доступ к данным, а также реализуются функции, соответствующие системе предписаний структуры данных

Структура данных обычно реализуется на основе более простой базовой структуры , ранее уже реализованной, или на основе массива и набора простых переменных. Следует четко различать описание структуры данных с логической точки зрения и описание ее реализации. Различных реализаций может быть много, с логической же точки зрения (т.е. с точки зрения внешнего пользователя) все они эквивалентны и различаются, возможно, лишь скоростью выполнения предписаний.

  • Перевод

Конечно, можно быть успешным программистом и без сакрального знания структур данных, однако они совершенно незаменимы в некоторых приложениях. Например, когда нужно вычислить кратчайший путь между двумя точками на карте, или найти имя в телефонной книжке, содержащей, скажем, миллион записей. Не говоря уже о том, что структуры данных постоянно используются в спортивном программировании. Рассмотрим некоторые из них более подробно.

Очередь

Итак, поздоровайтесь с Лупи!

Лупи обожает играть в хоккей со своей семьей. И под “игрой”, я подразумеваю:

Когда черепашки залетают в ворота, их выбрасывает на верх стопки. Заметьте, первая черепашка, добавленная в стопку - первой ее покидает. Это называется Очередь . Так же, как и в тех очередях, что мы видим в повседневной жизни, первый добавленный в список элемент - первым его покидает. Еще эту структуру называют FIFO (First In First Out).

Как насчет операций вставки и удаления?

Q = def insert(elem): q.append(elem) #добавляем элемент в конец очереди print q def delete(): q.pop(0) #удаляем нулевой элемент из очереди print q

Стек

После такой веселой игры в хоккей, Лупи делает для всех блинчики. Она кладет их в одну стопку.

Когда все блинчики готовы, Лупи подает их всей семье, один за одним.

Заметьте, что первый сделанный ею блинчик - будет подан последним. Это называется Стек . Последний элемент, добавленный в список - покинет его первым. Также эту структуру данных называют LIFO (Last In First Out).

Добавление и удаление элементов?

S = def push(elem): #Добавление элемента в стек - Пуш s.append(elem) print s def customPop(): #удаление элемента из стека - Поп s.pop(len(s)-1) print s

Куча

Вы когда-нибудь видели башню плотности?

Все элементы сверху донизу расположились по своим местам, согласно их плотности. Что случится, если бросить внутрь новый объект?

Он займет место, в зависимости от своей плотности.

Примерно так работает Куча .

Куча - двоичное дерево. А это значит, что каждый родительский элемент имеет два дочерних. И хотя мы называем эту структуру данных кучей, но выражается она через обычный массив.
Также куча всегда имеет высоту logn, где n - количество элементов

На рисунке представлена куча типа max-heap, основанная на следующем правиле: дочерние элементы меньше родительского. Существуют также кучи min-heap, где дочерние элементы всегда больше родительского.

Несколько простых функций для работы с кучами:

Global heap global currSize def parent(i): #Получить индекс родителя для i-того элемента return i/2 def left(i): #Получить левый дочерний элемент от i-того return 2*i def right(i): #Получить правый дочерний элемент от i-того return (2*i + 1)

Добавление элемента в существующую кучу
Для начала, мы добавляем элемент в самый низ кучи, т.е. в конец массива. Затем мы меняем его местами с родительским элементом до тех пор, пока он не встанет на свое место.

Алгоритм:

  1. Добавляем элемент в самый низ кучи.
  2. Сравниваем добавленный элемент с родительским; если порядок верный - останавливаемся.
  3. Если нет - меняем элементы местами, и возвращаемся к предыдущему пункту.
Код:

Def swap(a, b): #меняем элемент с индексом a на элемент с индексом b temp = heap[a] heap[a] = heap[b] heap[b] = temp def insert(elem): global currSize index = len(heap) heap.append(elem) currSize += 1 par = parent(index) flag = 0 while flag != 1: if index == 1: #Дошли до корневого элемента flag = 1 elif heap > elem: #Если индекс корневого элемента больше индекса нашего элемента - наш элемент на своем месте flag = 1 else: #Меняем местами родительский элемент с нашим swap(par, index) index = par par = parent(index) print heap
Максимальное количество проходов цикла while равно высоте дерева, или logn, следовательно, трудоемкость алгоритма - O(logn).

Извлечение максимального элемента кучи
Первый элемент в куче - всегда максимальный, так что мы просто удалим его (предварительно запомнив), и заменим самым нижним. Затем мы приведем кучу в правильный порядок, используя функцию:

MaxHeapify().

Алгоритм:

  1. Заменить корневой элемент самым нижним.
  2. Сравнить новый корневой элемент с дочерними. Если они в правильном порядке - остановиться.
  3. Если нет - заменить корневой элемент на одного из дочерних (меньший для min-heap, больший для max-heap), и повторить шаг 2.

Def extractMax(): global currSize if currSize != 0: maxElem = heap heap = heap #Заменяем корневой элемент - последним heap.pop(currSize) #Удаляем последний элемент currSize -= 1 #Уменьшаем размер кучи maxHeapify(1) return maxElem def maxHeapify(index): global currSize lar = index l = left(index) r = right(index) #Вычисляем, какой из дочерних элементов больше; если он больше родительского - меняем местами if l <= currSize and heap[l] > heap: lar = l if r <= currSize and heap[r] > heap: lar = r if lar != index: swap(index, lar) maxHeapify(lar)
И вновь максимальное количество вызовов функции maxHeapify равно высоте дерева, или logn, а значит трудоемкость алгоритма - O(logn).

Делаем кучу из любого рандомного массива
Окей, есть два пути сделать это. Первый - поочередно вставлять каждый элемент в кучу. Это просто, но совершенно неэффективно. Трудоемкость алгоритма в этом случае будет O(nlogn), т.к. функция O(logn) будет выполняться n раз.

Более эффективный способ - применить функцию maxHeapify для ‘под-кучи ’, от (currSize/2) до первого элемента.

Сложность получится O(n), и доказательство этого утверждения, к сожалению, выходит за рамки данной статьи. Просто поймите, что элементы, находящиеся в части кучи от currSize/2 до currSize, не имеют потомков, и большинство образованных таким образом ‘под-куч’ будут высотой меньше, чем logn.

Def buildHeap(): global currSize for i in range(currSize/2, 0, -1): #третий агрумент в range() - шаг перебора, в данном случае определяет направление. print heap maxHeapify(i) currSize = len(heap)-1

Действительно, зачем это все?

Кучи нужны для реализации особого типа сортировки, называемого, как ни странно, “сортировка кучей ”. В отличие от менее эффективных “сортировки вставками” и “сортировки пузырьком”, с их ужасной сложностью в O(n 2), “сортировка кучей” имеет сложность O(nlogn).

Реализация до неприличия проста. Просто продолжайте последовательно извлекать из кучи максимальный (корневой) элемент, и записывайте его в массив, пока куча не опустеет.

Def heapSort(): for i in range(1, len(heap)): print heap heap.insert(len(heap)-i, extractMax()) #вставляем максимальный элемент в конец массива currSize = len(heap)-1
Чтобы обобщить все вышесказанное, я написала несколько строчек кода, содержащего функции для работы с кучей, а для фанатов ООП оформила все в виде класса .

Легко, не правда ли? А вот и празднующая Лупи!

Хеш

Лупи хочет научить своих детишек различать фигуры и цвета. Для этого она принесла домой огромное количество разноцветных фигур.

Через некоторое время черепашки окончательно запутались

Поэтому она достала еще одну игрушку, чтобы немного упростить процесс

Стало намного легче, ведь черепашки уже знали, что фигуры рассортированы по форме. А что, если мы пометим каждый столб?

Черепашкам теперь нужно проверить столб с определенным номером, и выбрать из гораздо меньшего количества фигурок нужную. А если еще и для каждой комбинации формы и цвета у нас отдельный столб?

Допустим, номер столба вычисляется следующим образом:

Фио летовый тре угольник
ф+и+о+т+р+е = 22+10+16+20+18+6 = Столб 92

Кра сный пря моугольник
к+р+а+п+р+я = 12+18+1+17+18+33 = Столб 99

Мы знаем, что 6*33 = 198 возможных комбинаций, значит нам нужно 198 столбов.

Назовем эту формулу для вычисления номера столба - Хеш-функцией .

Код:
def hashFunc(piece): words = piece.split(" ") #разбиваем строку на слова colour = words shape = words poleNum = 0 for i in range(0, 3): poleNum += ord(colour[i]) - 96 poleNum += ord(shape[i]) - 96 return poleNum
(с кириллицей немного сложнее, но я оставил так для простоты . - прим.пер. )

Теперь, если нам нужно будет узнать, где хранится розовый квадрат, мы сможем вычислить:
hashFunc("розовый квадрат")

Это пример хеш-таблицы, где местоположение элементов определяется хеш-функцией.
При таком подходе время, затраченное на поиск любого элемента, не зависит от количества элементов, т.е. O(1). Другими словами, время поиска в хеш-таблице - константная величина.

Ладно, но допустим мы ищем “кар амельный пря моугольник” (если, конечно, цвет “карамельный” существует).

HashFunc("карамельный прямоугольник")
вернет нам 99, что совпадает с номером для красного прямоугольника. Это называется “Коллизия ”. Для разрешения коллизии мы используем “Метод цепочек ”, подразумевающий, что каждый столб хранит список, в котором мы ищем нужную нам запись.

Поэтому мы просто кладем карамельный прямоугольник на красный, и выбираем один из них, когда хеш-функция указывает на этот столб.

Ключ к хорошей хеш-таблице - выбрать подходящую хеш-функцию. Бесспорно, это самая важная вещь в создании хеш-таблицы, и люди тратят огромное количество времени на разработку качественных хеш-функций.
В хороших таблицах ни одна позиция не содержит более 2-3 элементов, в обратном случае, хеширование работает плохо, и нужно менять хеш-функцию.

Еще раз, поиск, не зависящий от количества элементов! Мы можем использовать хеш-таблицы для всего, что имеет гигантские размеры.

Хеш-таблицы также используются для поиска строк и подстрок в больших кусках текста, используя алгоритм Рабина-Карпа или алгоритм Кнута-Морриса-Пратта , что полезно, например, для определения плагиата в научных работах.

На этом, думаю, можно заканчивать. В будущем я планирую рассмотреть более сложные структуры данных, например Фибоначчиеву кучу и Дерево отрезков . Надеюсь, этот неформальный гайд получился интересным и полезным.

Переведено для Хабра запертым на

Первоначально процесс программирования предусматривал запись программистом всех алгоритмов непосредственно на машинном языке. Такой подход усугублял и без того трудную задачу разработки алгоритмов и слишком часто приводил к ошибкам, которые необходимо было обнаружить и исправить [процесс, известный как отладка] до того, как работу можно было считать законченной.

Первым шагом на пути к облегчению задачи программирования был отказ от использования цифр для записи команд и операндов непосредственно в той форме, в которой они используются в машине. С этой целью при разработке программ стали широко применять мнемоническую запись различных команд вместо их шестнадцатеричного представления. Например, вместо цифрового кода команды загрузки регистра программист мог теперь написать LOD, а вместо кода команды копирования содержимого регистра в память мог использовать мнемоническое обозначение STO. Для записи операндов были разработаны правила, в соответствии с которыми программист мог присваивать некоторым областям памяти описательные имена [их часто называют идентификаторами] и использовать их при записи команд программы вместо адресов соответствующих ячеек памяти. Такие идентификаторы обычно называют переменными. Это подчеркивает, что, изменяя значение, размещенное в данном участке памяти, мы изменяем значение, связанное с идентификатором, присвоенным этому участку по ходу выполнения программы.

При объявлении в программе переменной обычно одновременно определяют и их тип. Тип данных определяет как интерпретацию конкретных данных, так и операции, которые можно с ними выполнять. К типам данных относятся Integer [целый], Real [действительный], Character [символьный] и Boolean [логический].

Тип Integer используется для обозначения числовых данных, являющихся целыми числами. В памяти они чаще всего представляются в двоичном дополнительном коде. С данными типа Integer можно выполнять обычные арифметические операции и операции сравнения.

Тип Real предназначен для представления числовых данных, которые могут содержать нецелые величины. В памяти они обычно хранятся как двоичные числа с плавающей точкой. Операции, которые можно выполнять с данными Real, аналогичны операциям, выполняемым с данными типа Integer. Однако, что манипуляции, которые следует выполнить, чтобы сложить два элемента данных типа Real, отличаются от манипуляций, необходимых для выполнения действий с переменными типа Integer.

Тип Character используется для данных, состоящих из символов, которые хранятся в памяти в виде кодов ASCII или UNICODE. Данные этого типа можно сравнивать друг с другом [определять, какой из двух символов предшествует другому в алфавитном порядке]; проверять, является ли одна строка символов другой, а также объединять две строки в одну, более длинную строку, дописывая одну из них после другой [операция конкатенации].

Boolean относится к данным, которые могут принимать только два значения True [истина] и False [ложь]. Примером таких данных может служить результат операции сравнения двух чисел. Операции с данными типа Boolean включает проверку, является ли текущее значение переменной True или False.

Основная память машины организована в виде отдельных ячеек с последовательно увеличивающимися адресами. Однако часто эти ячейки используются как основа для реализации иных способов размещения данных. Например, текст обычно рассматривается как длинная строка символов, тогда как информация о продажах может рассматриваться как прямоугольная таблица с числовыми значениями, каждое из которых представляет число сделок, заключенных определенным работником в определенный день. Задача состоит в том, чтобы предоставить пользователю средства, позволяющие оперировать подобными абстрактными структурами, вместо того чтобы вникать в детали истинной организации данных в основной памяти машины. Для правильного использования компьютера необходимо хорошо знать структурные взаимосвязи между данными, основные методы представления структур внутри компьютера, а также методы работы с ними. Для связей между данными в компьютере используются следующие информационные структуры: массив, запись, список, дерево, стек, очередь.

Массивы

Массив - это структура, содержащая в себе несколько однотипных элементов. Для упорядочивания элементов массива используются индексы. Индексы записываются в скобках после имени массива. Массив с одним индексом называется одномерным, с двумя - двумерным и т.д.

Запись

Запись - это структура, состоящая из элементов не обязательно одного типа. Отдельные элементы записи называют полями. Поле в свою очередь тоже может быть записью.

record Student (
FirstName,
LastName,
Group
)

Списки

Список - это множество записей, каждая из которых содержит специальное поле - указатель . Указатель связывает запись с какой-либо другой записью или содержит значений Null, которое говорит о том, что значение указателя не определено.

Записи в односвязном списке имеют по одному указателю, при этом они связанны в цепочку:

Стрелка на рисунке говорит о содержимом указателя, а слово Data обозначает совокупностей полей, в которых хранятся данные. Список можно организовать с помощью двумерного массива, все элементы которого с первым индексом, равным 0, предназначены для хранения данных, а элементы с первым индексом, равным 1, являются указателями.


В данном списке записи, содержащие буквы английского алфавита, выстроены в алфавитном порядке. Первая запись в списке содержит символ "A", вторая - "B" и т.д.

Для работы со списком нужно уметь выполнять три основных операции:

Pass() - обход или перемещение вдоль списка;
Add() - добавление новой записи в список;
Delete() - удаление записи из списка.

Кроме операций для работы со списком нужны еще две переменные:

переменная Head, в которой хранится информация о первой записи в списке
переменная Current, которая указывает на текущую запись в списке

В таблице сведены описания некоторых операций над списком, пример реализации которого приведен выше.

Название операции Псевдокод
Перейти вдоль списка на один шаг

function Pass(Current) {
if (M Null) then Current:=M;
return (Current);
}

function Add(Current, New) {
M:= M;
M:=New;
return;
}

Добавить в список запись, на которую указывает переменная New

function Delete(Current) {
if (M Null) then
M:= M];
return;
}

Записи в двусвязном списке связаны между собой в цепочку, но при этом имеют два поля-указателя. Одно из них указывает на предыдущий элемент в списке, другое - на следующий элемент. Такая структура позволяет перемещаться по списку в двух направлениях: вперед и назад.

Кольцевым называется список, последняя запись которого указывает на первую. В этих списках отсутствует запись с пустым указателем.


Дерево - это разветвленный список, каждая запись которого может содержать несколько указателей. Записи, входящие в дерево, называются узлами. Узлы, у которых все указатели пустые, называются листьями. Верхний начальный узел дерева называется корневым узлом. Во многих задачах достаточно использовать двоичные [бинарные] деревья, узлы которых имеют не более двух указателей.

Пример. Требуется вычислить математическое выражение (3+7)*(2/(3-1)). Представим это выражение в виде дерева:

Каждый узел этого дерева представляет собой запись следующего вида:

record Node (
Operation
Number
LeftPointer
RightPointer
)

Листья дерева содержат числа, остальные узлы - символы операций.

Реализовав описанное дерево на двумерном массиве, мы получим следующую картину:


Для вычисления значения дерева нужно вычислить значения правого и левого поддеревьев, а потом над ними выполнить результирующую операцию. Псевдокод алгоритма решающего поставленную задачу будет иметь вид:

function Calculate (Current) {
if (M=Null) then
Result:= M;
else {
R1:=Calculate(M);
R2:=Calculate(M);
Result:=R1(M)R2;
}
return (Result);
}

Стек - это структура данных, организованная по принципу "последним пришел - первым ушел" . Доступ к данным, хранящимся в стеке, осуществляется через вершину. Данные помещаются в стек последовательно Элемент, помещенный в стек самым первым, оказывается на дне и для того чтобы его извлечь из стека, необходимо сначала извлечь все данные, которые были помещены в стек позже.

При работе со стеком возможны две аварийные ситуации: попытка прочитать данные из пустого стека; попытка занести в стек элемент, когда количество элементов в стеке достигло максимально допустимого количества.

Очередь - это структура данных, организованная по принципу "первым пришел - первым ушел" . В очереди переменное количество данных. При постановке в очередь данные добавляются в хвост, при извлечении берутся из головы.

Хеш-таблица

Хеширование - это метод, обеспечивающий прямой доступ к записям без использования каких-либо дополнительных структур. Процесс можно кратко описать следующим образом. Пространство, где хранятся данные, делится на несколько сегментов. Записи распределяются по этим сегментам согласно некоторому алгоритму, называемому алгоритмом хеширования, преобразующему значение поля ключа в номер сегмента. Каждая запись хранится в сегменте, определяемом этим процессом. Следовательно, запись можно извлечь, применив алгоритм хеширования к значению ее поля ключа и считав записи соответствующего сегмента. Структура данных, сконструированная таким способом, называется хеш-таблицей.

Например, если необходимо организовать хеш-таблицу для хранения прописных букв английского алфавита, то в качестве ключей можно выбрать ASCII-коды символов, а алгоритм хеширования будет отрезать младшие пять битов и формировать на их основе индекс элемента массива для хранения символа:

В общем случае, алгоритм хеширования должен по значению ключа производить значение индекса в границах массива и равномерно распределять ключи по элементам массива. Невыполнение последнего требования приводит к возникновению ситуаций, когда несколько записей попадает в один и тот же сегмент. Данные ситуации называются коллизиями.

Экзамен Информатика

Информация как ресурс. Способы хранения и обработки информации.

Информация от лат. «Information» означает разъяснение, осведомление, изложение.

В широком смысле информация – это общенаучное понятие, включающее в себя обмен сведениями между людьми, обмен сигналами между живой и неживой природой, людьми и устройствами.
Информация – это сведения об объектах и явлениях окружающей среды, их параметрах, свойствах и состоянии, кот-е уменьшают имеющуюся о них степень неопределенности, неполноты знаний.

Информатика рассматривает информацию как концептуально связанные между собой сведения, данные, понятия, изменяющие наши представления о явлении или объекте окружающего мира.

Информационные ресурсы – это отдельные документы и отдельные массивы документов, документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках).
Чтобы информация могла использоваться, причем многократно, необходимо ее хранить.

Хранение информации – это способ распространения информации в пространстве и времени. Способ хранения информации зависит от ее носителя (книга - библиотека, картина - музей, фотография - альбом). ЭВМ предназначена для компактного хранения информации с возможностью быстрого доступа к ней.
Обработка информации – это преобразование информации из одного вида в другой.
Обработка информации – сам процесс перехода от исходных данных к результату и есть процесс обработки. Объект или субъект, осуществляющий обработку - исполнитель обработки.
1-ый тип обработки: обработка, связанная с получением новой информации, нового содержания знаний.
2-ой тип обработки: обработка, связанная с изменением формы, но не изменяющая содержания (например,
перевод текста с одного языка на другой).

Важный вид обработки - кодирование – преобразование информации в символьную форму,
удобную для ее хранения, передачи, обработки. Другой вид обработки информации – структурирование данных (внесение определенного порядка в хранилище информации, классификация, каталогизация данных).
Ещё один вид обработки информации – поиск в некотором хранилище информации нужных данных, удовлетворяющих определенным условиям поиска (запросу).



Понятие структурированных данных. Определение и назначение базы данных.

Создавая базу данных, пользователь стремится упорядочить информацию по различным признакам и быстро извлекать выборку с произвольным сочетанием признаком. Сделать это возможно, только если данные структурированы.

Структурирование - это введение соглашений о способах представления данных.

Структурированные данные - это упорядоченные данные.

Неструктурированные данные – это данные, записанные, например, в текстовом файле: Личное дело № 1 Сидоров Олег Иванович, дата рожд. 14.11.92, Личное дело № 2 Петрова Анна Викторовна, дата рожд. 15.03.91.

Чтобы автоматизировать поиск и систематизировать эти данные, необходимо выработать определенные соглашения о способах предоставления данных, т.е. дату рожд. нужно записывать одинаково для каждого студента, она должна иметь одинаковую длину и опред. место среди остальной информации. Эти же замечания справедливы и для остальных данных (№ личного дела, Ф., И., О.) После проведения несложной структуризации с информацией, она будет выглядеть так:

Пример структурированных данных: № Ф. И. О. Дата рожд.

1 Сидоров Олег Иванович 14.11.92

Элементы структурированных данных:

1) А – поле (столбец) – это элементарная неделимая единица организации информации

2) Б – запись (строка) – это совокупность логически связанных полей

3) В – таблица (файл) – это совокупность экземпляров записей одной структуры.

База данных – это организованная на машинном носителе совокупность взаимосвязанных структурированных данных, содержащая сведения о различных сущностях некоторой предметной области (объектах, процессах, событиях, явлениях).

В широком смысле слова база данных – это совокупность сведений о конкретных объектах реального мира в какой-либо предметной области.

Под предметной областью понимается часть реального мира, подлежащая изучению для организации управления, автоматизации, например, предприятии, ВУЗ и т.д.

Назначение базы данных:

1)Контроль за избыточностью данных. Как уже говорилось, традиционные файловые системы неэкономно рас­ходуют внешнюю память, сохраняя одни и те же данные в нескольких файлах. При использовании базы данных, наоборот, предпринимается попытка исключить избыточность данных за счет интеграции файлов, чтобы избежать хранения нескольких копий одного и того же эле­мента информации.

2)Непротиворечивость данных. Устранение избыточности данных или контроль над ней позволяет сократить риск возникновения противоречивых состояний. Если элемент данных хранится в базе только в одном экземпляре, то для изменения его значения потребуется выполнить только одну операцию обновления, причем новое значение станет доступным сразу всем пользователям базы данных. А если этот элемент данных с ведома системы хранится в базе данных в нескольких экземплярах, то такая система сможет следить за тем, чтобы копии не противоречили друг другу.

3)Совместное использование данных. Файлы обычно принадлежат отдельным лицам или целым отделам, которые используют их в своей работе. В то же время база данных принадлежит всей организации в целом и может совместно использоваться всеми зарегистрированными пользователями. При такой организации работы большее количество пользователей может работать с большим объемом данных. Более того, при этом можно создавать новые приложения на основе уже существующей в базе данных информации и добавлять в нее только те данные, которые в настоящий момент еще не хранятся в ней, а не определять заново требования ко всем данным, необходимым новому приложению.

4)Поддержка целостности данных. Целостность базы данных означает корректность и непротиворечивость хранимых в ней данных. Целостность обычно описывается с помощью ограничений, т.е. правил под­держки непротиворечивости, которые не должны нарушаться в базе данных. Ограничения можно применять к элементам данных внутри одной записи или к связям между записями. Например, ограничение целостности может гласить, что зарплата сотрудника не должна превышать 40 000 рублей в год или же что в записи с данными о сотруднике номер отделения, в котором он работает, должен соответствовать реально существующему отделению компании.

5)Повышенная безопасность. Безопасность базы данных заключается в защите базы данных от несанкционированного доступа со стороны пользователей. Без привлечения соответствующих мер безопасности интегрированные данные становятся более уязвимыми, чем данные в файловой системе. Однако интеграция позволяет определить требуемую систему безопасности базы данных, а СУБД привести ее в действие. Система обеспечения безопасности может быть выражена в форме учетных имен и паролей для идентификации пользователей, которые зарегистрированы в этой базе данных. Доступ к данным со стороны зарегистрированного пользователя может быть ограничен только некоторыми операциями (извлечением, вставкой, обновлением и удалением).

  • Перевод

Конечно, можно быть успешным программистом и без сакрального знания структур данных, однако они совершенно незаменимы в некоторых приложениях. Например, когда нужно вычислить кратчайший путь между двумя точками на карте, или найти имя в телефонной книжке, содержащей, скажем, миллион записей. Не говоря уже о том, что структуры данных постоянно используются в спортивном программировании. Рассмотрим некоторые из них более подробно.

Очередь

Итак, поздоровайтесь с Лупи!

Лупи обожает играть в хоккей со своей семьей. И под “игрой”, я подразумеваю:

Когда черепашки залетают в ворота, их выбрасывает на верх стопки. Заметьте, первая черепашка, добавленная в стопку - первой ее покидает. Это называется Очередь . Так же, как и в тех очередях, что мы видим в повседневной жизни, первый добавленный в список элемент - первым его покидает. Еще эту структуру называют FIFO (First In First Out).

Как насчет операций вставки и удаления?

Q = def insert(elem): q.append(elem) #добавляем элемент в конец очереди print q def delete(): q.pop(0) #удаляем нулевой элемент из очереди print q

Стек

После такой веселой игры в хоккей, Лупи делает для всех блинчики. Она кладет их в одну стопку.

Когда все блинчики готовы, Лупи подает их всей семье, один за одним.

Заметьте, что первый сделанный ею блинчик - будет подан последним. Это называется Стек . Последний элемент, добавленный в список - покинет его первым. Также эту структуру данных называют LIFO (Last In First Out).

Добавление и удаление элементов?

S = def push(elem): #Добавление элемента в стек - Пуш s.append(elem) print s def customPop(): #удаление элемента из стека - Поп s.pop(len(s)-1) print s

Куча

Вы когда-нибудь видели башню плотности?

Все элементы сверху донизу расположились по своим местам, согласно их плотности. Что случится, если бросить внутрь новый объект?

Он займет место, в зависимости от своей плотности.

Примерно так работает Куча .

Куча - двоичное дерево. А это значит, что каждый родительский элемент имеет два дочерних. И хотя мы называем эту структуру данных кучей, но выражается она через обычный массив.
Также куча всегда имеет высоту logn, где n - количество элементов

На рисунке представлена куча типа max-heap, основанная на следующем правиле: дочерние элементы меньше родительского. Существуют также кучи min-heap, где дочерние элементы всегда больше родительского.

Несколько простых функций для работы с кучами:

Global heap global currSize def parent(i): #Получить индекс родителя для i-того элемента return i/2 def left(i): #Получить левый дочерний элемент от i-того return 2*i def right(i): #Получить правый дочерний элемент от i-того return (2*i + 1)

Добавление элемента в существующую кучу
Для начала, мы добавляем элемент в самый низ кучи, т.е. в конец массива. Затем мы меняем его местами с родительским элементом до тех пор, пока он не встанет на свое место.

Алгоритм:

  1. Добавляем элемент в самый низ кучи.
  2. Сравниваем добавленный элемент с родительским; если порядок верный - останавливаемся.
  3. Если нет - меняем элементы местами, и возвращаемся к предыдущему пункту.
Код:

Def swap(a, b): #меняем элемент с индексом a на элемент с индексом b temp = heap[a] heap[a] = heap[b] heap[b] = temp def insert(elem): global currSize index = len(heap) heap.append(elem) currSize += 1 par = parent(index) flag = 0 while flag != 1: if index == 1: #Дошли до корневого элемента flag = 1 elif heap > elem: #Если индекс корневого элемента больше индекса нашего элемента - наш элемент на своем месте flag = 1 else: #Меняем местами родительский элемент с нашим swap(par, index) index = par par = parent(index) print heap
Максимальное количество проходов цикла while равно высоте дерева, или logn, следовательно, трудоемкость алгоритма - O(logn).

Извлечение максимального элемента кучи
Первый элемент в куче - всегда максимальный, так что мы просто удалим его (предварительно запомнив), и заменим самым нижним. Затем мы приведем кучу в правильный порядок, используя функцию:

MaxHeapify().

Алгоритм:

  1. Заменить корневой элемент самым нижним.
  2. Сравнить новый корневой элемент с дочерними. Если они в правильном порядке - остановиться.
  3. Если нет - заменить корневой элемент на одного из дочерних (меньший для min-heap, больший для max-heap), и повторить шаг 2.

Def extractMax(): global currSize if currSize != 0: maxElem = heap heap = heap #Заменяем корневой элемент - последним heap.pop(currSize) #Удаляем последний элемент currSize -= 1 #Уменьшаем размер кучи maxHeapify(1) return maxElem def maxHeapify(index): global currSize lar = index l = left(index) r = right(index) #Вычисляем, какой из дочерних элементов больше; если он больше родительского - меняем местами if l <= currSize and heap[l] > heap: lar = l if r <= currSize and heap[r] > heap: lar = r if lar != index: swap(index, lar) maxHeapify(lar)
И вновь максимальное количество вызовов функции maxHeapify равно высоте дерева, или logn, а значит трудоемкость алгоритма - O(logn).

Делаем кучу из любого рандомного массива
Окей, есть два пути сделать это. Первый - поочередно вставлять каждый элемент в кучу. Это просто, но совершенно неэффективно. Трудоемкость алгоритма в этом случае будет O(nlogn), т.к. функция O(logn) будет выполняться n раз.

Более эффективный способ - применить функцию maxHeapify для ‘под-кучи ’, от (currSize/2) до первого элемента.

Сложность получится O(n), и доказательство этого утверждения, к сожалению, выходит за рамки данной статьи. Просто поймите, что элементы, находящиеся в части кучи от currSize/2 до currSize, не имеют потомков, и большинство образованных таким образом ‘под-куч’ будут высотой меньше, чем logn.

Def buildHeap(): global currSize for i in range(currSize/2, 0, -1): #третий агрумент в range() - шаг перебора, в данном случае определяет направление. print heap maxHeapify(i) currSize = len(heap)-1

Действительно, зачем это все?

Кучи нужны для реализации особого типа сортировки, называемого, как ни странно, “сортировка кучей ”. В отличие от менее эффективных “сортировки вставками” и “сортировки пузырьком”, с их ужасной сложностью в O(n 2), “сортировка кучей” имеет сложность O(nlogn).

Реализация до неприличия проста. Просто продолжайте последовательно извлекать из кучи максимальный (корневой) элемент, и записывайте его в массив, пока куча не опустеет.

Def heapSort(): for i in range(1, len(heap)): print heap heap.insert(len(heap)-i, extractMax()) #вставляем максимальный элемент в конец массива currSize = len(heap)-1
Чтобы обобщить все вышесказанное, я написала несколько строчек кода, содержащего функции для работы с кучей, а для фанатов ООП оформила все в виде класса .

Легко, не правда ли? А вот и празднующая Лупи!

Хеш

Лупи хочет научить своих детишек различать фигуры и цвета. Для этого она принесла домой огромное количество разноцветных фигур.

Через некоторое время черепашки окончательно запутались

Поэтому она достала еще одну игрушку, чтобы немного упростить процесс

Стало намного легче, ведь черепашки уже знали, что фигуры рассортированы по форме. А что, если мы пометим каждый столб?

Черепашкам теперь нужно проверить столб с определенным номером, и выбрать из гораздо меньшего количества фигурок нужную. А если еще и для каждой комбинации формы и цвета у нас отдельный столб?

Допустим, номер столба вычисляется следующим образом:

Фио летовый тре угольник
ф+и+о+т+р+е = 22+10+16+20+18+6 = Столб 92

Кра сный пря моугольник
к+р+а+п+р+я = 12+18+1+17+18+33 = Столб 99

Мы знаем, что 6*33 = 198 возможных комбинаций, значит нам нужно 198 столбов.

Назовем эту формулу для вычисления номера столба - Хеш-функцией .

Код:
def hashFunc(piece): words = piece.split(" ") #разбиваем строку на слова colour = words shape = words poleNum = 0 for i in range(0, 3): poleNum += ord(colour[i]) - 96 poleNum += ord(shape[i]) - 96 return poleNum
(с кириллицей немного сложнее, но я оставил так для простоты . - прим.пер. )

Теперь, если нам нужно будет узнать, где хранится розовый квадрат, мы сможем вычислить:
hashFunc("розовый квадрат")

Это пример хеш-таблицы, где местоположение элементов определяется хеш-функцией.
При таком подходе время, затраченное на поиск любого элемента, не зависит от количества элементов, т.е. O(1). Другими словами, время поиска в хеш-таблице - константная величина.

Ладно, но допустим мы ищем “кар амельный пря моугольник” (если, конечно, цвет “карамельный” существует).

HashFunc("карамельный прямоугольник")
вернет нам 99, что совпадает с номером для красного прямоугольника. Это называется “Коллизия ”. Для разрешения коллизии мы используем “Метод цепочек ”, подразумевающий, что каждый столб хранит список, в котором мы ищем нужную нам запись.

Поэтому мы просто кладем карамельный прямоугольник на красный, и выбираем один из них, когда хеш-функция указывает на этот столб.

Ключ к хорошей хеш-таблице - выбрать подходящую хеш-функцию. Бесспорно, это самая важная вещь в создании хеш-таблицы, и люди тратят огромное количество времени на разработку качественных хеш-функций.
В хороших таблицах ни одна позиция не содержит более 2-3 элементов, в обратном случае, хеширование работает плохо, и нужно менять хеш-функцию.

Еще раз, поиск, не зависящий от количества элементов! Мы можем использовать хеш-таблицы для всего, что имеет гигантские размеры.

Хеш-таблицы также используются для поиска строк и подстрок в больших кусках текста, используя алгоритм Рабина-Карпа или алгоритм Кнута-Морриса-Пратта , что полезно, например, для определения плагиата в научных работах.

На этом, думаю, можно заканчивать. В будущем я планирую рассмотреть более сложные структуры данных, например Фибоначчиеву кучу и Дерево отрезков . Надеюсь, этот неформальный гайд получился интересным и полезным.

Переведено для Хабра запертым на

Похожие статьи