Использование драйвера ключей нижнего и верхнего уровней IR2110 — объяснение и примеры схем. Современные высоковольтные драйверы MOSFET- и IGBT-транзисторов

18.08.2019

Драйвер представляет собой усилитель мощности и предназначается для непосредственного управления силовым ключом (иногда ключами) преобразователя. Он должен усилить управляющий сигнал по мощности и напряжению и, в случае необходимости, обеспечить его потенциальный сдвиг.

Выходной узел драйвера, управляющего изолированным затвором (транзисторы MOSFET, IGBT), должен соответствовать следующим требованиям:

    МДП-транзисторы и IGBT – это приборы, управляемые напряжением, однако для увеличения входного напряжения до оптимального уровня (12-15 В) необходимо обеспечить в цепи затвора соответствующий заряд.

    Для ограничения скорости нарастания тока и уменьшения динамических помех необходимо использовать последовательные сопротивления в цепи затвора.

Драйверы для управления сложными преобразовательными схемами содержат большое количество элементов, поэтому их выпускают в виде интегральных схем. Эти микросхемы, помимо усилителей мощности, содержат также цепи преобразования уровня, вспомогательную логику, цепи задержки для формирования «мёртвого» времени, а также ряд защит, например, – от перегрузки по току и короткого замыкания, снижения напряжения питания и ряд других. Многие фирмы выпускают многочисленный функциональный ряд: драйверы нижнего ключа мостовой схемы, драйверы верхнего ключа мостовой схемы, драйверы верхнего и нижнего ключей с независимым управлением каждого из них, полумостовые драйверы, которые часто имеют только один управляющий вход и могут использоваться для симметричного закона управления, драйверы для управления всеми транзисторами мостовой схемы.

Типовая схема включения драйвера верхнего и нижнего ключей фирмы International Rectifier IR2110 с бутстрепным принципом питания приведена на рис.3.1, а. Управление обоими ключами независимое. Отличие данного драйвера от других заключается в том, что в IR2110 введена дополнительная схема преобразования уровня как в нижнем, так и верхнем каналах, позволяющая разделить по уровню питание логики микросхемы от напряжения питания драйвера. Содержится также защита от пониженного напряжения питания драйвера и высоковольтного «плавающего» источника.

Конденсаторы С D , С С предназначены для подавления высокочастотных помех по цепям питания логики и драйвера соответственно. Высоковольтный плавающий источник образован конденсатором С1 и диодом VD1 (бутстрепный источник питания).

Подключение выходов драйвера к силовым транзисторам осуществляется при помощи затворных резисторов R G1 и R G2 .

Поскольку драйвер построен на полевых элементах и суммарная мощность, расходуемая на управление, незначительна, то в качестве источника питания выходного каскада может использован конденсатор С1, подзаряжаемый от источника питания U ПИТ через высокочастотный диод VD1. Конденсатор С1 и диод VD1 в совокупности образуют высоковольтный «плавающий» источник питания, предназначенный для управления верхним транзистором VT1 стойки моста. Когда нижний транзистор VT2 проводит ток, то исток верхнего транзистора VT1 подключается к общему проводу питания, диод VD1 открывается и конденсатор С1 заряжается до напряжения U C1 =U ПИТ – U VD1 . Наоборот, когда нижний транзистор переходит в закрытое состояние и начинает открываться верхний транзистор VT2, диод VD1 оказывается подпертым обратным напряжением силового источника питания. В результате этого выходной каскад драйвера начинает питаться исключительно разрядным током конденсатора С1. Таким образом, конденсатор С1 постоянно «гуляет» между общим проводом схемы и проводом силового источника питания (точка 1).

При использовании драйвера IR2110 с бутстрепным питанием особое внимание следует обратить на выбор элементов высоковольтного «плавающего» источника. Диод VD1 должен выдерживать большое обратное напряжение (в зависимости от силового источника питания схемы), допустимый прямой ток примерно 1 А, время восстановления t rr =10-100 нс, т.е быть быстродействующим. В литературе рекомендуется диод SF28 (600 В, 2 А, 35 нс), а также диоды UF 4004…UF 4007, UF 5404…UF 5408, HER 105… HER 108, HER 205…HER 208 и другие классы “ultra - fast” .

Схема драйвера выполнена таким образом, что высокому логическому уровню сигнала на любом входе HIN и LIN соответствует такой же уровень на его выходе HO и LO (см. рис. 3.1 б, драйвер синфазный). Появление высокого уровня логического сигнала на входе SD приводит к запиранию транзисторов стойки моста.

Данную микросхему целесообразно использовать для управления ключами инвертора с ШИМ–регулированием выходного напряжения. При этом необходимо помнить, что в СУ необходимо обязательно предусмотреть временные задержки («мертвое» время) с целью предотвращения сквозных токов при коммутации транзисторов стойки моста (VT1, VT2 и VT3,VT4, рис 1.1).

Емкость С1 – это бутстрепная емкость, минимальная величина которой может рассчитываться по формуле :

где Q 3 – величина заряда затвора мощного ключа (справочная величина);

I пит – ток потребления драйвера в статическом режиме (справочная величина, обычно I пит I G c т мощного ключа);

Q 1 – циклическое изменение заряда драйвера (для 500-600 - вольтных драйверов 5 нК);

V п – напряжение питания схемы драйвера;

– падение напряжения на бутстрепном диоде VD1;

Т – период коммутации мощных ключей.

Рис.3.1. Типовая схема включения драйвера IR2110 (а) и временные диаграммы его сигналов на входах и выходах (б)

V DD – питание логики микросхемы;

V SS – общая точка логической части драйвера;

HIN, LIN – логические входные сигналы, управляющие верхним и нижним транзисторами соответственно;

SD – логический вход отключения драйвера;

V CC – напряжение питания драйвера;

COM – отрицательный полюс источника питания V CC ;

HO, LO – выходные сигналы драйвера, управляющие верхним и нижним транзисторами соответственно;

V B –напряжение питания высоковольтного «плавающего» источника;

V S – общая точка отрицательного полюса высоковольтного «плавающего» источника.

Полученное значение бутстрепной емкости необходимо увеличить в 10-15 раз (обычно С в пределах 0,1-1 мкФ). Это должна быть высокочастотная емкость с малым током утечки (в идеале – танталовая).

Резисторы R G 1 , R G 2 определяют время включения мощных транзисторов, а диоды VD G 1 и VD G 2 , шунтируя эти резисторы, уменьшают время выключения до минимальных величин. Резисторы R 1 , R 2 имеют небольшую величину (до 0,5 Ом) и выравнивают разброс омических сопротивлений вдоль общей шины управления (обязательны, если мощный ключ – параллельное соединение менее мощных транзисторов).

При выборе драйвера для мощных транзисторов необходимо учитывать:

    Закон управления мощными транзисторами:

Для симметричного закона подходят драйверы верхнего и нижнего ключа и драйверы полумостов;

Для несимметричного закона необходимы драйверы верхнего и нижнего ключа с независимым управлением каждого мощного ключа. Для несимметричного закона не подходят драйверы с трансформаторной гальванической развязкой.

    Параметры мощного ключа (I к или I стока).

Обычно применяют приближенный подход:

I вых др max =2 А может управлять мощным VT с током до 50 А;

I вых др max =3 А – управлять мощным VT с током до 150 А (иначе время включения и выключения значительно возрастает и увеличиваются мощностные потери на переключение), т.е. высококачественный транзистор при ошибочном выборе драйвера теряет свои основные достоинства.

    Учет дополнительных функций.

Фирмы выпускают драйверы с многочисленными сервисными функциями:

Различные защиты мощного ключа;

Защита от понижения напряжения питания драйвера;

С встроенными бутстрепными диодами;

С регулируемым и нерегулируемым временем задержки включения мощного VT по отношению к моменту выключения другого (борьба со сквозными токами в полумосте);

Со встроенной или отсутствующей гальванической развязкой. В последнем случае на входе драйвера необходимо подключить микросхему гальванической развязки (чаще всего – высокочастотная диодная оптопара);

Синфазные или противофазные;

Питание драйверов (бутстрепный вид питания или необходимы три гальванически развязанных источника питания).

При равноценности нескольких типов драйверов следует отдать предпочтение тем, которые коммутируют ток затвора мощных транзисторов с помощью биполярных VT. Если эту функцию выполняют полевые транзисторы, то могут быть отказы в работе драйвера при определенных обстоятельствах (перегрузках) за счет триггерного эффекта «защелкивания».

После выбора типа драйвера (и его данных) необходимы мероприятия по борьбе со сквозными токами в полумосте. Стандартный способ – выключение мощного ключа мгновенно, а включение запертого – с задержкой. Для этой цели применяют диоды VD G 1 и VD G 2 , которые при закрывании VT шунтируют затворные резисторы, и процесс выключения будет быстрее, чем отпирание.

Кроме шунтирования затворных резисторов R G 1 и R G 2 с помощью диодов (VD G 1 , VD G 2 , рис.3.1) для борьбы со сквозными токами в П-схеме мощного каскада фирмы выпускают интегральные драйверы, ассиметричные по выходному току включения VT I др вых m ах вкл и выключения I др вых m ах выкл (например I др вых m ах вкл =2А, I др вых m ах выкл =3А). Этим задаются ассиметричные выходные сопротивления микросхемы, которые включены последовательно с затворными резисторами R G 1 и R G 2 .

,
.

где все величины в формулах – справочные данные конкретного драйвера.

Для симметричного (по токам) драйвера справедливо равенство

.

Итак, для предотвращения возникновения сквозных токов необходимо подобрать суммарную величину сопротивлений в цепи затвора (за счет
, и, соответственно, регулируя ток заряда затворной емкости VT), задержку включения
транзистора больше или равным времени, затрачиваемое на закрывание VT

где
– время спада тока стока (справочная величина);

– время запаздывания начала выключения VT по отношению к моменту подачи на затвор запирающего напряжения, зависящее от величины разрядного тока затвора (соответственно он зависит от суммарного сопротивления в цепи затвора). При шунтирующих затворных диодах (VD G 1 , VD G 2 , рис.3.1) ток разряда однозначно определяется сопротивлением
. Поэтому для определения
решают следующую пропорцию

(соответствует) –

(соответствует) –

Если скорректированная величина
будет на порядок больше
, то это свидетельствует некорректному выбору типа драйвера по мощности (большое
) и этим корректируется в худшую сторону быстродействие мощных ключей. Для окончательного определения величины
можно воспользоваться техническими справочными данными мощного VT. Для этого составляется пропорция

(соответствует) –

(соответствует) –

(Если решение дает значение R G 1 с отрицательным знаком, то задержку на включение будет с запасом обеспечивать выходное сопротивление драйвера).

Для облегчения борьбы со сквозными токами некоторые производители уже на стадии изготовления добиваются того, чтобы t выкл < t вкл (например, сборка – полумост СМ35084-5F фирмы Mitsubishi Elektric с динамическими параметрами: t з вкл =1,1 мс, t вкл =2,4 мс, t з выкл =0,9 мс, t выкл =0,5 мс).

Диоды VD G 1 и VD G 2 должны быть высокочастотными и выдерживать с запасом напряжение питания драйвера.

Можно для борьбы со сквозными токами (для симметричного закона управления) выбрать нужный полумостовой драйвер (если он подходит по другим параметрам), у которого время задержки регулируется в диапазоне 0,4…5 мкс (например, драйверы фирмы IR типа IR2184 или IR21844), если их задержка больше или равна величине t выкл.

В заключение стоит заметить, что фирмы вместо старых модификаций драйверов выпускают новые типы, которые совместимы со старыми, но могут иметь дополнительные сервисные функции (обычно встроенные бутстрепные диоды, вернее, бутстрепные транзисторы, выполняющие функцию диодов, которые раньше отсутствовали). Например, драйвер IR2011 снят с производства и взамен его введен новый IRS2011 или IR2011S (в разных пособиях неоднозначная запись).

Драйверы полевых транзисторов

Драйверы MOSFET- и IGBT-транзисторов - устройства для управления мощными полупроводниковыми приборами в выходных каскадах преобразователей электрической энергии. Они используются в качестве промежуточного звена между управляющей схемой (контроллером или цифровым сигнальным процессором) и мощными исполнительными элементами.

Этапы развития энергетической (силовой) электроники определяются достижениями в технологиях силовых ключей и их схем управления. Доминирующим направлением в энергетической электронике является повышение рабочих частот конверторов, входящих в состав импульсных источников питания. Преобразование электроэнергии на более высоких частотах позволяет улучшить удельные массогабаритные характеристики импульсных трансформаторов, конденсаторов и дросселей фильтров. Динамические и статические параметры силовых приборов постоянно улучшаются, но мощными ключами надо еще и эффективно управлять. Для сбалансированного взаимодействия между управляющей схемой и выходными каскадами и предназначены мощные высокоскоростные драйверы MOSFET- и IGBT-транзисторов. Драйверы имеют высокие выходные токи (до 9 А), малые длительности фронта, спада, задержки и другие интересные отличительные особенности. Классификация драйверов приведена на рисунке 2.15.

Рисунок 2.15 -Классификация драйверов

Драйвер должен иметь, по крайней мере, один внешний вывод (в двухтактных схемах два), который относится к обязательным. Он может служить как предварительным импульсным усилителем, так непосредственно ключевым элементом в составе импульсного источника питания.

В качестве управляемого прибора в силовых схемах различного назначения могут применяться биполярные транзисторы, МОП – транзисторы и приборы триггерного типа (тиристоры, симисторы). Требования, предъявляемые к драйверу, осуществляющему оптимальное управление в каждом из этих случаев различны. Драйвер биполярного транзистора должен управлять током базы при включении и обеспечивать рассасывание неосновных носителей в базе на этапе выключения. Максимальные значения тока управления при этом мало отличаются от усредненных на соответствующем интервале. МОП – транзистор управляется напряжением, однако в начале интервалов включения и выключения драйвер должен пропускать большие импульсные токи заряда и разряда емкостей прибора. Приборы же триггерного типа требуют формирования короткого импульса тока только в начале интервала включения, поскольку выключение (коммутация) у наиболее распространенных приборов происходит по основным, а не управляющим электродам. Всем этим требованиям в той или иной степени должны удовлетворять соответствующие драйверы.

На рисунках 2.16…2.18 представлены типовые схемы включения биполярного и полевого МОП – транзисторов с использованием одного транзистора в драйвере. Это так называемые схемы с пассивным выключением силового транзистора. Как видно из рисунка, по структуре драйвера схемы эти вполне идентичны, что позволяет использовать одни и те же схемы для управления транзисторами обоих типов. В этом случае рассасывание носителей, накопленных в структуре транзистора, происходит через пассивный элемент – внешний резистор. Сопротивление его, шунтирующее управляющий переход не только при выключении, но и на интервале включения, не может быть выбрано слишком малым, что ограничивает скорость рассасывания заряда.

Для увеличения быстродействия транзистора и создания высокочастотных ключей необходимо снизить сопротивление цепи сброса заряда. Это осуществляется с помощью транзистора сброса, включаемого только на интервале паузы. Соответствующие схемы управления биполярным и МОП – транзисторами представлены на рисунке 2.17.

Мощные полевые MOSFET-транзисторы и биполярные транзисторы с изолированным затвором (IGBT-транзисторы) являются базовыми элементами современной силовой электроники и используются в качестве элементов коммутации больших токов и напряжений. Однако для согласования низковольтных логических управляющих сигналов с уровнями управления затвора MOSFET- и IGBT-транзисторов требуются промежуточные устройства согласования — высоковольтные драйверы (в дальнейшем, для краткости, под «высоковольтными драйверами» будем понимать «высоковольтные драйверы MOSFET- и IGBT-транзисторов»).

В большинстве случаев используется следующая классификация высоковольтных драйверов:

  • Независимые драйверы верхнего и драйверы нижнего плеча полумоста, интегрированные в одной микросхеме (High and Low Side Driver );
  • Драйверы верхнего и драйверы нижнего плеча, включенные по схеме полумоста (Half-Bridge Driver );
  • Драйверы верхнего плеча (High Side Driver );
  • Драйверы нижнего плеча (Low Side Driver ).

На рис. 1 показаны соответствующие этим типам драйверов схемы управления.

Рис. 1.

В первом случае (рис. 1а) управление двумя независимыми нагрузками осуществляется от единых управляющих сигналов. Нагрузки, соответственно, включаются между истоком нижнего транзистора и шиной высоковольтного питания (драйвер нижнего плеча), а также между стоком верхнего транзистора и землей (драйвер верхнего плеча). Так называемые средние точки (сток верхнего транзистора и исток нижнего транзистора) не соединены между собой.

Во втором случае (рис. 1б) средние точки соединены. Причем нагрузка может быть включена как на верхнее, так и на нижнее плечо, но подключена к средней точке аналогично полумостовой схеме (т.н. полная мостовая схема). Строго говоря, в схеме 1а ничто не мешает соединить средние точки. Но в этом случае при определенной комбинации входных сигналов возможно одновременное открытие сразу двух транзисторов и, соответственно, протекание чрезмерно большого тока от высоковольтной шины на землю, что приведет к выходу из строя одного или сразу обоих транзисторов. Исключение подобной ситуации в данной схеме является заботой разработчика. В полумостовых драйверах (схема 1б) подобная ситуация исключается на уровне внутренней логики управления микросхемы.

В третьем случае (1в) нагрузка включается между стоком верхнего транзистора и землей, а в четвертом (1г) — между истоком нижнего транзистора и шиной высоковольтного питания, т.е. отдельно реализованы две «половинки» схемы 1а.

Компания STMicroelectronics в последние годы ориентируется (в нише высоковольтных драйверов) только на драйверы первых двух типов (семейства L638x и L639x, которые будут рассмотрены ниже). Однако более ранние разработки содержат микросхемы драйверов, управляющих включением или выключением одиночного MOSFET- или IGBT-транзистора (категория «Single» в терминах компании STMicroelectronics). При определенной схеме включения данные драйверы могут управлять нагрузкой как верхнего, так и нижнего плеча. Отметим также микросхему TD310 — три независимых одиночных драйвера в одном корпусе. Такое решение будет эффективным при управлении трехфазной нагрузкой. Данную микросхему компания STMicroelectronics относит к драйверам категории «Multiple».


L368x

В таблице 1 приводятся состав и параметры микросхем семейства L368x. Микросхемы данного семейства включают в себя как независимые драйверы верхнего и нижнего плеча (H&L), так и драйверы полумостовой схемы (HB).

Таблица 1. Параметры драйверов семейства L638x

Наименование Voffcet, В Io+, мА Io-, мА Ton, нс Toff, нс Tdt, нс Тип Управление
L6384E 600 400 650 200 250 Prog. HB IN/-SD
L6385E 600 400 650 110 105 H&L HIN/LIN
L6386E 600 400 650 110 150 H&L HIN/LIN/-SD
L6387E 600 400 650 110 105 H&L HIN/LIN
L6388E 600 200 350 750 250 320 HB HIN/LIN

Поясним некоторые параметры:

V OFFSET — максимально возможное напряжение между истоком верхнего транзистора и землей;

I O+ (I O-) — максимальный выходной ток при открытом верхнем (нижнем) транзисторе выходного каскада микросхемы;

T ON (T OFF) — задержка распространения сигнала от входов HIN и LIN до выходов HO и LO при включении (выключении);

T DT — время паузы — параметр, имеющий отношение к драйверам полумостовой схемы. При смене активных состояний логическая схема принудительно вводит паузы, позволяющие избегать включения верхнего и нижнего плеча одновременно. Например, если выключается нижнее плечо, то какое-то время оба плеча выключены и только потом включается верхнее. И, наоборот, если выключается верхнее плечо, то какое-то время оба плеча выключены и затем включается нижнее. Это время может быть либо фиксированным (как в L6388E ), либо задаваться путем выбора номинала соответствующего внешнего резистора (как в L6384E ).

Управление. Микросхемы независимых драйверов верхнего и нижнего плеча управляются по входам HIN и LIN. Причем высокий уровень логического сигнала включает, соответственно, верхнее или нижнее плечо драйвера. В микросхеме L6386E помимо этого используется дополнительный вход SD, отключающий оба плеча независимо от состояния на входах HIN и LIN.

В микросхеме L6384E применяются сигналы SD и IN. Сигнал SD отключает оба плеча независимо от состояния на входе IN. Сигнал IN = 1 эквивалентен комбинации сигналов {HIN = 1, LIN = 0} и, наоборот, IN = 0 эквивалентен комбинации сигналов {HIN = 0, LIN = 1}. Таким образом, одновременное включение транзисторов верхнего и нижнего плеча невозможно в принципе.

В микросхеме L6388E управление осуществляется по входам HIN и LIN, поэтому принципиально возможно подать на входы комбинацию {HIN = 1, LIN = 1}, однако внутренняя логическая схема преобразует ее в комбинацию {HIN = 0, LIN = 0}, исключив, таким образом, одновременное включение обоих транзисторов.

Что касается параметров, начнем с микросхем типа H&L.

Значение V OFFSET , равное 600 Вольт, является в каком-то смысле стандартом для микросхем данного класса.

Значение выходного тока I O+ (I O-), равное 400/650 мА, является показателем средним, ориентированным на типовые транзисторы общего назначения. Если сравнивать с микросхемами семейства IRS (поколение G5 HVIC), то компания International Rectifier предлагает, главным образом, микросхемы с параметром 290/600 мА. Однако в линейке International Rectifier есть также модели с параметрами 2500/2500 мА (IRS2113) и несколько меньшим быстродействием или микросхемы с выходными токами до 4000/4000 мА (IRS2186). Правда, в этом случае время переключения по сравнению с L6385E увеличивается до значения 170/170 нс.

Время переключения. Значения T ON (T OFF), равные 110/105 нс (для L6385E), превышают аналогичные значения микросхем семейства IRS (пусть и не очень значительно). Лучших показателей (60/60 нс) компания International Rectifier добилась в модели IRS2011, но за счет снижения напряжения VOFFSET до 200 В.

Однако отметим, что компания STMicroelectronics предлагает драйверы, в которых общий провод входного (низковольтного) и выходного (высоковольтного) каскадов — единый. Компания International Rectifier, помимо микросхем с аналогичной архитектурой, предлагает драйверы с раздельными общими шинами для входного и выходного каскадов.

Сравнивая параметры драйвера полумостовой схемы L6384E с изделиями International Rectifier, можно сделать вывод, что он уступает (и по выходным токам, и по быстродействию) только модели IRS21834, в которой реализована входная логика HIN/-LIN. Если критичной является входная логика IN/-SD, то драйвер L6384E превосходит по своим параметрам изделия International Rectifier.

Более подробно рассмотрим микросхему драйвера L6385E, структура и схема включения которой приведена на рис. 2.


Рис. 2.

Микросхема содержит два независимых драйвера верхнего (выход HVG) и нижнего плеча (выход LVG). Реализация драйвера нижнего плеча достаточно тривиальна, поскольку потенциал на выводе GND постоянен и, следовательно, задача состоит в преобразовании входного низковольтного логического сигнала LIN до уровня напряжения на выходе LVG, необходимого для открытия транзистора нижнего плеча. В верхнем плече потенциал на выводе OUT изменяется в зависимости от состояния нижнего транзистора. Существуют различные схемотехнические решения, применяемые для построения каскада верхнего плеча. В данном случае применяется относительно простая и недорогая бутстрепная схема управления (схема с «плавающим» источником питания). В такой схеме длительность управляющего импульса ограничена величиной бутстрепной емкости. Кроме того, необходимо обеспечить условия для ее постоянного заряда с помощью высоковольтного быстродействующего каскада сдвига уровня. Этот каскад обеспечивает преобразование логических сигналов до уровней, необходимых для устойчивой работы схемы управления транзистора верхнего плеча.

При падении напряжения управления ниже определенного предела выходные транзисторы могут перейти в линейный режим работы, что, в свою очередь, приведет к перегреву кристалла. Для предотвращения этого должны использоваться схемы контроля напряжения (UVLO — Under Voltage LockOut ) и для верхнего (контроль потенциала V BOOT), и для нижнего (контроль V CC) плеча.

Для современных высоковольтных драйверов характерна тенденция интегрировать бутстрепный диод в корпус интегральной схемы. Благодаря этому отпадает необходимость в применении внешнего диода, который является достаточно громоздким по сравнению с самой микросхемой драйвера. Встроенный бутстрепный диод (точнее, бутстрепная схема) применен не только в драйвере L6385E, но и во всех остальных микросхемах этого семейства.

Микросхема L6386E является вариантом L6385E с дополнительными функциями. Ее структура и схема включения приведены на рис. 3.


Рис. 3.

Основные отличия L6386E от L6385E. Во-первых, добавлен дополнительный вход SD, низкий уровень сигнала на котором выключает оба транзистора независимо от состояния входов HIN и LIN. Часто используется как сигнал аварийного отключения, не связанный со схемой формирования входных управляющих сигналов. Во-вторых, добавлен каскад контроля тока, протекающего через транзистор нижнего каскада. Сравнивая с предыдущей схемой, видим, что сток транзистора нижнего плеча подключен к земле не непосредственно, а через токовый резистор (токовый датчик). Если падение напряжения на нем превышает пороговое значение V REF , то на выходе DIAG формируется низкий уровень. Отметим, что данное состояние не влияет на работу схемы, а является только индикатором.

Несколько слов о применении микросхем семейства L638x. Ограниченный объем статьи не позволяет рассмотреть примеры применения, однако в документе «L638xE Application Guide» компании STMicroelectronics приведены примеры схемы управления трехфазным двигателем, схемы балласта люминесцентной лампы с диммированием, DC/DC-преобразователей с различной архитектурой и ряд других. Также приведены схемы демонстрационных плат для всех микросхем данного семейства (в том числе и топология печатных плат).

Подводя итог анализа семейства L638x, отметим: не обладая уникальными характеристиками по каким-то отдельным параметрам, драйверы данного семейства относятся к одним из лучших в отрасли как по совокупности параметров, так и по примененным техническим решениям.

Семейство высоковольтных драйверов
полумостовой схемы L639x

На первый взгляд, микросхемы этого семейства можно считать развитием микросхемы L6384E. Однако анализируя функциональные возможности драйверов семейства L639x, признать L6384E в качестве прототипа весьма сложно (разве что за отсутствием других драйверов полумоста в линейке STMicroelectronics). В таблице 2 приводятся состав и параметры микросхем семейства L639x.

Таблица 2. Параметры драйверов семейства L639x

Наименование Voffcet, В Io+, мА Io-, мА Ton, нс Toff, нс Tdt, мкс Тип Smart SD ОУ Комп. Управление
L6390 600 270 430 125 125 0,15…2,7 HB есть есть есть HIN/-LIN/-SD
L6392 600 270 430 125 125 0,15…2,7 HB есть HIN/-LIN/-SD
L3693 600 270 430 125 125 0,15…2,7 HB есть PH/-BR/-SD

Основная особенность микросхем данного семейства — наличие дополнительных встроенных элементов: операционного усилителя или компаратора (для L6390 — и того, и другого). На рис. 4 показана структура и схема включения микросхемы L6390.


Рис. 4.

Какие преимущества дают дополнительные элементы в практических приложениях? Операционные усилители (в L6390 и L6392 ) предназначены для измерения тока, протекающего через нагрузку. Причем, поскольку доступны оба вывода (OP+ и OP-), возникает возможность формировать на соответствующем выходе микросхемы и абсолютное значение, и отклонение от некоторого опорного напряжения (соответствующего, например, максимально допустимому значению). В драйвере L6390 компаратор выполняет вполне конкретную функцию «интеллектуального отключения» (Smart Shutdown ) — т.е. при превышении максимально допустимого тока в нагрузке компаратор начинает влиять на логику работы драйвера и обеспечивает плавное отключение нагрузки. Скорость отключения задается RC-цепью, подключенной к выводу SD/OD. Причем, поскольку данный вывод является двунаправленным, то он может являться как выходом индикации ошибки для управляющего микроконтроллера, так и входом для принудительного отключения.

Все микросхемы содержат логику защиты от одновременного открытия транзисторов верхнего и нижнего плеча и, соответственно, формирования паузы при изменении состояния выхода. Время паузы T DT для всех микросхем семейства программируемое и определяется номиналом резистора, подключенного к выводу DT.

Логика управления в микросхемах L6390 и L6392 однотипная — сигналы HIN, LIN и SD.

Отличие микросхемы L6393 от L6390 и L6392 заключается не только в отсутствии операционного усилителя. Компаратор в L6393 независим от остальных элементов схемы и, в принципе, может быть использован в произвольных целях. Однако наиболее разумное применение — контроль тока и формирование признака превышения (по аналогии с выводом DIAG в микросхеме L6386E, рассмотренной выше). Основное отличие заключается в логике управления — комбинация управляющих сигналов PHASE, BRAKE и SD является достаточно редкой (если не уникальной) для микросхем данного класса. Циклограмма управления представлена на рис. 5.


Рис. 5.

Циклограмма ориентирована на управление непосредственно от сигналов двигателя, например, постоянного тока и реализует т.н. механизм отложенного останова. Предположим, что BRAKE — это сигнал на исполнительный механизм, т.е. его низкий уровень включает двигатель независимо от состояния сигнала PHASE. Опять же предположим, что PHASE — это сигнал с датчика обратной связи, например, с частотного датчика, установленного на валу двигателя, или концевого датчика, обозначающего точку останова. Тогда высокий уровень сигнала BRAKE остановит двигатель не немедленно, а только по положительному перепаду сигнала PHASE. Скажем, если речь идет о приводе каретки, то сигнал останова (высокий уровень BRAKE) может быть подан заблаговременно, но останов произойдет только в конкретной точке (при срабатывании датчика PHASE).

На рис. 6 показана структура и схема включения микросхемы L6393.


Рис. 6.

О параметрах. Значения выходных токов I O+ (I O-), равные 270/430 мА, уступают микросхемам компании International Rectifier (у которых, как отмечалось выше, типичными являются 290/600 мА). Тем не менее, динамические параметры T ON /T OFF (125/125 нс) превосходят (и часто существенно) все микросхемы семейства IRS.

Выводы по семейству L639x. При достаточно высоких количественных характеристиках, что само по себе позволяет отнести семейство L639x к группе лидеров отрасли, дополнительные функции придают качественный скачок, поскольку позволяют реализовать в одной микросхеме те функции, которые ранее реализовывались с использованием ряда дополнительных компонентов.

Заключение

Безусловно, номенклатуру высоковольтных драйверов компании STMicroelectronics нельзя признать очень широкой (хотя бы в сравнении с аналогичными изделиями компании International Rectifier). Тем не менее, количественные и качественные характеристики рассмотренных семейств не уступают лучшим изделиям IR.

Говоря о драйверах MOSFET- и IGBT-транзисторов, нельзя не упомянуть и сами транзисторы; компания STMicroelectronics выпускает достаточно широкую линейку полевых (например MDMESH V и SuperMesh3) и биполярных транзисторов с изолированным затвором. Поскольку эти электронные компоненты совсем недавно освещались в данном журнале , то они оставлены за рамками данной статьи.

И наконец, как упоминалось выше, линейка драйверов MOSFET- и IGBT-транзисторов компании STMicroelectronics не исчерпывается драйверами полумостовой схемы. С номенклатурой драйверов категорий «Single» и «Multiple» и их параметрами можно ознакомиться на официальном сайте компании STMicroelectronics — http://www.st.com/ .

Литература

1. L638xE Application Guide// документ компании ST Microelectronics an5641.pdf.

2. Ячменников В. Повышаем эффективность с транзисторами MDmesh V// Новости электроники, №14, 2009.

3. Ильин П., Алимов Н. Обзор MOSFET и IGBT компании STMicroelectronics// Новости электроники, №2, 2009.

4. Меджахед Д. Высокоэффективные решения на базе транзисторов SuperMESH3 // Новости электроники, №16, 2009.

MDMEDH V в корпусе PowerFlat

STMicroelectronics, мировой лидер в области силовых МОП транзисторов, разработала для транзисторов семейства MDMESH V новый корпус PowerFlat с улучшенными характеристиками, специально предназначенный для поверхностного монтажа. Размеры корпуса 8х8 мм при высоте 1 мм (PowerFlat 8×8 HV). Его малая высота позволяет создавать более тонкие блоки питания, а также — снизить размер печатной платы или увеличить плотность монтажа. Контактом стока в корпусе PowerFlat является большая открытая металлическая поверхность, которая способствует улучшению теплоотвода и, соответственно, повышению надежности. Данный корпус способен работать в диапазоне температур -55…150°C.

Транзисторы семейства MDMESH V — это лучшие транзисторы в мире с точки зрения сопротивления открытого канала в области рабочих напряжений 500…650 В. Например, транзисторы серии STW77N65M5 из семейства MDMESH V имеют для рабочего напряжения 650 В максимальное значение Rdson на уровне 0,033 Ом и максимальный статический ток 69 А. При этом заряд затвора такого транзистора составляет всего 200 нК. STL21N65M5 — это первый транзистор из семейства MDMESH V в корпусе PowerFlat. При рабочем напряжении 650 В транзистор STL21N65M5 имеет сопротивление открытого канала на уровне 0,190 Ом и максимальный статический ток на уровне 17 А, при этом заряд его затвора составляет 50 нК.

О компании ST Microelectronics

Всем хороши мощные полевые транзисторы MOSFET, кроме одного маленького нюанса, — подключить их напрямую к выводам микроконтроллера зачастую оказывается невозможно.

Это, во-первых, связано с тем, что допустимые токи для микроконтроллерных выводов редко превышают 20 мА, а для очень быстрых переключений MOSFET-ов (с хорошими фронтами), когда нужно очень быстро заряжать или разряжать затвор (который всегда обладает некоторой ёмкостью), нужны токи на порядок больше.

И, во-вторых, питание контроллера обычно составляет 3 или 5 Вольт, что в принципе позволяет управлять напрямую только небольшим классом полевиков (которые называют logic level — с логическим уровнем управления). А учитывая, что обычно питание контроллера и питание остальной схемы имеет общий минусовой провод, этот класс сокращается исключительно до N-канальных «logic level»-полевиков.

Одним из выходов, в данной ситуации, является использование специальных микросхем, — драйверов, которые как раз и предназначены для того, чтобы тягать через затворы полевиков большие токи. Однако и такой вариант не лишён недостатков. Во-первых, драйверы далеко не всегда есть в наличии в магазинах, а во-вторых, они достаточно дороги.

В связи с этим возникла мысль сделать простой, бюджетный драйвер на рассыпухе, который можно было бы использовать для управления как N-канальными, так и P-канальными полевиками в любых низковольтных схемах, скажем вольт до 20. Ну, благо у меня, как у настоящего радиохламера, навалом всякой электронной рухляди, поэтому после серии экспериментов родилась вот такая схема:

  1. R 1 =2,2 кОм, R 2 =100 Ом, R 3 =1,5 кОм, R 4 =47 Ом
  2. D 1 — диод 1N4148 (стеклянный бочонок)
  3. T 1 , T 2 , T 3 — транзисторы KST2222A (SOT-23, маркировка 1P)
  4. T 4 — транзистор BC807 (SOT-23, маркировка 5C)

Ёмкость между Vcc и Out символизирует подключение P-канального полевика, ёмкость между Out и Gnd символизирует подключение N-канального полевика (ёмкости затворов этих полевиков).

Пунктиром схема разделена на два каскада (I и II). При этом первый каскад работает как усилитель мощности, а второй каскад — как усилитель тока. Подробно работа схемы описана ниже.

Итак. Если на входе In появляется высокий уровень сигнала, то транзистор T1 открывается, транзистор T2 закрывается (поскольку потенциал на его базе падает ниже потенциала на эмиттере). В итоге транзистор T3 закрывается, а транзистор T4 открывается и через него происходит перезаряд ёмкости затвора подключенного полевика. (Ток базы транзистора T4 течёт по пути Э T4 ->Б T4 ->D1->T1->R2->Gnd).

Если на входе In появляется низкий уровень сигнала, то всё происходит наоборот, — транзистор T1 закрывается, в результате чего вырастает потенциал базы транзистора T2 и он открывается. Это, в свою очередь, приводит к открытию транзистора T3 и закрытию транзистора T4. Перезаряд ёмкости затвора подключенного полевика происходит через открытый транзистор T3. (Ток базы транзистора T3 течёт по пути Vcc->T2->R4->Б T3 ->Э T3).

Вот в общем-то и всё описание, но некоторые моменты, наверное, требуют дополнительного пояснения.

Во-первых, для чего нужны транзистор T2 и диод D1 в первом каскаде? Тут всё очень просто. Я не зря выше написал пути протекания токов базы выходных транзисторов для разных состояний схемы. Посмотрите на них ещё раз и представьте что было бы, если бы не было транзистора T2 с обвязкой. Транзистор T4 отпирался бы в этом случае большим током (имеется ввиду ток базы транзистора), протекающим с выхода Out через открытый T1 и R2, а транзистор T3 отпирался бы маленьким током, протекающим через резистор R3. Это привело бы к сильно затянутому переднему фронту выходных импульсов.

Ну и во-вторых, наверняка многих заинтересует, зачем нужны резисторы R2 и R4. Их я воткнул для того, чтобы хоть немного ограничить пиковый ток через базы выходных транзисторов, а также окончательно подравнять передний и задний фронты импульсов.

Собранное устройство выглядит вот так:

Разводка драйвера сделана под smd-компоненты, причём таким образом, чтобы его можно было легко подключать к основной плате устройства (в вертикальном положении). То есть на основной плате у нас может быть разведён полумост, или что-то ещё, а уже в эту плату останется только вертикально воткнуть в нужных местах платы драйверов.

Разводка имеет некоторые особенности. Для радикального уменьшения размеров платы пришлось «слегка неправильно» сделать разводку транзистора T4. Его перед припаиванием на плату нужно перевернуть лицом (маркировкой) вниз и выгнуть ножки в обратную сторону (к плате).

Как видите, длительности фронтов практически не зависят от уровня питающего напряжения и составляют чуть больше 100 нс. По-моему, довольно неплохо для такой бюджетной конструкции.

«ZVS-драйвер» (Zero Voltage Switching) — очень простой и поэтому довольно распространенный низковольтный генератор. Он собирается по несложной схеме, при этом эффективность данного решения может достигать 90% и выше. Для сборки устройства достаточно одного дросселя, пары полевых транзисторов, четырех резисторов, двух диодов, двух стабилитронов, и рабочего колебательного контура со средней точкой на катушке. Можно обойтись и без средней точки, и об этом поговорим далее.

В сети можно найти много реализаций этой схемы, среди которых индукционные нагреватели, индукционные плитки, высоковольтные трансформаторы, и просто высокочастотные преобразователи напряжения. Схема напоминает генератор Ройера, однако это не он. Давайте же рассмотрим, как эта схема работает.

При подаче питания на схему, ток начинает течь к стокам обоих полевых транзисторов, одновременно с этим заряжаются емкости затворов через резисторы. Поскольку полевые транзисторы не полностью одинаковы, один из них (например Q1) открывается быстрее, и начинает проводить ток, при этом через диод D2 разряжается затвор другого транзистора Q2, который удерживается таким образом надежно закрытым.

Поскольку в схему включен колебательный контур, напряжение на стоке закрытого полевого транзистора Q2 сначала возрастает, но затем понижается, переходя через ноль, в этот момент затвор открытого полевого транзистора Q1 быстро разряжается, и открытый первым транзистор Q1 теперь запирается, а так как он теперь заперт, то на его стоке уже не ноль, и затвор второго транзистора Q2 быстро дозаряжается через резистор, и второй транзистор Q2 теперь открывается, при этом разряжая через диод D1 затвор транзистора Q1.

Через пол периода все повторяется с точностью до наоборот — второй транзистор закроется, а первый — откроется, и т. д. В контуре возникнут таким образом синусоидальные автоколебания. Дроссель L1 ограничивает питающий ток, и сглаживает небольшие коммутационные выбросы.

Легко заметить, что запирание обоих полевых транзисторов происходит при нулевом напряжении на их стоках, когда ток в контурной катушке максимален, а это значит, что коммутационные потери сведены к минимуму, и даже при мощности устройства в 1 кВт (например для ), ключам нужны лишь небольшие радиаторы. Это как раз и объясняет большую популярность данной схемы.

Частоту автоколебаний можно легко вычислить по формуле f = 1/(2π*√[ L*C]), так как индуктивность первичной обмотки (если используется трансформаторное включение) и емкость конденсатора образуют контур, обладающий собственной резонансной частотой. Важно при этом помнить, что амплитуда колебаний будет по напряжению больше напряжения питания приблизительно в 3,14 (Пи) раза.

Вот типичные компоненты, которые используют для сборки: пятиваттные резисторы по 470 Ом, для ограничения тока заряжающего затворы; два резистора по 10 кОм, для подтягивания затворов к минусу; стабилитроны на 12, 15 или 18 вольт, дабы уберечь затворы от превышения допустимого напряжения; и диоды UF4007 для разрядки затворов через противоположные плечи контура.

Полевые транзиcторы IRFP250 и IRFP260 хорошо подходят для данного ZVS-драйвера. Естественно, если потребуется дополнительное охлаждение, то каждый транзистор должен быть установлен на отдельный радиатор, поскольку работают транзисторы не одновременно. Если радиатор только один, то обязательно использование изолирующих подложек. Питание схемы не должно превышать 36 вольт, это связано с обычными ограничениями для затворов.

Если контур без средней точки, то просто ставят два дросселя вместо одного, на каждое плечо, и режим работы сохраняется аналогичным, ровно как и с одним дросселем.

Между тем, на Алиэкспресс уже появились изделия на основе этой автоколебательной схемы ZVS, причем как с одним дросселем, так и с двумя. Вариант с двумя дросселями особенно удобен в качестве резонансного источника питания нагревательных индукторов без средней точки.

Похожие статьи