Компьютерная документация на каждый день. Беспроводной передачи данных

21.05.2018

В статье рассматриваются три технологии беспроводной передачи данных, названия которых, что называется, у всех на слуху: ZigBee, BlueTooth и Wi-Fi, а также приводятся возможные области их использования и рекомендации по выбору технологии для конкретной задачи.

Технология беспроводной передачи данных BlueTooth

Технология BlueTooth (стандарт IEEE 802.15) стала первой технологией, позволяющей организовать беспроводную персональную сеть передачи данных (WPAN - Wireless Personal Network). Она позволяет осуществлять передачу данных и голоса по радиоканалу на небольшие расстояния (10–100 м) в нелицензируемом диапазоне частот 2,4 ГГц и соединять ПК, мобильные телефоны и другие устройства при отсутствии прямой видимости.

Своему рождению BlueTooth обязана фирме Ericsson, которая в 1994 году начала разработку новой технологии связи. Первоначально основной целью являлась разработка радиоинтерфейса с низким уровнем энергопотребления и невысокой стоимостью, который позволял бы устанавливать связь между сотовыми телефонами и беспроводными гарнитурами. Однако впоследствии работы по разработке радиоинтерфейса плавно переросли в создание новой технологии.

На телекоммуникационном рынке, а также на рынке компьютерных средств успех новой технологии обеспечивают ведущие фирмы-производители, которые принимают решение о целесообразности и экономической выгоде от интеграции новой технологии в свои новые разработки. Поэтому, чтобы обеспечить своему детищу достойное будущее и дальнейшее развитие, в 1998 году фирма Ericsson организовала консорциум BlueTooth SIG (Spesial Interest Group), перед которым ставились следующие задачи:

  • дальнейшая разработка технологии BlueTooth;
  • продвижение новой технологии на рынке телекоммуникационных средств.

В консорциум BlueTooth SIG входят такие фирмы, как Ericsson, Nokia, 3COM, Intel, National Semiconductor.

Логично было бы предположить, что первые шаги, предпринимаемые консорциумом BlueTooth SIG, будут заключаться в стандартизации новой технологии с целью совместимости BlueTooth-устройств, разработанных разными фирмами. Это и было реализовано. Для этого были разработаны спецификации, детально описывающие методы использования нового стандарта и характеристики протоколов передачи данных.

В результате был разработан стек протокола беспроводной передачи данных BlueTooth (рис. 1).

Рис. 1. Стек протокола Bluetooth

Технология BlueTooth поддерживает как соединения типа «точка–точка», так и «точка–многоточек». Два или более использующих один и тот же канал устройства образуют пикосеть (piconet). Одно из устройств работает как основное (master), а остальные - как подчиненные (slave). В одной пикосети может быть до семи активных подчиненных устройств, при этом остальные подчиненные устройства находятся в состоянии «парковки», оставаясь синхронизированными с основным устройством. Взаимодействующие пикосети образуют «распределенную сеть» (scatternet).

В каждой пикосети действует только одно основное устройство, однако подчиненные устройства могут входить в различные пикосети. Кроме того, основное устройство одной пикосети может являться подчиненным в другой (рис. 2).


Рис. 2. Пикосеть с подчиненными устройствами. а) с одним подчиненным устройством. б) несколькими. в) распределенная сеть

С момента появления на рынке первых модулей BlueTooth их широкому применению в новых приложениях препятствовала сложная программная реализация стека протокола BlueTooth. Разработчику необходимо было самостоятельно реализовать управление BlueTooth-модулем и разработать профили, определяющие взаимодействие модуля с другими BlueTooth-устрой ствами с помощью команд интерфейса хост-контроллера (HCI - Host Controller Interface). Интерес к технологии BlueTooth возрастал с каждым днем, появлялись все новые и новые фирмы, разрабатывающие для нее компоненты, но не было решения, которое бы в значительной степени упростило бы управление BlueTooth-модулями. И такое решение было найдено. Финская фирма, изучив ситуацию на рынке, одной из первых предложила разработчикам следующее решение.

В большинстве случаев технология BlueTooth используется разработчиками для замены проводного последовательного соединения между двумя устройствами на беспроводное. Для организации соединения и выполнения передачи данных разработчику необходимо программно, с помощью команд интерфейса хост-контроллера реализовать верхние уровни стека протокола BlueTooth, к которым относят: L2CAP, RFCOMM, SDP, а также профиль взаимодействия по последовательному порту - SPP (Serial Port Profi le) и профиль обнаружения услуг SDP (Service Discovery Profi le). На этом и решила сыграть финская фирма, разработав вариант прошивки BlueTooth-модулей, представляющий законченную программную реализацию всего стека протокола BlueTooth (рис. 1), а также профилей SPP и SDP. Это решение дает возможность разработчику осуществлять управление модулем, устанавливать беспроводное последовательное соединение и выполнять передачу данных с помощью специальных символьных команд, точно так же, как это делается при работе с обычными модемами через стандартные AT-команды.

На первый взгляд, рассмотренное выше решение позволяет существенно сократить время интеграции технологии BlueTooth во вновь разрабатываемые изделия. Однако это накладывает определенные ограничения на использование возможностей технологии BlueTooth. В основном это сказывается на уменьшении максимальной пропускной способности и количестве одновременных асинхронных соединений, поддерживаемых BlueTooth-модулем.

В середине 2004 года на смену спецификации BlueTooth версии 1.1, которая была опубликована в 2001 году, принята спецификация BlueTooth версии 1.2. К основным отличиям спецификации 1.2 от 1.1 относят:

  1. Реализация технологии адаптивной перестройки частоты канала (Adaptive Friquency hopping, AFH).
  2. Усовершенствование голосового соединения.
  3. Сокращение времени, затрачиваемого на установление соединения между двумя модулями BlueTooth.

Известно, что BlueTooth и Wi-Fi используют один и тот же нелицензирумый диапазон 2,4 ГГц. Следовательно, в тех случаях, когда BlueTooth-устройства находятся в зоне действия устройств Wi-Fi и осуществляют обмен данными между собой, это может привести к коллизиям и повлиять на работоспособность устройств. Технология AFH позволяет избежать появления коллизий: во время обмена информацией для борьбы с интерференцией технология BlueTooth использует скачкообразную перестройку частоты канала, при выборе которого не учитываются частотные каналы, на которых осуществляют обмен данными устройства Wi-Fi. На рис. 3 проиллюстрирован принцип действия технологии AFH.


Рис. 3. Принцип действия технологии AFH. а) коллизии б) уход от коллизий при помощи адаптивной перестройки частоты канала

Развитие технологии BlueTooth не стоит на месте. Консорциумом SIG разработана концепция развития технологии до 2008 года (рис. 4).


Рис. 4. Этапы развития технологии Bluetooth

В настоящее время на рынке работает большое количество фирм, предлагающих модули BlueTooth, а также компоненты для самостоятельной реализации аппаратной части BlueTooth-устройства. Практически все производители предлагают модули, поддерживающие спецификации BlueTooth версии 1.1 и 1.2 и соответствующие классу 2 (диапазон действия 10 м) и классу 1 (диапазон действия 100 м). Однако, несмотря на то, что версия 1.1 полностью совместима с 1.2, все рассмотренные выше усовершенствования, реализованные в версии 1.2, могут быть получены, только если оба устройства соответствуют версии 1.2.

В ноябре 2004 года была принята спецификация BlueTooth версии 2.0, поддерживающая технологию расширенной передачи данных (Enhanced Data Rate, EDR). Спецификация 2.0 с поддержкой EDR позволяет осуществлять обмен данными на скорости до 3 Мбит/с. Первые серийно изготавливаемые образцы модулей, соответствующие версии 2.0 и поддерживающие технологию расширенной передачи данных EDR, были предложены производителями в конце 2005 года. Радиус действия таких модулей составляет 10 м при отсутствии прямой видимости, что соответствует классу 2, а при наличии прямой видимости он может достигать 30 м.

Как уже отмечалось ранее, основное назначение технологии BlueTooth - замена проводного последовательного соединения. При этом профиль SPP, используемый для организации соединения, конечно же, не единственный профиль, который разработчики могут использовать в своих изделиях. Технологией BlueTooth определены следующие профили: профиль общего доступа (Generic Access Profile), профиль обнаружения услуг (Service Discovery Profile), профиль взаимодействия с беспроводными телефонами (Cordless Telephony Profile), профиль интеркома (Intercom Profile), профиль беспроводных гарнитур для мобильных телефонов (Headset Profile), профиль удаленного доступа (Dial-up Networking Profile), профиль факсимильной связи (Fax Profile), профиль локальной сети (Lan Access Profile), профиль обмена данными (Generic Object Exchange), профиль передачи данных (Profile Object Push Profile), профиль обмена файлами (File Transfer Profile), профиль синхронизации (Synchronization Profile).

Технология беспроводной передачи данных Wi-Fi

С Wi-Fi сложилась несколько запутанная ситуация, поэтому для начала определимся с используемой терминологией.

Стандарт IEEE 802.11 является базовым стандартом для построения беспроводных локальных сетей (Wireless Local Network - WLAN). Стандарт IEEE 802.11 постоянно совершенствовался, и в настоящее время существует целое семейство, к которому относят спецификации IEEE 802.11 с буквенными индексами a, b, c, d, e, g, h, i, j, k, l, m, n, o, p, q, r, s, u, v, w. Однако только четыре из них (а, b, g и i) являются основными и пользуются наибольшей популярностью у производителей оборудования, остальные же (с-f, h-n) представляют собой дополнения, усовершенствования или исправления принятых спецификаций.

В свою очередь, Институт инженеров по электронике и электротехнике (IEEE) только разрабатывает и принимает спецификации, на вышеперечисленные стандарты. В его обязанности не входят работы по тестированию оборудования различных производителей на совместимость.

Для продвижения на рынке оборудования для беспроводных локальных сетей (WLAN) была создана группа, которая получила название Альянс Wi-Fi. Этот альянс осуществляет руководство работами по сертификации оборудования различных производителей и выдаче разрешения на использование членами Альянса Wi-Fi логотипа торговой марки Wi-Fi. Наличие на оборудовании логотипа Wi-Fi гарантирует надежную работу и совместимость оборудования при построении беспроводной локальной сети (WLAN) на оборудовании различных производителей. В настоящее время Wi-Fi-совместимым является оборудование, построенное по стандарту IEEE 802.11a, b и g (может также использовать стандарт IEEE 802.11i для обеспечения защищенного соединения). Кроме того, наличие на оборудовании логотипа Wi-Fi означает, что работа оборудования осуществляется в диапазоне 2,4 ГГц или 5 ГГц. Следовательно, под Wi-Fi следует понимать совместимость оборудования различных производителей, предназначенного для построения беспроводных локальных сетей, с учетом изложенных выше ограничений.

Первоначальная спецификация стандарта IEEE 802.11, принятая в 1997 году, устанавливала передачу данных на скорости 1 и 2 Мбит/с в нелицензируемом диапазоне частот 2,4 ГГц, а также способ управления доступом к физической среде (радиоканалу), который использует метод множественного доступа с опознаванием несущей и устранением коллизий (Carrier Sense Multiple Access with Collision Avoidance, CSMA-CA). Метод CSMA-CA заключается в следующем. Для определения состояния канала (занят или свободен) используется алгоритм оценки уровня сигнала в канале, в соответствии с которым выполняется измерение мощности сигналов на входе приемника и качество сигнала. Если мощность принятых сигналов на входе приемника ниже порогового значения, то канал считается свободным, если же их мощность выше порогового значения, то канал считается занятым.

После принятия спецификации стандарта IEEE 802.11 несколько производителей представили на рынке свое оборудование. Однако оборудование стандарта IEEE 802.11 не получило широкого распространения вследствие того, что в спецификации стандарта не были однозначно определены правила взаимодействия уровней стека протокола. Поэтому каждый производитель представил свою версию реализации стандарта IEEE 802.11, не совместимую с остальными.

Для исправления сложившейся ситуации в 1999 году, IEEE принимает первое дополнение к спецификации стандарта IEEE 802.11 под названием IEEE 802.11b. Стандарт IEEE 802.11b стал первым стандартом построения беспроводных локальных сетей, получившим широкое распространение. Максимальная скорость передачи данных в нем составляет 11 Мбит/с. Такую скорость разработчикам стандарта удалось получить за счет использования метода кодирования последовательностью дополнительных кодов (Complementary Code Keying). Для управления доступом к радиоканалу используется тот же метод, что и в первоначальной спецификации стандарта IEEE 802.11 - CSMA-CA. Приведенное выше значение максимальной скорости передачи данных, конечно же, является теоретическим значением, так как для доступа к радиоканалу используется метод CSMACA, не гарантирующий наличия свободного канала в любой момент времени. Поэтому на практике при передаче данных по протоколу TCP/IP максимальная пропускная способность составит около 5,9 Мбит/с, а при использовании протокола UDP - около 7,1 Мбит/с.

В случае ухудшения электромагнитной обстановки оборудование автоматически снижает скорость передачи в начале до 5,5 Мбит/с, затем до 2 Мбит/с, используя для этого метод адаптивного выбора скорости (Adaptive Rate Selection, ARS). Снижение скорости позволяет использовать более простые и менее избыточные методы кодирования, отчего передаваемые сигналы становятся менее подверженными затуханию и искажениям вследствие интерференции. Благодаря методу адаптивного выбора скорости оборудование стандарта IEEE 802.11b может осуществлять обмен данными в различной электромагнитной обстановке.

Следующим стандартом, пополнившим семейство стандарта IEEE 802.11, является стандарт IEEE 802.11a, спецификация которого была принята IEEE в 1999 году. Основное отличие спецификации стандарта IEEE 802.11a от первоначальной спецификации стандарта IEEE 802.11 заключается в следующем:

  • передача данных осуществляется в нелицензируемом диапазоне частот 5 ГГц;
  • используется ортогональная частотная модуляция (OFDM);
  • максимальная скорость передачи данных составляет 54 Мбит/с (реальная скорость - около 20 Мбит/с).

Так же, как в стандарте 802.11b, в 802.11a реализован метод выбора адаптивной скорости (ARS), снижающий скорость передачи данных в следующей последовательности: 48, 36, 24, 18, 12, 9 и 6 Мбит/с. Передача информации осуществляется по одному из 12 каналов, выделенных в диапазоне 5 ГГц.

Использование диапазона 5 ГГц при разработке спецификации 802.11a обусловлено прежде всего тем, что данный диапазон менее загружен, чем диапазон 2,4 ГГц, а следовательно, передаваемые в нем сигналы менее подвержены влиянию интерференции. Несомненно, данный факт является преимуществом, но в то же время использование диапазона 5 ГГц приводит к тому, что надежная работа оборудования стандарта IEEE 802.11a обеспечивается только на прямой видимости. Поэтому при построении беспроводной сети требуется установка большего количества точек доступа, что, в свою очередь, влияет на стоимость развертывания беспроводной сети. Кроме того, сигналы, передаваемые в диапазоне 5 ГГц, более подвержены поглощению (мощность излучения оборудования IEEE 802.11b и 802.11a одна и та же).

Первые образцы оборудования стандарта IEEE 802.11a были представлены на рынке в 2001 году. Следует отметить, что оборудование, поддерживающее только стандарт IEEE 802.11a, не пользовалось большим спросом на рынке по нескольким причинам. Во-первых, на тот момент оборудование стандарта IEEE 802.11b уже зарекомендовало себя на рынке, во вторых, все отмечали недостатки использования диапазона 5 ГГц и, в-третьих, оборудование стандарта IEEE 802.11a не совместимо с IEEE 802.11b. Однако впоследствии производители для продвижения IEEE 802.11a предложили устройства, поддерживающие оба стандарта, а также оборудование, позволяющее адаптироваться в сетях, построенных на оборудовании стандарта IEEE 802.11b, 802.11а, 802.11g.

В 2003 году была принята спецификация стандарта IEEE 802.11g, устанавливающая передачу данных в диапазоне 2,4 ГГц со скоростью 54 Мбит/с (реальная скорость составляет около 24,7 Мбит/с). Для управления доступом к радиоканалу используется тот же метод, что и в первоначальной спецификации стандарта IEEE 802.11 - CSMACA, а также ортогональная частотная модуляция (OFDM).

Оборудование стандарта IEEE 802.11g полностью совместимо с 802.11b, однако, из-за влияния интерференции, в большинстве случаев реальная скорость передачи данных 802.11g сопоставима со скоростью, обеспечиваемой оборудованием стандарта 802.11b. Поэтому единственным правильным решением для потенциальных пользователей беспроводных локальных сетей является покупка оборудования, поддерживающего сразу три стандарта: 802.11a, b и g.

Wi-Fi-совместимое оборудование у большинства разработчиков ассоциируется прежде всего с организацией точек доступа для выхода в Интернет и с абонентским оборудованием. Следует отметить, что и индустрия встроенных систем не обошла своим вниманием стандарты IEEE 802.11a, b и g. Уже сейчас на этом сегменте рынка есть предложения, позволяющие сделать любое устройство Wi-Fi-совместимым. Речь идет о ОЕМ-модулях стандарта IEEE 802.11b, в состав которых входят: приемопередатчик, процессор обработки приложений и исполнения ПО. Таким образом, эти модули представляют собой полностью законченное решение, позволяющее существенно сократить время и стоимость реализации Wi-Fi-совместимости разрабатываемого изделия. В основном ОЕМ-модули стандарта IEEE 802.11b интегрируются в изделия для удаленного мониторинга и управления через Интернет. Для подключения ОЕМ-модуля стандарта IEEE 802.11b к изделию используется последовательный интерфейс RS-232, а управление модулем выполняется AT-командами. Максимальное расстояние между OEM модулем стандарта IEEE 802.11b и точкой доступа при использовании специальной выносной антенны может составлять до 500 м. В помещения максимальное расстояние не превышает 100 м, а при наличии прямой видимости увеличивается до 300 м. Существенным недостатком таких ОЕМ-модулей является их высокая стоимость.

В таблице 1 приведены основные технические характеристики стандартов IEEE 802.11a, b и g.

Таблица 1. Основные технические характеристики стандартов IEEE 802.11a, b и g


Технология беспроводной передачи данных ZigBee

Технология беспроводной передачи данных ZigBee была представлена на рынке уже после появления технологий беспроводной передачи данных BlueTooth и Wi-Fi. Появление технологии ZigBee обусловлено, прежде всего, тем, что для некоторых приложений (например, для удаленного управления освещением или гаражными воротами, либо считывания информации с датчиков) основными критериями при выборе технологии беспроводной передачи является малое энергопотребление аппаратной части и ее низкая стоимость. Из этого следует малая пропускная способность, так как в большинстве случаев электропитание датчиков осуществляется от встроенной батареи, время работы от которой должно превышать несколько месяцев и даже лет. Иначе ежемесячная замена батареи для датчика открывания-закрывания гаражных ворот кардинально изменит отношение пользователя к беспроводным технологиям. Существующие на тот момент времени технологии беспроводной передачи данных BlueTooth и Wi-Fi не соответствовали этим критериям, обеспечивая передачу данных на высоких скоростях, с высоким уровнем энергопотребления и стоимости аппаратной части. В 2001 году рабочей группой № 4 IEEE 802.15 были начаты работы по созданию нового стандарта, который бы соответствовал следующим требованиям:

  • очень малое энергопотребление аппаратной части, реализующей технологию беспроводной передачи данных (время работы от батареи должно составлять от нескольких месяцев до нескольких лет);
  • передача информации должна осуществляться на не высокой скорости;
  • низкая стоимость аппаратной части.

Результатом стала разработка стандарта IEEE 802.15.4. Во многих публикациях под стандартом IEEE 802.15.4 понимают технологию ZigBee и наоборот под ZigBee - стандарт IEEE 802.15.4. Однако это не так. На рис. 5 приведена модель взаимодействия стандарта IEEE 802.15.4, технологии беспроводной передачи данных ZigBee и конечного пользователя.


Рис. 5. Модель взаимодействия стандарта IEEE 802.15.4, технологии беспроводной передачи данных ZigBee и конечного пользователя

Стандарт IEEE 802.15.4 определяет взаимодействие только двух низших уровней модели взаимодействия: физического уровня (PHY) и уровня управления доступом к радиоканалу для трех нелицензируемых диапазонов частот: 2,4 ГГц, 868 МГц и 915 МГц. В таблице 2 приведены основные характеристики оборудования, функционирующего в этих диапазонах частот.

Таблица 2. Основные характеристики оборудования

Уровень MAC отвечает за управление доступом к радиоканалу с использованием метода множественного доступа с опознаванием несущей и устранением коллизий (Carrier Sense Multiple Access with Collision Avoidance, CSMA-CA), а также за управление подключением и отключением от сети передачи данных и обеспечение защиты передаваемой информации симметричным ключом (AES-128).

В свою очередь, технология беспроводной передачи данных ZigBee, предложенная альянсом ZigBee, определяет остальные уровни модели взаимодействия, к которым относят сетевой уровень, уровень безопасности, уровень структуры приложения и уровень профиля приложения. Сетевой уровень, технологии беспроводной передачи данных ZigBee, отвечает за обнаружение устройств и конфигурацию сети и поддерживает три варианта топологии сети, приведенные на рис. 6.


Рис. 6. Три варианта топологии сети

Для обеспечения низкой стоимости интеграции технологии беспроводной передачи ZigBee в различные приложения физическая реализация аппаратной части стандарта IEEE 802.15.4 выполняется в двух исполнениях: устройства с ограниченным набором функции (RFD) и полностью функциональные устройства (FFD). При реализации одной из топологий сети, приведенной на рис. 6, требуется наличие, по крайней мере, одного FFD-устройства, выполняющего роль сетевого координатора. В таблице 3 приведен перечень функций, выполняемых устройствами FFD и RFD.

Таблица 3. Перечень функций, выполняемых устройствами FFD и RFD


Низкая стоимость аппаратной части RFD-устройств обеспечивается за счет ограничения набора функций при организации взаимодействия с сетевым координатором или FFD-устройством. Это в свою очередь, отражается на неполной реализации модели взаимодействия, приведенной на рис. 5, а также предъявляет минимальные требования к ресурсам памяти.

Кроме деления устройств на RFD и FFD, альянсом ZigBee определены три типа логических устройств: ZigBee-координатор (согласующее устройство), ZigBee-маршрутизатор и оконечное устройство ZigBee. Координатор осуществляет инициализацию сети, управление узлами, а также хранит информацию о настройках каждого узла, подсоединенного к сети. ZigBee-маршрутизатор отвечает за маршрутизацию сообщений, передаваемых по сети от одного узла к другому. Под оконечным устройством понимают любое оконечное устройство, подсоединенное к сети. Рассмотренные выше устройства RFD и FFD как раз и являются оконечными устройствами. Тип логического устройства при построении сети определяет конечный пользователь посредством выбора определенного профиля (рис. 5), предложенного альянсом ZigBee. При построении сети с топологией «каждый с каждым» передача сообщений от одного узла сети к другому может осуществляться по разным маршрутам, что позволяет строить распределенные сети (объединяющие несколько небольших сетей в одну большую - кластерное дерево) с установкой одного узла от другого на достаточно большом расстоянии и обеспечить надежную доставку сообщений.

Трафик, передаваемый по сети ZigBee, как правило, разделяют на периодический, прерывистый и повторяющийся (характеризующийся небольшим временным интервалом между посылками информационных сообщений).

Периодический трафик характерен для приложений, в которых необходимо дистанционно получать информацию, например от беспроводных сенсорных датчиков или счетчиков. В таких приложениях получение информации от датчиков или счетчиков осуществляется следующим образом. Как уже упоминалось ранее, любое оконечное устройство, в качестве которого в данном примере выступает беспроводной датчик, подавляющую часть времени работы должно находится в режиме «засыпания», обеспечивая тем самым очень низкое энергопотребление. Для передачи информации оконечное устройство в определенные моменты времени выходит из режима «засыпания» и выполняет поиск в радиоэфире специального сигнала (маяка), передаваемого устройством управления сетью (ZigBee-координатором или ZigBee-маршрутизатором), к которой подсоединен беспроводной счетчик. При наличии в радиоэфире специального сигнала (маяка) оконечное устройство осуществляет передачу информации устройству управления сетью и сразу же переходит в режим «засыпания» до следующего сеанса связи.

Прерывистый трафик свойственен, например, для устройств дистанционного управления освещением. Представим ситуацию, когда необходимо при срабатывании датчика движения, установленного у входной двери, передать команду на включение освещения в прихожей. Передача команды в данном случае осуществляется следующим образом. При получении устройством управления сетью сигнала о срабатывании датчика движения оно выдает команду оконечному устройству (беспроводному выключателю) подключиться к беспроводной сети ZigBee. Затем устанавливается соединение с оконечным устройством (беспроводным выключателем) и выполняется передача информационного сообщения, содержащего команду на включение освещения. После приема команды соединение разрывается и выполняется отключение беспроводного выключателя от сети ZigBee.

Подключение и отключение оконечного устройства к сети ZigBee только в необходимые для этого моменты позволяет существенно увеличить время пребывания оконечного устройства в режиме «засыпания», обеспечивая тем самым минимальное энергопотребление. Метод использования специального сигнала (маяка) является гораздо более энергоемким.

В некоторых приложениях, например охранных системах, передача информации о срабатывании датчиков должна осуществляться практически мгновенно и без задержек. Но надо учитывать тот факт, что в определенный момент времени могут «сработать» сразу несколько датчиков, генерируя в сети так называемый повторяющийся трафик. Вероятность данного события невелика, но не учитывать его в охранных системах недопустимо. В беспроводной сети ZigBee для сообщений, передаваемых в беспроводную сеть при срабатывании сразу нескольких охранных датчиков (оконечных устройств), предусмотрена передача данных от каждого датчика в специально выделенном временном слоте. В технологии ZigBee специально выделяемый временной слот называют гарантированным временным слотом (Guaranteed Time Slot, GTS). Наличие в технологии ZigBee возможности предоставлять гарантированный временной слот для передачи неотложных сообщений позволяет говорить о реализации в ZigBee метода QoS (качество обслуживания). Выделение гарантированного временного слота для передачи неотложных сообщений осуществляется сетевым координатором (рис. 6, PAN Coordinator).

При разработке аппаратной части технологии беспроводной передачи данных ZigBee, реализующей модель взаимодействия, практически все производители придерживаются концепции, в соответствии с которой вся аппаратная часть размещается на одном чипе. На рис. 7 приведена концепция исполнения аппаратной части технологии беспроводной передачи данных ZigBee.


Рис. 7. Концепция исполнения аппаратной части технологии беспроводной передачи данных ZigBee

Для построения беспроводной сети (например, сеть с топологией «звезда») на основе технологии ZigBee разработчику необходимо приобрести по крайней мере один сетевой координатор и необходимое количество оконечных устройств. При планировании сети следует учитывать, что максимальное количество активных оконечных устройств, подсоединенных к сетевому координатору, не должно превышать 240. Кроме того, необходимо приобрести у производителя ZigBee-чипов программные средства для разработки, конфигурирования сети и создания пользовательских приложений и профилей. Практически все производители ZigBee-чипов предлагают на рынке целую линейку продукции, отличающейся, как правило, только объемом памяти ROM и RAM. Например, чип со 128 Кбайт ROM и 8 Кбайт RAM может быть запрограммирован на работу в качестве координатора, маршрутизатора и оконечного устройства.

Высокая стоимость отладочного комплекта, в состав которого входит набор программных и аппаратных средств для построения беспроводных сетей ZigBee любой сложности, является одним из сдерживающих факторов массового распространения технологии ZigBee на рынке России. Необходимо отметить, что появление технологии беспроводной передачи ZigBee стало определенным ответом на потребности рынка создания интеллектуальных систем управления частными домами и строениями, спрос на которые с каждым годом увеличивается. Уже в ближайшем будущем частные дома и строения будут оснащены огромным количеством беспроводных сетевых узлов, осуществляющих мониторинг и управление системами жизнеобеспечения дома. Инсталляция данных систем может быть произведена в любое время и за короткие сроки, так как не требует разводки в здании кабелей.

Перечислим приложения, в которые может быть интегрирована технология ZigBee:

  • Системы автоматизации жизнеобеспечения домов и строений (удаленное управление сетевыми розетками, выключателями, реостатами и т. д.).
  • Системы управления бытовой электроникой.
  • Системы автоматического снятия показаний с различных счетчиков (газа, воды, электричества и т. д.).
  • Системы безопасности (датчики задымления, датчики доступа и охраны, датчики утечки газа, воды, датчики движения и т. д.).
  • Системы мониторинга окружающей среды (датчики температуры, давления, влажности, вибрации и т. д.).
  • Системы промышленной автоматизации.

Заключение

Приведенный в статье краткий обзор технологий беспроводной передачи данных BlueTooth, Wi-Fi и ZigBee показывает, что даже для имеющих опыт разработчиков бывает затруднительно однозначно отдать предпочтение той или иной технологии только на основании технической документации.

Поэтому подход к выбору должен основываться на комплексном анализе нескольких параметров. Сравнительные характеристики технологий BlueTooth, Wi-Fi и ZigBee приведены в таблице 4. Эта информация поможет принять правильное решение при выборе технологии беспроводной передачи данных.

Таблица 4. Сравнительные характеристики технологий BlueTooth, Wi-Fi и ZigBee


Литература

  1. В.А. Григорьев, О.И. Лагутенко, Ю.А. Распаев. «Системы и сети радиодоступа», М.,:ЭкоТрендз, 2005 г.
  2. www.ieee.com
  3. www.chipcon.com
  4. www.ember.com
  5. www.BlueTooth.org

Занятие № 26. “Технологии построения беспроводных сетей передачи данных”

1. Общая характеристика технологии построения беспроводных локальных сетей передачи данных

Все многообразие существующих беспроводных стандартов достаточно четко структурировано по шкале расстояний и скорости передачи данных рис.1.

Рис. 1 Шкала расстояний и скорости передачи данных

Персональные сети беспроводного доступа – WPAN.

На сегодняшний день их всего два: существующий Bluetooth (802.15.1) и UWB, другое название WirelessUSB (802.15.3а). Оба рассчитаны на передачу данных на расстояние до 10 м, только Bluetooth работает на частоте 2,4 ГГц, a UWB – на частоте 7,5 ГГц. Скорость передачи данных по Bluetooth: достигает 720 кбит/с, на практике меньше. Стандарт UWB должен обеспечивать скорость передачи данных до 110 Мбит/с на расстоянии 10 м и до 480 Мбит/с на расстоянии 3 м от источника сигнала.

Беспроводные локальные сети – WLAN.

Три стандарта 802.11а, 802.11b и 802.11g, работающие на расстояние до 100 м. Различие между 802.11b и 802.11g касается скорости передачи данных: 11 Мбит/с - 802.11b и 54 Мбит/с - 802.11g. А 802.11а и 802.11g различаются только по частоте: 802.11а - 5 ГГц; 802.11g - 2,4 ГГц. В США устройства Wi-Fi могут работать в диапазоне 5 ГГц, а в Европе и России существуют серьезные ограничения, препятствующие распространению 802.11а.

Технологии для сетей WPAN и WLAN известны также под профессиональным жаргонным названием Wi-Fi. Термин Wi-Fi (Wireless Fidelity) в стандартах явно не прописан, поэтому в различной литературе можно встретить различные, иногда прямо противоречивые суждения относительно технологий и аппаратуры, которые он объединяет.

Стандарт 802.11, подразумевает возможность работы в двух режимах: с базовой станцией (точкой доступа) и без нее, когда несколько людей создают беспроводную локальную сеть, объединяя в нее свои ноутбуки, находясь в


помещении, в котором отсутствует базовая станция. Оба режима показаны на рис.2.

а б Рис.2. Беспроводная сеть с базовой станцией (а); специальная сеть (б)

Стандартом IEEE 802.11 предусмотрено использование частотного диапазона от 2,4 до 2,4835 ГГц, который предназначен для безлицензионного использования в промышленности, науке и медицине, что значительно упрощает правовую сторону построения сети. Стандарт IEEE 802.11, предполагал возможность передачи данных по радиоканалу на скорости 1 Мбит/с и опционально на скорости 2 Мбит/с, а в стандарте IEEE 802.11b за счет более сложных методов модуляции были добавлены более высокие скорость передачи - 5,5 и 11 Мбит/с.

Стандарт 802.11g является развитием 802.11b и предполагает передачу данных в том же частотном диапазоне. По способу кодирования 802.11g является, гибридным, заимствуя все лучшее из стандартов 802.11b и 802.11a. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с (как и в стандарте 802.11a), поэтому на сегодняшний день это наиболее перспективный стандарт беспроводной связи.

2. Технологии расширения спектра, используемые методы модуляции и кодирования

На физическом уровне стандартом IEEE 802.11 предусмотрены ИК-канал и два типа радиоканалов - DSSS и FHSS использующих частотный диапазон от 2,4 до 2,4835 ГГц, предназначенный для безлицензионного использования в промышленности,

науке и медицине (Industry, Science and Medicine, ISM).

Радиоканалы используют технологии расширения спектра (Spread Spectrum, SS) заключающиеся в том, чтобы от узкополосного спектра сигнала, возникающего при обычном потенциальном кодировании, перейти к широкополосному спектру, что позволяет значительно повысить помехоустойчивость передаваемых данных. Расширение спектра частот передаваемых цифровых сообщений может осуществляться двумя методами.

FHSS (Frequency Hopping Spread Spectrum - передача широкополосных сигналов по методу частотных скачков) используются 79 каналов шириной 1 МГц каждый. Для определения последовательностей скачков частот используется генератор псевдослучайных чисел. Поскольку при этом для всех станций используется один и тот же генератор, они синхронизированы во времени и одновременно осуществляют одинаковые частотные скачки. Период времени, в течение которого станция работает на определенной частоте, называется временем пребывания. Это настраиваемая величина, но она должна быть не более 400 мс. Кроме того, постоянная смена частот - это неплохой (хотя, конечно, недостаточный) способ защиты информации от несанкционированного прослушивания, поскольку незваный слушатель, не зная последовательности частотных переходов и времени пребывания, не сможет подслушать передаваемые данные. При


связи на длинных дистанциях может возникать проблема многолучевого затухания, и FHSS может оказаться хорошим подспорьем в борьбе с ней. Главный недостаток FHSS – это низкая пропускная способность.

DSSS напоминает систему CDMA, однако имеет и некоторые отличия. Каждый бит передается в виде 11 элементарных сигналов, которые называются последовательностью Баркера.

Информационный бит, представляемый прямоугольным импульсом, разбивается на последовательность более мелких импульсов-чипов. В результате спектр сигнала значительно расширяется, поскольку ширину спектра можно с достаточной степенью точности считать обратно пропорциональной длительности одного чипа. Такие кодовые последовательности часто называют шумоподобными кодами. Наряду с расширением спектра сигнала, уменьшается и спектральная плотность энергии, так что энергия сигнала как бы размазывается по всему спектру, а результирующий сигнал становится шумоподобным в том смысле, что его теперь трудно отличить от естественного шума.

Кодовые последовательности обладают свойством автокорреляции, степень подобия функции самой себе в различные моменты времени. Коды Баркера обладают наилучшими среди известных псевдослучайных последовательностей свойствами (рис. 3). Для передачи единичного и нулевого символов сообщения используются, соответственно, прямая и инверсная последовательности Баркера.

Рис. 3. Изменение спектра сигнала при добавлении шумоподобного кода.

В приѐмнике полученный сигнал умножается на код Баркера (вычисляется корреляционная функция сигнала), в результате чего он становится узкополосным, поэтому его фильтруют в узкой полосе частот, равной удвоенной скорости передачи. Любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на код Баркера, наоборот, становится широкополосной, а в узкую информационную полосу попадает лишь часть помехи, по мощности примерно в 11 раз меньшая, чем помеха, действующая на входе приѐмника.


В стандарте IEEE 802.11 для передачи сигналов используют различные виды фазовой модуляции:

фазовую модуляцию (Phase Shift Key, PSK);

квадратурную фазовую модуляцию (Quadrature Phase Shift Key, QPSK),. относительную фазовую модуляцию (Differential Phase Shift Keying, DPSK).

Вместо шумоподобных последовательностей Баркера для расширения спектра могут использоваться комплементарные коды (Complementary Code Keying, CCK).

Используемые комплементарные 8-чиповые комплексные последовательности

(CCK-последовательности) образуются по следующей формуле:

{ e j(φ +φ +φ +φ), e j(φ +φ +φ), e j(φ +φ +φ), -e j(φ +φ), e j(φ +φ +φ), e j(φ +φ), -e j(φ +φ), e jφ}

1 2 3 4 1 3 4 1 2 4 1 4 1 2 3 1 3 1 2 1

Значения фаз определяются последовательностью входных битов, причѐм значение φ 1 выбирается по первому дибиту,φ 2 - по второму,φ 3 - по третьему иφ 4 - по четвѐртому.

В стандарте 802.11а используется принципиально иной метод кодирования данных, который состоит в том, что поток передаваемых данных распределяется по множеству частотных подканалов и передача ведѐтся параллельно на всех этих подканалах. При этом высокая скорость передачи достигается именно за счѐт одновременной передачи данных по всем каналам, а скорость передачи в отдельном подканале может быть и не высокой.

Несущие сигналы всех частотных подканалов (а точнее, функции, описывающие эти сигналы) ортогональны друг другу. С точки зрения математики ортогональность функций означает, что их произведение, усреднѐнное на некотором интервале, должно быть равно нулю. В данном случае это выражается простым соотношением:

где T - период символа,f k ,f l - несущие частоты каналовk иl .

Ортогональность несущих сигналов можно обеспечить в том случае, если за время длительности одного символа несущий сигнал будет совершать целое число колебаний. Примеры нескольких несущих ортогональных колебаний представлены на рис. 4.

Рис. 4. Ортогональные частоты.

Рассмотренный способ деления широкополосного канала на ортогональные частотные подканалы называется ортогональным частотным разделением с мультиплексированием (Orthogonal Frequency Division Multiplexing, OFDM). Для его реализации в передающих устройствах используется обратное быстрое преобразование Фурье (IFFT).

В стандарте 802.11g используются две конкурирующие технологии: метод ортогонального частотного разделения OFDM, заимствованный из стандарта 802.11a,

и метод двоичного пакетного свѐрточного кодирования PBCC, опционально реализованный в стандарте 802.11b. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.

В основе метода PBCC лежит так называемое свѐрточное кодирование со скоростью 1/2. Для восстановления исходной последовательности битов на стороне приѐмника применяется декодер Витерби.

Скорости передачи, предусмотренные протоколом 802.11g.

Скорость,

Метод кодирования

Обязательно

Опционально

Последовательность Баркера

Последовательность Баркера

3. Технологии построения беспроводных городских сетей передачи данных

В декабре 2001 года была принята первая версия стандарта IEEE 802.16-2001, который изначально предусматривал рабочую полосу 10-66 ГГц. Данный стандарт описывал организацию широкополосной беспроводной связи с топологией «точкамноготочка» и был ориентирован на создание стационарных беспроводных сетей масштаба мегаполиса (WirelessMAN). На физическом уровне стандарт IEEE 802.162001 предполагал использование всего одной несущей частоты, потому этот протокол назвали WirelessMAN-SC (Single Carrier). Организация связи в частотном диапазоне

10-66 ГГц возможна только в зоне прямой видимости между передатчиком и приемником сигнала из-за быстрого затухания. Но это позволяет избежать одной из главных проблем радиосвязи - многолучевого распространения сигнала. Стандарт рекомендовал модуляцию типа QPSK, 16-QAM, 64-QAM и предусматривал скорость передачи информации 32-134 Мбит/с в радиоканалах шириной 20, 25 и 28 МГц на расстоянии 2-5 км.

802.16а-2003 предусмотрено использование частотного диапазона от 2 до 11 ГГц. Этот стандарт ориентирован на создание стационарных беспроводных сетей масштаба мегаполиса. Планировалось, что он станет альтернативой традиционным решениям широкополосного доступа для «последней мили» – кабельным модемам, каналам T1/E1, xDSL и т.п. Кроме того, предполагаюсь, что к базовой сети стандарта 802.16а станут подключиться точки доступа стандарта 802.11b/g/a для формирования глобальной сети беспроводного доступа в Интернет.

Отличие стандарта 802.16а работа в частотном диапазоне, который не требует прямой видимости между приемником и передатчиком. Зона покрытия таких беспроводных сетей значительно шире, чем сетей стандарта 802.16. Использование частотного диапазона 2-11 ГГц потребовало и существенного пересмотра техники кодирования и модуляции сигнала на физическом уровне. Система на базе 802.16а должна была работать с модуляцией QPSK, 16-, 64- и 256-QAM, обеспечивать скорость передачи информации 1-75 Мбит/с на сектор одной базовой станции в радиоканалах с изменяемой полосой пропускания от 1,5 до 20 МГц на расстоянии 6-9 км (теоретически до 50 км). Типовая базовая станция имела до шести секторов.

Был сохранен режим работы на одной несущей (SCa), предназначенный как для условий прямой видимости, так и вне ее. Предусматривались режимы на основе технологии ортогонального частотного мультиплексирования (OFDM) с 256 поднесущими и режим с технологией многостанционного доступа с ортогональным частотным разделением каналов (OFDMA - Orthogonal Frequency Division Multiple

Access) с 2048 поднесущими.

Стандарт IEEE 802.16-2004 объединил все нововведения но, с полной совместимостью всех режимов мультиплексирования SC, SCa, OFDM и OFDMA, разной ширины радиоканалов, а также FDD, TDD и других требований возникли сложности, поэтому оборудование каждого производителя так и осталось уникальным.

Профили WiMAX

Фиксированны

Эволюционный

Мобильный WiMAX

Стандарт

IEEE 802.16e-2005

радиоинтерфейса

Мультиплексирование

Номинальное

поднесущих

Дуплексный режим

Модуляция

QPSK, 16-QAM, 64-QAM

(в восходящем канале -

(опционально)

опционально)

Принцип предоставления канальных ресурсов

Основной принцип предоставления доступа к каналу в стандарте IEEE 802.16 –

это доступ по запросу Demand Assigned Multiple Access (DAMA). Ни одна АС не может ничего передавать, кроме запросов на регистрацию и предоставление канала, пока БС не разрешит ей этого. Абонентская станция может как запрашивать определенный размер полосы в канале, так и просить об изменении уже предоставленного ей канального ресурса.

В стандарте IEEE 802.16 используются следующие процедуры преобразования сигналов:

входной поток данных скремблируется; подвергается рандомизации, т. е. умножению на псевдослучайную

последовательность (ПСП), получаемую в 15-разрядном сдвиговом регистре; далее скремблированные данные защищают посредством помехоустойчивых

кодов (FEC-кодирование). При этом можно использовать одну из четырех схем кодирования:

код РидаСоломона с символами из поля Галуа GF(256),

каскадный код с внешним кодом Рида-Соломона и внутренним сверточным кодом с кодовым ограничением К = 7 (скорость кодирования - 2/3) с декодированием по алгоритму Витерби,

каскадный код с внешним кодом Рида - Соломона и внутренним кодом с проверкой на четность (8, 6, 2),

блоковый турбокод; допускается три типа квадратурной амплитудной модуляции: 4-позиционная

QPSK и 16-позиционная 16-QAM (обязательны для всех устройств), а также 64-QAM (опционально);

Поскольку определяемая стандартом IEEE 802.16 система двунаправленная, необходим дуплексный механизм. Он предусматривает как частотное (FDD – frequency division duplex), так и временное (TDD – time division duplex) разделение восходящего и нисходящего каналов.

При временном дуплексировании каналов кадр делится на нисходящий и восходящий субкадры (их соотношение в кадре может гибко изменяться в процессе работы в зависимости от необходимой полосы пропускания для нисходящих и восходящих каналов), разделенные специальным интервалом. При частотном дуплексировании восходящий и нисходящий каналы транслируются каждый на своей несущей.

4. Сети LTE, принцип работы

LTE (Long Term Evolution) - это мобильная технология связи четвертого поколения (4G). Сам термин LTE расшифровывается как «долгосрочная эволюция».

LTE является следующим после 3G поколением мобильной связи и работает на базе IP-технологий. Основное отличие LTE от предшественников – высокая скорость передачи данных. Теоретически она составляет до 326,4 Мбит/с на прием (download) и 172,8 Мбит/с на передачу (upload) информации. При этом в международном стандарте указаны цифры в 173 и 58 Мбит/с, соответственно. Данный стандарт связи четвертого поколения разработало и утвердило Международное партнерское объединение 3GPP.

Система кодирования последнего поколения - OFDM

OFDM расшифровывается как Orthogonal Frequency-division Multiplexing и по-

русски означает ортогональное частотное разделение каналов с мультиплексированием. Сигналы OFDM генерируются благодаря применению "Быстрого преобразования Фурье".

Данная технология описывает направление сигнала от базовой станции (БС) к вашему мобильному телефону. Что же касается обратного пути сигнала, т.е. от телефонного аппарата к базовой станции, техническим разработчикам пришлось отказаться от системы OFDM и воспользоваться другой технологией Single-carrier FDMA (переводе означает мультиплексирование на одной несущей). Смысл ее в том, что при сложении большого количества ортогональных поднесущих образуется сигнал с большим отношением амплитуды сигнала к своему среднеквадратичному значению. Для того чтобы такой сигнал мог передаваться без помех необходим высококлассный и довольно дорогой высоколинейный передатчик.

MIMO – Multiple Input Multiple Output – представляет собой технологию передачи данных с помощью N-антенн и приема информации M-антеннами. При этом принимающие и передающие сигнал антенны разнесены между собой на такое расстояние, чтобы получить слабую степень корреляции между соседними антеннами.

На данный момент под сети 4G уже зарезервированы диапазоны частот. Наиболее приоритетными принято считать частоты в районе 2,3 ГГц. Другой перспективный диапазон частот – 2,5 ГГц применяется в США, Европе, Японии и Индии. Имеется еще частотная полоса в районе 2,1 ГГц, но она сравнительно небольшая, большинство европейских мобильных операторов ограничивают в этом диапазоне полосы до 5 МГц. В будущем, скорее всего, наиболее используемым будет частотный диапазон 3,5 ГГц. Это связано с тем, что на данных частотах в большинстве стран уже используются сети беспроводного широкополосного доступа в интернет и благодаря переходу в LTE операторы получат возможность вновь применять свои частоты без необходимости приобретения новых дорогих лицензий. В случае необходимости под сети LTE могут быть выделены и другие диапазоны частот.

Имеется возможность применения как временного разделения сигналов TDD (Time Division Duplex -дуплексный канал с временным разделением), так и частотного - FDD (Frequency Division Duplex - дуплексный канал с частотным разделением).

Зона обслуживания базовой станции сети LTE может быть разной. Обычно она составляет около 5 км, но в ряде случаев она может быть увеличена до 30 и даже 100 км, в случае высокого расположения антенн (секторов) базовой станции.

Другое позитивное отличие LTE – большой выбор терминалов. Помимо сотовых телефонов, в сетях LTE будут использоваться многие другие устройства, такие как ноутбуки, планшетные компьютеры, игровые устройства и видеокамеры, снабженные встроенным модулем поддержки сетей LTE. А так как технология LTE обладает поддержкой хендовера и роуминга с сотовыми сетями предыдущих поколений, все данные устройства смогут работать и в сетях 2G/3G.

Звонок или сеанс передачи данных, инициированный в зоне покрытия LTE, технически может быть передан без разрыва в сеть 3G (WCDMA), CDMA2000 или в

Обзор беспроводных технологий связи

В настоящее время технология беспроводной связи переживает настоящий бум своего развития. В основном это связано с прочным входом в нашу жизнь смартфонов, планшетных компьютеров и нетбуков, которые для полноценного использования требуют постоянный доступ к сети интернет, в том числе и при движении.

Кроме этого, в промышленности, сельском хозяйстве ну и естественно в военной сфере назревает необходимость в организации надежных систем управления распределенными объектами и объединение их в глобальную сеть. Подобные тенденции наблюдаются во всем мире и ведут к неминуемому развитию беспроводных технологий связи.

Подтверждению этому служит огромное количество статей и аналитических обзоров, которые выдаются в поисковых системах по запросу сетецентрические технологии и системы.

Термин сетецентризм подразумевает под собой наличие единого информационного пространства, максимизации ситуационной осведомлённости всех входящих в него абонентов и непрерывности взаимодействия. Что естественным образов подразумевает под собой кардинальный пересмотр отношения к системам связи, в том числе и к беспроводным связям, что неминуемо ведет к их активному развитию и совершенствованию.

В этой статье я проведу краткий обзор существующих коммерческих технологий и стандартов беспроводной связи. Чтобы было проще ориентироваться в большой номенклатуре технологий, введем классификацию по дальности связи и количеству абонентов входящих в беспроводную сеть. Всего введем шесть градации:

1. К персональным беспроводным сетям относятся:

IrDA (Infrared Data Association) , инфракрасный порт – группа стандартов, описывающих протоколы физического и логического уровня передачи данных по оптической линии связи с использованием инфракрасного диапазона световых волн. Сейчас ИК-порты в основном используются в пультах управления. В телефонах, смартфонах, ноутбуках и в другой вычислительной технике их вытеснили такие беспроводные линии связи, как Bluetooth, Wi-Fi и т.д. из-за маленькой дальности, возможности передачи данных только при прямой видимости приемника и передатчика и других особенностей устройства ИК-портов.

Bluetooth – спецификация радиосвязи малого радиуса действия (обычно до 200 метров) в диапазоне частот свободном от лицензирования (ISM-диапазоне: 2,4-2,4835 ГГц). В основу радиосвязи Bluetooth положен алгоритм FHSS (Frequency Hopping Spread Spectrum) обеспечивающий псевдослучайную перестройку частот 1600 раз в секунду (раз в 625 Мкс). Для перестройки доступно 79 рабочих частот в диапазоне 1 МГц. В некоторых странах количество выделяемых частот уже, так в Японии, Франции и Испании – 23 частотных канала. Последовательность переключения частот знают только передатчик и приемник, входящие в одну и ту же сеть, которые синхронно переключают рабочие частоты. Для другой пары приемник-передатчик последовательность переключения будет отличаться. Благодаря этому возможна одновременная работа нескольких пар приемник-передатчик в перекрывающихся областях передачи данных.

UWB (Ultra-Wide Band) – технология беспроводной связи на малых дальностях (около 10 метров), использующая на сегодняшней день (01.09.2012) самый широкий диапазон частот для коммерческих устройств связи. Так в США выделен диапазон от 3.1 до 10.6 ГГц, в Евросоюзе от 6 до 8 ГГц, в России от 2,85 до 10 ГГц. Большие проблемы на пути становления этой технологии связаны с пересечением диапазона частот с частотами многих военных и гражданских радаров и других изделий. Однако, благодаря сверхмалой дальности связи и использования малой мощности, сигналы устройств созданных на базе технологии UWB не сказываются на работе военной и гражданской технике использующей те же диапазоны частот. Использование широкого диапазона частот позволяет достичь огромных скоростей, однако скорость очень быстро падает с увеличением дальности. Так на дальности 3 м обеспечивается скорость до 480 Мбит/с. На дальности 10 метров скорость будет уже 110 Мбит/с. Такое большое снижение скорости связано с большим искажением широкополосного сигнала за счет дисперсии электромагнитного изучения.

Wireless USB , беспроводной USB – предназначен для замены проводного USB. Основная задача WUSB обеспечение высокоскоростного обмена на сверхмалых расстояниях и обеспечение взаимодействия персонального компьютера с периферийным оборудованием: сканерами, принтерами, видео и фото камерами, внешними жесткими дисками и так далее. Высокая скорость (до 180 Мбит/с) обеспечивается на расстояниях до 10 метров и критически сильно падает при увеличении расстояния между приемником и передатчиком. Высокая скорость обеспечивается за счет применения широкополосного сигнала по технологии UWB, им же объясняется и малые расстояния передачи данных.

Wireless HD – беспроводная технология передачи данных, в основном предназначенная для передачи HD-видео, однако ничего не мешает использовать ее для организации беспроводной сети. Теоретическая максимальная пропускная способность Wireless HD может достигать 28 Гбит/с на расстоянии до 10 Метров. Столь большую пропускную способность обеспечивает работа с широкополосным сигналом (7 ГГц) при частоте сигнала в районе 60 ГГц. Однако это приносит и существенные проблемы: для передачи сигнала на частоте в районе 60 ГГц требуется, чтобы приемник и передатчик находились в зоне прямой видимости друг-друга, иначе предметы, попавшие между ними, будут прерывать сигнал и передача будет неустойчивой.
Для обеспечения стабильной связи в помещениях, где далеко не всегда есть возможность располагать устройства в зоне прямой видимости, разработчики приложили немало усилий и значительно смягчили жесткие ограничения передачи данных на сверхвысоких частотах. В основном это было обеспечено за счет ввода распределенной системы антенн, которые образуют сеть, позволяющую поддерживать стабильную передачу данных.

WiGig (IEEE 802.11ad.) – технология широкополосной беспроводной связи, работающая в нелицензируемой полосе частот 60 ГГц и обеспечивающая передачу данных до 7 Гбит/с на расстояния до 10 метров. WiGig обратно совместим со стандартом Wi-Fi (IEEE 802.11).
Использование для передачи данных диапазона частот в районе 60 ГГц приводит к быстрому затуханию сигнала и необходимости обеспечения прямой видимости между приемником и передатчиком. Для уменьшения влияния негативных эффектов в WiGig используется узконаправленная передача сигнала, что требует дополнительного времени для установки связи (до нескольких секунд). Если установить связь в зоне прямой видимости не удалось, то технология предусматривает возможность передачи данных на пониженных частотах - 2,4 и 5 ГГц.

WHDi, Wireless Home Digital Interface (Amimon) – беспроводная технология передачи данных, используемая для высокоскоростной передачи данных и оптимизированная для передачи видео высокого разрешения. Технология WHDi позволяет, например, связывать компьютер или ноутбук с монитором без проводов.
Для передачи используется частотный диапазон 5 ГГц обеспечивающий скорость 3 ГБит/с. В WHDi используется специальная технология кодирования «video-modem» обеспечивающая помехозащищенность и защиту от ошибок передачи данных, и как результат высокое качество ретранслируемого видео.

LibertyLink – технология организации беспроводной персональной сети, разработанная компанией Aura. Для передачи информации используется эффект магнитной индукции. Вокруг передатчика образуется магнитное поле, модулированное за счет использования Гауссовского смещения. Приемник, находящийся в магнитном поле, чувствителен к его модуляциям, из-за которых возникает наведенный ток. Изменения силы тока, возникающего в приемнике, преобразуются в данные. Технология LibertyLink позволяет передавать данные со скоростью до ~200 Кб/с на дальности до 3 метров.

DECT/GAP – цифровая усовершенствованная система беспроводной телефонии -технология беспроводной связи, используемая в современных радиотелефонах. Для передачи данных используется частота 1880-1900 МГц в Европе и 1920-1930 МГц в США. Передача данных основывается на методе с использованием нескольких несущих и принципа множественного доступа с разделением времени. Канал разделяется на кадры длительностью 10 мс. Каждый кадр делится на 24 слота, каждый из которых может использоваться для передачи и приема данных. Обычно первые 12 слотов используются для передачи данных, а следующие 12 слотов – для приема. Использование технологии DECT/GAP позволяет получить качественную передачу голоса по беспроводному каналу связи, высокую помехозащищенность, безопасность и защиту от прослушивания, и все это при низком уровни излучения, безопасном для здоровья.

2. К беспроводным сенсорным сетям относятся:

DASH7 – стандарт организации беспроводных сенсорных сетей.
Сенсорная сеть – это сеть миниатюрных вычислительных устройств, снабженных сенсорными датчиками (например, датчиками температуры, давления, движения, освещенности и так далее), приемо-передатчиками сигнала и миниатюрным источником питания. Дальность беспроводной связи зависит от мощности передаваемого сигнала, и с увеличением дальности сильно падает пропускная способность линии связи. Так как сенсорная сеть под собой понимает использование миниатюрных автономных датчиков, то и мощность сигнала сильно ограничена, так как увеличение мощности ведет к сокращению срока автономной работы датчиков.
В стандарте DASH7 используется частота сигнала 433 МГц, находящаяся в нелецензируемом диапазоне частот. При передачи данных на расстояние до 2 км обеспечивается скорость 200 Кб/с. Технология DASH7 открытая и составляет серьезную конкуренцию патентованным технологиям организации беспроводных сенсорных сетей, таких как ZigBee или Z-Wave.

Z-Wave – технология беспроводной радиосвязи, используемая для организации сенсорных сетей. Основное назначения сетей Z-Wave - дистанционное управление бытовой техникой и различными домашними устройствами, обеспечивающими управление освещением, отоплением и другими устройствами для автоматизации управления жилыми домами и офисными помещениями.
Технология Z-Wave обеспечивает передачу данных на расстояние до 30 метров в условиях прямой видимости со скоростью 9,6 кбит/с или 40 кбит/с, при частотах 869.0 МГц в России, 908.42 МГц в США, 868.42 МГц в Европе и т.д.
Так как в домашних условиях и в условиях офиса невозможно обеспечить нахождения всех датчиков сети в прямой видимости друг друга, в стандарте Z-Wave каждый узел или устройство могут ретранслировать данные другим узлам. Таким образом, если требуется передать данные узлу, который находится вне зоны видимости, это можно сделать через цепочку узлов. Причем сети Z-Wave обладают элементами самоорганизации в зависимости от внешних факторов. Например, при возникновении преграды между двумя ближайшими узлами сети, сигнал будет автоматически передан через цыпочку других узлов сети.

Insteon – комбинированная (частично проводная и частично беспроводная) сенсорная сеть. Для передачи информации используется радиосигнал на частоте 902-924 МГц, обеспечивающий передачу данных на дальности до 45 метров в условиях прямой видимости со средней скоростью 180 бит/с. Для передачи информации по проводу используется электропроводка дома или офиса. Использование комбинированной сети повышает ее надежность и позволяет избежать проблем, связанных с помехами или перекрытиями зон видимости при передаче данных по радиоканалу. Сенсорная сеть Insteon обычно используется для автоматизации дома или офиса. Свое начало берет из США, где была создана для замены сенсорной сети Х10 и откуда перебралась в Европу.

EnOcean - технология организации беспроводных сенсорных сетей, использующая сверхминиатюрные датчики с генераторами электроэнергии, микроконтроллерами и приемо-передатчиками. Использование генераторов электроэнергии и элементов со сверхнизким энергопотреблением, позволяет элементам сети EnOcean работать автономно, практически без элементов питания, очень длительный период времени. Сети EnOcean в основном используются для автоматизации домов и офисов. Технология EnOcean позволяет передавать данные на частоте 868 МГц (для Европы, в других странах частота может отличаться, так как это лицензируемый диапазон частот) со скоростью 120 Кбит/с на расстояния до 300 метров в пределах прямой видимости. Естественно, в помещениях этот показатель значительно меньше и зависит от материалов стен и планировки здания. Каждый элемент сети имеет свой 32-х разрядный идентификационный номер и протокол обмена, защищающий от взаимных помех соседние датчики, что позволяет устанавливать до 4 миллиардов устройств в непосредственной близости друг от друга (по данным с сайта разработчиков технологии) без взаимной интерференции.

ISA100.11a – стандарт организации промышленных сенсорных сетей, сетей датчиков и приводов. Для передачи используется низкоскоростная беспроводная связь с использованием элементов с низким энергопотреблением. Отличительная особенность ISA100.11a от других сенсорных сетей:
– ориентированность на промышленное использование и соответственно специфические требования к прочности, помехозащищенности, надежности и безопасности,
– возможность эмуляции средствами технологии ISA100.11a протоколов уже существующих и проверенных проводных и беспроводных сенсорных сетей.
Обмен данными осуществляется на частоте в районе 2,4 ГГц и скорости порядка 250 кбит/с.

WirelessHART – протокол передачи данных по беспроводной линии связи, разработанный HART Communication Foundation для передачи данных в виде HART сообщений в беспроводной среде. HART – протокол обмена данными для взаимодействия с полевыми датчиками на основе расширяемого набора простых команд «запрос-ответ», передаваемых в цифровом виде по 2-проводной линии. WirelessHART обеспечивает передачу данных со скоростью до 250 кбит/с на расстояние до 200 м (в пределах прямой видимости) при частоте передачи данных в диапазоне 2.4 ГГц.

MiWi – протокол для организации сенсорных и персональных сетей с низкой скоростью передачи данных на небольшие расстояния, основанный на спецификации IEEE802.15.4 для беспроводных персональных сетей. Сеть на базе MiWi может содержать до 1024 узлов, управляемых до 8 координаторами. Каждый координатор может обеспечивать взаимодействие до 127 узлов. Передача данных ведется в диапазоне частот 2.4 ГГц (предусмотрена работа в диапазоне частот 868 МГц и 915 МГц с более низкими скоростями) при скорости до 250 Кб/с.

6LoWPAN – стандарт, обеспечивающий взаимодействие малых беспроводных сетей (частных сетей или сетей датчиков) с сетями IP по протоколу IPv6. Используется в основном для организации сетей датчиков и автоматизации жилого и офисного помещения с возможностью управления через интернет, однако могут использоваться и автономно как простые беспроводные сети датчиков. Передача данных в стандарте 6LoWPAN подразумевает использование субгигагерцового диапазона и обеспечивает скорость передачи от 50 до 200 кбит/с на расстояние до 800 метров.

One-Net открытый протокол для организации беспроводных сенсорных сетей и сетей автоматизации зданий и распределенных объектов. Позволяет организовывать сети, включающие в себя до 4096 узлов с несколькими координаторами и ретрансляторами, увеличивающими дальность передачи данных. Передача данных обеспечивается на расстояния до 100 метрах в помещении и до 500 метрах на открытых пространствах при скорости передачи данных 28.4 – 230 Кбит/с.

Wavenis – беспроводная технология передачи данных, использующая частоты 433/868/915 МГц и обеспечивающая передачу на расстояние до 1000 м на открытом пространстве и до 200 м в помещении при скорости до 100 Кбит/с. Технологию Wavenis используют для организации персональных сетей и сетей датчиков, так как сверхнизкое потребление приемо-передающих устройств позволяет им работать автономно до 15 лет от одной батарейки.

RuBee – локальная беспроводная сеть, которая, в основном, используется как сеть датчиков. Для передачи данных в RuBee используются магнитные волны, и передача осуществляется на частоте 131 КГц, что обеспечивает скорость всего лишь 1200 бот в секунду на расстояниях от 1 до 30 метров. Однако позволяет значительно снизить энергопотребление и позволяет узлам сети работать автономно в течении нескольких лет от одной батарейки.
Используется сеть, в основном, для специфических целей, не требующих большого быстродействия, но требующих долгой автономной работы и надежной, защищенной связи. Использование низкой частоты позволяет избежать проблем связанных с передачей данных в помещениях, так как сигнал не отражается и не блокируется стенами и другими предметами. Сеть RuBee в США сертифицирована Министерством Обороны и Министерством Энергетики и рекомендована для использования в объектах повышенной опасности.

3. К малым локальным беспроводным сетям относятся:

HiperLAN (High Performance Radio LAN) – стандарт беспроводной связи. Существует две ревизии стандарта: HiperLAN 1 и HiperLAN 2. Стандарт HiperLAN 1 выпущен 1981 году и описывает более медленную линию связи, обеспечивающую скорость передачи данных до 10Мбит/с на расстоянии до 50 метров. В данной ревизии использовался асинхронный режим передачи и механизм множественного доступа, аналогичный используемому в семействе локальных сетей шинного типа со случайным доступом с предотвращением конфликтов.
Выпущенная в 2000 году ревизия стандарта уже описывает более высокоскоростную беспроводную линию передачи данных. HiperLAN 2 использует для передачи данных широкополосный сигнал на частоте в районе 5 ГГц, обеспечивающий скорость передачи данных до 54 Мбит/с на расстоянии до 150 метров. При этом обе ревизии позволяют работать с мобильными объектами, передвигающимися со скоростью до 1.4 м/с (ревизия HiperLAN 1) и до 10 м/с (ревизия HiperLAN 2).

Wi-Fi торговая марка объединения Wi-Fi Alliance, представляющая собой семейство стандартов спецификации IEEE 802.11 для широкополосной радиосвязи. В зависимости от стандарта, Wi-Fi использует для передачи данных диапазон частот в районе 2,4 ГГц или 5 ГГц и обеспечивает скорость передачи данных от 2 Мбит/с на расстояниях до 200 метров. Wi-Fi используется для организации беспроводных локальных сетей и беспроводного подключения к Интернету. Wi-Fi одна из самых популярных групп стандартов и повсеместно используется для организации домашних и офисных сетей, публичного доступа к Интернету в гостиницах, кафе, магазинах и в других публичных местах.

Zigbee – технология организации беспроводных сенсорных и персональных сетей. Технология Zigbee обеспечивает невысокое потребление энергии и передачу данных на нелецензируемой частоте 2.4 ГГц (для различных стран частота может отличаться) со скоростью до 250 Кб/с, на расстояние до 75 метров в условиях прямой видимости. Поддерживаются как простые сети типа точка-точка и звезда, так и сложные сети с ретрансляцией и автоматической маршрутизацией, позволяющие передавать данные между двумя узлами, находящимися не в зоне прямой видимости, через цепочку узлов сети.
Сети Zigbee используются как для коммутации отдельных устройств, например, беспроводных наушников или колонок с компьютером или смартфоном, так и для организации сложных сетей по автоматизации управления домом и офисом.

RONJA (Reasonable Optical Near Joint Access) – технология беспроводной передачи данных с использованием оптического сигнала. Используется для организации полнодуплексных соединений тип точка - точка по стандарту Ethernet, обеспечивая скорость передачи данных до 10 Мбит/с на расстоянии до 1.4 км при примой видимости абонентов. При сложных погодных условиях (снег, дождь, туман) дальность и скорость связи значительно падает, и могут возникать сбои при передаче данных.

4. К большим локальным беспроводным сетям относятся:

WiMAX (Worldwide Interoperability for Microwave Access) – беспроводная технология передачи данных основанная на стандарте IEEE 802.16. Основное назначение технологии – это высокоскоростная связь на больших расстояний и предоставление доступа в интернет. Существует две ревизии WiMAX, одна из которых (собственно WiMAX) основана на стандарте IEEE 802.16d, а вторая (WiMAX Mobile) основана на стандарте IEEE 802.16e. В разработке находится третья ревизия - WiMax 2, которая будет значительно опережать по скорости и дальности связи первые две ревизии.
WiMAX осуществляет передачу данных на частоте 1,5-11 ГГц со скоростью до 75 Мбит/с на расстояние до 80 км. WiMAX Mobile осуществляет передачу данных на частоте 2,3-13,6 ГГц со скоростью до 40 Мбит/с на расстояние до 5 км. Подробнее об устройстве и принципах работы WiMAX (Worldwide Interoperability for Microwave Access) можно почитать на сайте "Системы и сети" (systemseti.com).

HiperMAN - беспроводная технология передачи данных на базе стандарте IEEE 802.16. Европейская альтернатива технологии WiMAX. HiperMAN специализирован для пакетной передачи данных и организации беспроводных IP-сетей. Имеет характеристики (диапазон частот, скорость и дальность передачи данных) схожие с технологией WiMAX.

WiBro (Wireless Broadband) – беспроводная технология высокоскоростной передачи данных на большие расстояния, основанная на стандарте IEEE 802.16e. Северокорейский аналог технологии WiMAX Mobile. Для передачи данных используется диапазон частот 2,3-13,6 ГГц, при этом в Северной Корее выделен диапазон 2,3-2,4 ГГц. Максимальная пропускная способность базовых станций составляет 30-50 Мбит/с на дальностях до 5 км при движении объекта со скоростью меньше 120 км/ч.

Classic WaveLAN – технология беспроводной связи используемая для организации локальных сетей (беспроводная альтернатива проводных сетей Ethernet и Token Ring). Передача данных осуществляете в диапазоне частот в 900 МГц или 2.4 ГГц, при этом обеспечивается скорость передачи до 2 Мбит/с.

5. К глобальным беспроводным сетям относятся:

5.1. Мобильная связь поколения 1G

NMT (Nordic Mobile Telephone) – стандарт беспроводной аналоговой сотовой связи, разработанный в 1978 году, однако он и по сей день используется в России, имея покрытие сравнимое с суммарным покрытием всех остальных стандартов сотовой связи. NMT обеспечивает множественный доступ абонентов с частотным разделением на расстояниях свыше 70 км от базовой станции.
Передача сигнала осуществляется в диапазоне частот 450 МГц. При этом для передачи данных от абонента используется диапазон частот 453-457,5 МГц, а для приема данных от базовой станции используется диапазон 463-467,5 МГц. Внутри этих диапазонах используется нарезка на каналы с шагом 12.5 КГц.
Использование частоты в диапазоне 450 МГц приводит к большому количеству помех в больших городах, но большая дальность связи позволяет получить хорошую связь в пригородах и вдали от городов.

AMPS (Advanced Mobile Phone System) - стандарт беспроводной аналоговой сотовой связи используемый с 1983 года. Впервые был применен в США, сейчас используется во многих европейских странах, в том числе и в России (компания Билайн). AMPS обеспечивает множественный доступ абонентов с частотным разделением. Так же как и в стандарте NMT для передачи и для приема данных используются отдельные диапазоны частот, которые нарезаются на каналы (один канал – 30КГц). Всего поддерживается 832 канала. Схема построения сети очень похожа на схему сети GSM, в которой используется сеть базовых станций, размещенных в углах сот, и центров коммутации.

TACS (Total Access Control System) – аналоговая система беспроводной связи, разработанная на базе стандарта AMPS и используемая с 1985 года. Первая сеть была развернута в Англии, затем TACS стали использовать в таких странах как Испания, Ирландия, Австралия, Кении, Кувейте, Малайзии и в некоторых других. С мая 2001 года не используется. В системе TACS использовалась частотная модуляция (FSK). Для передачи от базовой станции использовалась полоса частот 935-950 МГц, для передачи от абонента – 890 - 905 МГц. Общее число каналов 600, с разнос в 25 кГц. Радиус действия одной базовой станции до 20 км. Система связи TACS несколько раз улучшалась. Были введены модификации ETACS, NTACS увеличивающие диапазон частот и число каналов, что позволяло увеличить число одновременно обслуживаемых абонентов и качество связи.

Mobitex открытый стандарт беспроводной связи на основе коммутации пакетов. Сеть состоит из базовых станций и коммутаторов и представляет собой сотовую сеть для передачи данных и голоса, однако в стандарте Mobitex возможна и коммутация точка-точка между двумя абонентами минуя базовые станции, если они находятся в радиусе действия абонентской аппаратуры. Это несколько разгружает сеть. Для передачи используются диапазоны частот в районе 80, 400, 800 или 900 МГц. Теоретическая максимальная пропускная способность сети - 8 Кбайт/с. Эффективная пропускная способность значительно ниже и зависит от длинны сообщений, загруженности каналов связи и т.д. и в среднем составляет порядка 2 Кбит/с. Разработана в середине 80-х годов. Используется в 23 странах, однако она менее популярна, чем сотовые сети GSM и используется в основном группами быстрого реагирования, пожарными, военными, полицией и т.д.

DataTAC – открытый стандарт беспроводной низкоскоростной связи на основе коммутации пакетов, схож по построение со стандартом Mobitex. Для передачи обычно используется диапазон частот в районе 800 МГц, при этом обеспечивается скорость до 19,2 Кбит/с. В основном используется для передачи данных, например на основе DataTAC организованы пейджинговые сети в Канаде.

5.2. Мобильная связь поколения 2G

GSM (Global System for Mobile Communications) – наиболее распространенный на сегодняшний день (октябрь 2012) стандарт беспроводной цифровой сотовой мобильной связи. Стандарт относится к поколению 2G и обеспечивает разделение каналов по времени и частоте. Передача данных в стандарте возможна в четырех диапазонах частот 450 МГц, 900 МГц, 1800 МГц, 1900 МГц. Используемый диапазон частот зависит от типа телефона и региона в котором он применяется. Многие телефоны одновременно поддерживают несколько диапазонов, есть и такие, которые поддерживают все четыре возможных диапазона.
Сеть GSM состоит из базовых станций, центров коммуникаций и собственно абонентов – подвижных мобильных станций или просто говоря сотовых телефонов. Базовые станции располагаются в вершинах равносторонних шестиугольников, покрывая шестиугольниками все пространство, в котором должна обеспечиваться сотовая связь. Если посмотреть на схему расположения базовых станций, то она будет напоминать пчелиные соты. Диаметр каждый шестиугольной ячейки (круга в который вписан равносторонний шестиугольник) может доходить до 50 км. Теоретически диаметр может достигать 120 км, но для этого требуются специальные усилители и качество связи может быть неприемлемым.
Абонент передает данные через одну из базовых станции, которая в свою очередь ретранслируют данные через сеть базовых станций к другому абоненту, при этом при переходе абонента из одной ячейки в другую работа с новой базовой станцией обеспечивается без разрыва связи.
Центры коммуникаций обеспечивают взаимодействие между абонентами, устанавливая соединения, и обеспечивают взаимодействие между другими системами радиосвязи.

TDMA (Time Division Multiple Access) – стандарт сотовой беспроводной связи основанный на множественном доступе с разделением по времени. То есть все абоненты сети базирующееся на стандарте TDMA работают в одном диапазоне частот, но при этом каждому абоненту выделяют определенный временной слот, в котором разрешено вещание. Поочередно такой слой выделяют всем активным абонентам, циклически повторяя этот процесс. С увеличением количества активных абонентов снижается пропускная способность канала. Сети на базе TDMA очень популярны и используются более чем в 70 странах мира и продолжают развиваться, занимая второе место по популярности после сетей GSM.

PDC (Personal Digital Cellular) – стандарт, основанный на базе стандарта TDMA и используемый только в Японии. В эксплуатации с 1993 года. Передача сигнала от базовой станции к абоненту осуществляется на частоте 810-888 МГц, а от абонента к базовой станции на частоте 893-958 МГц или на частоте 1477–1501 МГц и1429–1453 МГц соответственно. Ширина одного канала – 25 КГц. Скорость передачи данных составляет 11.2 Кбит/с в трехслотовом варианте стандарта и 5.6 Кбит/с в шестислотовом варианте. Стандарт быстро вытесняется мобильной связью третьего поколения, и 31 марта 2012 года был остановлен последний сервис, использующий этот стандарт.

DAMPS – стандарт цифровой беспроводной мобильной связи с множественным доступом с разделением времени (TDMA) и частотным разделением (FDMA). Для передачи использовались частоты в диапазоне от 825 МГц до 890 МГц. Ширина одного канала для передачи данных - 30 КГц. Последние модификации стандарта по своим возможностям приближались к стандарту GSM, однако на данный момент во всем мире наблюдается переход к более быстрым и емким сетям, обеспечивающим высокоскоростной доступ в интернет, возможность ведения видеоконференций и т.д. Так что этот стандарт активно вытесняется. Например, в России диапазон частот, занимаемый этим стандартом, выделен для цифрового телевидения и с 2010 года сети стандарта DAMPS отключаются. Последняя такая сеть была отключена в октябре 2012 года.

iDEN (integrated Digital Enhanced Network) – технология беспроводной связи разработанная компанией Motorolla в середине девяностых годов. Технология основана на сети GSM и не требует установки дополнительного оборудования, кроме центральных блоков управления. Достаточно установить дополнительное программное обеспечение на базовые станции сети GSM. В основе iDEN лежит стандарт TDMA (Time Division Multiple Access) - множественный доступ с разделение по времени. Передача осуществляется в диапазоне частот 806-825/851-870 МГц, который нарезан на каналы шириной 25 КГц. Данные в канале передаются интервалами по 90 мс. Таким образом, несколько абонентов одновременно могут общаться не только в разных частотных каналах, но и на одном канале, поочередно используя его. Пропускная способность канала достигает 64 Кбит/с. Для передачи голоса используется система кодирования на базе алгоритма VSELP, позволяющая получить качественный звуковой сигнал при небольших нагрузках на канал связи.

5.3. Мобильная связь поколения 2.5G

GPRS (General Packet Radio Service) – технология пакетной радиосвязи, являющаяся надстройкой над стандартом беспроводной цифровой сотовой мобильной связи GSM. При использовании технологии GPRS данные собираются в пакеты, и только затем передается, при этом максимальная теоретическая скорость может достигать 171,2 кбит/с при средней в 50-60 кбит/с, в отличии от GSM сети, обеспечивающей максимум 14,4 Кбит/с. В основном GPRS используется для передачи данных между устройствами в сети GSM и доступа к сети Internet.

EDGE (Enhanced Data rates for GSM Evolution) – технология беспроводной передачи данных для сотовой связи, используемая в качестве надстройки в GSM сетях. За счет улучшенного адаптивного алгоритма изменения подстройки модуляции и дополнительных алгоритмов контроля и исправления ошибок увеличивается скорость и надежность передачи данных и уменьшается восприимчивость к помехам. Так, при использовании технологии EDGE, обеспечивается средняя скорость порядка 75 - 130 Кбит/с. При этом, пиковая теоретическая скорость может достигать 474 кбит/с при пакетной передаче данных.

HC-SDMA (High Capacity Spatial Division Multiple Access) или iBurst – технология беспроводной широкополосной передачи данных. На данный момент технология обеспечивает скорость передачи данных до 1 Мбит/с для стационарных и мобильных объектов (двигающихся со скоростью до 110 км/ч). Принцип построения схож с сетями GSM, так же поддерживается роуминг между базовыми стациями и обеспечивается бесшовное (безразрывное) покрытие сети для мобильных абонентов. Однако за счет «умной» адаптивной антенной системы значительно эффективнее используется разделение ресурса сети между абонентами и повышается скорость передачи данных. На данный момент (октябрь 2012) iBurst используется в 13 странах: США, Канада, ЮАР, Азербайджан, Норвегия, Ирландия, Малайзия, Ливан, Кения, Танзания, Гана, Мозамбик, Демократическая Республика Конго. В России технология пока не применяется.

CDMA (Code Division Multiplie Access) – группа стандартов сотовой связи, находящиеся в промежуточном положении между вторым (2G) и третьем поколении(3G), так называемое поколение 2.5G. Стандарты CDMA используют метод множественного доступа с кодовым разделением, когда узкополосный сигнал модулируется псевдослучайной цифровой последовательностью, в результате чего получается шумоподобный широкополосный сигнал. При приеме сигнал демодулируется и получается исходный узкополосный сигнал. Модулируя сигнал разными последовательностями можно одновременно осуществлять радиосвязь с несколькими абонентами.

5.4. Мобильная связь поколения 3G

UMTS (Universal Mobile Telecommunications System) – технология сотовой связи третьего поколения (3G), использующая для связи технологию широкополосного множественного доступа с кодовым разделением (WCDMA). UMTS обеспечивает теоретическую пиковую скорость до 21 Мбит/с, однако на практике, на данный момент (конец 2012 года), скорость значительно ниже. Так, от базовой станции к абоненту обеспечивается скорость до 7,2 Мбит/с, а от абонента к базовой станции – всего лишь 384 Кбит/с. Но, в тоже время, это значительно больше, чем обеспечивается в сети второго поколения (2G) – GSM, в которой скорость едва достигает 14,4 Кбит/с. Для передачи данных используется два канал шириной 5 МГц в диапазоне 1885 МГц - 2025 МГц и 2110 МГц - 2200 МГц. Причем первый диапазон используется для передачи данных от абонента к базовой станции, а второй – от базовой станции к абоненту. Так как выделенные по стандарту диапазоны могут пересекаться с уже используемыми, то в некоторых странах они могут отличаться, например, в США используются диапазоны 1710 МГц - 1755 МГц и 2110 МГц - 2155 МГц.

WCDMA (Wideband Code Division Multiple Access) – широкополосной вариант стандарта CDMA с гибридной фазовой манипуляцией. Новый стандарт обеспечивает скорость до 2 Мбит/с для стационарных абонентов на небольших удалениях от базовой станции, и до 384 Кбит/с для мобильных объектов двигающихся с большой скоростью. Для трансляции данных в стандарте используется две полосы частот шириной 5 МГц, одна для приема данных от базовых станции, вторая для передачи. Использование широкой полосы, новых алгоритмов кодирования, нового голосового кодека (AMR) делает стандарт WCDMA более быстрым, качественным и надежным по сравнению со своим предшественником – CDMA.

CDMA 2000 дальнейшее развития стандарта беспроводной связи CDMA. CDMA 2000 состоит из нескольких ревизий: CDMA2000 1X, CDMA2000 1X EV-DO, CDMA2000 1X EV-DO Rev.A, CDMA2000 1X EV-DO Rev.B и других. CDMA2000 1X первый вариант стандарта. Он обеспечивал скорость до 153 кбит/с и относился к мобильной связи второго поколения. CDMA2000 1X EV-DO уже обеспечивал скорость до 2,4 Мбит/с при передачи данных от базовой станции к абоненту и до 153 кбит/с в обратном направлении и относился уже к поколению 3G. В ревизии CDMA2000 1X EV-DO Rev.A скорость передачи была еще увеличена и составила до 3,1 Мбит/с от базовой станции к абоненту и 1,8 Мбит/с обратно. В ревизии B скорости уже составили 4,9 Мбит/с и 2,4 Мбит/с, при этом была введена возможность объединения нескольких частотных каналов, что теоретически может обеспечить скорость 73,5 Мбит/с к абоненту и 27 Мбит/с от абонента. Группа стандартов получила очень широкое распространение и имеет множество модификаций отличающихся способами разделения канала, скоростью передачи, типом кодирования и т.д.

5.5. Мобильная связь поколения 3.5G

HSPA (High-Speed Packet Access) – технология беспроводной широкополосной (5 МГц) пакетной передачи данных, представляющая собой надстройку к мобильным сетям третьего поколения (WCDMA/UMTS) и позволяющая значительно увеличить их базовую скорость. Технология WCDMA позволяет получить теоретическую пиковую скорость от абонента к базовой станции до 5.7 Мбит/c, а от базовой станции к абоненту - 14.4 Мбит/с. На практике, скорости гораздо ниже и не только из-за загруженности сетей, но и из-за ограничений оборудования. Так многие абонентские устройства поддерживают максимальную скорость приема данных всего 7.2 Мбит/с. При дальнейшем усовершенствовании стандарта разработчиками заявлены скорости до 42 Мбит/с от базовой станции и до 12 Мбит/ от абонента.

5.6. Мобильная связь поколения 4G

LTE (Long-Term Evolution) – технология построения беспроводной сети нового поколения, принципиально отличающаяся от сотовых сетей поколения 2G и 3G. В сетях LTE используется технология коммутации пакетов и технология множественного доступа с ортогональным частотным разделением каналов (OFDMA) дающие кардинальные преимущества перед сетями предыдущего поколения с технологиями коммутации каналов и множественного доступа с кодовым разделением. Так теоретическая пропускная скорость от базовой станции к абоненту будет составлять до 300 Мбит/с, а от абонента к базовой станции - до 75 Мбит/с. Это позволит получить принципиально новое качество связи и позволит предоставлять ранее недоступные услуги: просмотр видео онлайн, многопользовательские онлайн игры, организации массовых видеоконференций, системы мониторинга и т.д.

5.7. Другие глобальные беспроводные сети

MMDS (Multichannel Multipoint Distribution System) – беспроводная технология передачи данных, используемая для организации телевещания. Сигнал передается в диапазоне частот 2686-2500 МГц, что обеспечивает ширину канала в 186 МГц и позволяет одновременно передавать до 24 аналоговых каналов (в России используется 8 Мгц на один аналоговый канал). По современным меркам количество каналов небольшое, да и в России перестали выдавать лицензии на вещание в диапазоне частот 2,5-2,7 ГГц, но до сих пор существует несколько вещательных центров MMDS. Изначально MMDS обеспечивает одностороннюю связь (только передачу телевизионного сигнала), однако можно настроить и двухсторонний обмен, но это требует дополнительных затрат, сравнимых с затратами на основную организацию передачи данных, и значительно уменьшает пропускную способность сети.

6. К спутниковой связи относится:

Inmarsat – система спутниковой связи, разработанная в 1979 году и используемая по сей день, для организации связи в удаленных малонаселенных областях, на морском транспорте, для определения положения абонентов, передачи данных и т.д. Это первая система общедоступной мобильной спутниковой связи. Спутниковая группировка системы Inmarsat состоит из девяти спутников, расположенных на геостационарной орбите (из которых 4 основные, а 5 резервные) и обеспечивающих покрытие практически всего земного шара, за исключением полюсов. Вещания спутников осуществляется в диапазоне частот 1.5 ГГЦ на передачу от спутника и 1.6 ГГц на передачу к спутнику. Более подробно диапазон частот, скорость передачи, кодирование и так далее описаны в стандартах, коих на данный момент насчитывается более шести: Inmarsat-A, Inmarsat-C, Inmarsat-D/D+, Inmarsat-M, Inmarsat-phone mini-M, Inmarsat-M4 и др.

Global Star – спутниковая система связи, предназначенная для организации спутниковой связи совместно со стандартными сотовыми сетями, дополняя их и обеспечивая связь с труднодоступными регионами земного шара. Система Global Star состоит из 48 основных и 4 резервных низкоорбитальных спутников, находящихся на круговых орбитах на высоте примерно 1414 км. Система Global Star обеспечивает покрытие земли от 70° южной широты до 70° северной широты. Так же в состав Global Star входят наземные сегменты, обеспечивающие взаимодействие терминалов абонентов с сотовыми сетями. При передачи данных или голоса сигнал от абонента, находящегося не в зоне действия сотовой сети, передается на спутник, откуда ретранслируется в ближайшую наземную станцию, где по стандартными сотовым сетям сигнал передается адресату.

Thuraya – региональная спутниковая система связи, разработанная компанией Boeing Satellite Systems и покрывающая примерно 40% земного шара (в основном Африку, Европу и Азию), в которую входит около 99 стран с общим населением порядка 2,5 миллиардов человек. При этом в состав системы входит всего 2 спутника, обеспечивающих одновременную передачу данных по 13,750 каналам. Основное назначение системы Thuraya - обеспечение спутниковой телефонной связи, причем терминалы абонентов по размеру сопоставимы с обыкновенными сотовыми телефонами и работают как в сотовых сетях, так и в спутниковой системе связи Thuraya. То есть, если абонент находится в зоне действия стандартной сотовой сети, то для трансляции разговора и данных будет использоваться сотовая сеть, как только абонент выйдет из зоны действия сотовой сети, включится режим передачи данных и голоса через спутники системы Thuraya. Так же с помощью сети спутников Thuraya можно определять положение абонента, т.е. использовать систему для навигации.

Iridium – спутниковая система свиязи состоящая из 66 низкоорбитальных спутников, обеспечивающих 100% покрытие Земли, однако в некоторых странах система не работает, например в Венгрии, Польше, Северной Корее и некоторых других странах. Система обеспечивает телефонную связь, передачу данных и коротких сообщений. Терминалы абонентов небольшого размера, сравнимого со стандартными сотовыми телефонами и обеспечивают автоматическое переключение между сотовой и спутниковой связью при выходе из зоны действия сотовых сетей и возвращения обратно.

ICO - система спутниковой связи, разработанная компанией ICO Global Communications и функционирующая с 2002-го года. Система спутниковой связи обеспечивает полнодуплексную передачу данных и голоса на скорости до 9,6 Кбит/с. Система ICO состоит из десяти спутников расположенных на орбите высотой около 10390 км. Терминалы абонентов по размеру и весу чуть больше сотового телефона.

Euteltracs – система спутниковой связи, основное назначение которой управление и контроль транспортными перевозками в Европе. По своей архитектуре и назначению Euteltracs сходyа с Американской спутниковой системой Omnitracs. Система Euteltracs основывается на передачи коротких (до 1900 символов) сообщений, включающих необходимые данные для организации транспортных перевозок. Система Euteltracs состоит из группировки спутников, наземной центральной станций, наземной станций маршрутизации и мобильных терминалов связи. Информационный обмен централизованный и осуществляется через наземную центральную станцию, расположенную во Франции. Одновременно возможно обслуживание 45000 единиц транспорта в 15 странах, в том числе и в России.

Omnitracs – спутниковая система связи для управления и контролем транспортных перевозок, разработанная в США и введенная в эксплуатацию в 1989 году. Назначение и устройство аналогичное спутниковой системы связи Euteltracs, используемой в Европе. Управление системой – централизованное и осуществляется из единого наземного центра управления, обрабатывающего ежедневно несколько миллионов сообщений.

Prodat - спутниковая система связи для наземных объектов. В системе используются алгоритмы и технологии позволяющие уменьшить влияние рельефа местности на качество передаваемого сигнала. Система находится в эксплуатации с 1992 года. Терминалы абонента весьма громоздкие и состоят из трех частей: внешнего блока со всенаправленной антенной диаметром более метра, блока связи и терминала пользователя размером с ноутбук.

Odyssey – спутниковая система связи, обеспечивающая покрытие от 65° южной широты до 75° северной широты и обеспечивающая практически круглосуточное вещание. Основные виду услуг Odyssey: речевая связь, передача коротких сообщений, электронной почты и определение местоположения абонентов. Однако погрешность определения координат очень большая (до 15 км) и значительно уступает спутниковым навигационным системам. Система Odyssey состоит из группировки спутников (12 спутников на средневысотной орбите, на высоте около 10354 км), наземных базовых станций и терминалов пользователей. Стоит отметить, что ретрансляции данных между спутниками невозможна, вся передача ведется через базовые станции.

ACeS (Asia Cellular System) – геостационарная, регионарная система спутниковой связи, созданная в начале 1996 года. В системе используется только один низкоорбитальный спутник - Garuda 1, запущенный в 2000 году с зоной покрытия - Юго-восточная Азия и Индия. Спутник способен обслуживать более 1 миллиона абонентов при 11 000 одновременных телефонных соединений. Стоит отметить, что срок эксплуатации спутника Garuda 1 около 14 лет.

Orbcom – низкоорбитальная система спутниковой связи, предназначенная для передачи коротких сообщений. Первый спутник системы Orbcom был запущен в 1991 году, сейчас спутников – 36 (по данным на 2000 год). Спутники системы Orbcom обеспечивают покрытие всей поверхности Земли. Кроме орбитальной системы спутников в состав Orbcom входят: узловые наземные станции, связанные с региональными центрами управления, и терминалы пользователей. Передача данных осуществляется следующем образом. С терминала пользователя на ближайший спутник передается сообщения. Если в зоне досягаемости спутника находится узловая станция, то спутник ретранслирует данные на нее, откуда они будут переданы в региональной центр, где будет составлен маршрут доставки сообщения абоненту, в том числе с использованием сотовых сетей, ну и собственно будет организована передача данного сообщения. Если в зоне спутника нет узловой станции, то сообщение будет сохранено и передано когда в зону действия попадет узловая станция, что может произойти и через несколько часов после передачи сообщения.

Гонец-Д1М – спутниковая система связи и передачи данных, состоящая из трех низкоорбитальных (1400 км) спутников: двух спутников первого поколения «Гонец-Д1» и модернизированного спутника «Гонец-М», с периодом обращения 114 минут. Так же в состав системы входит наземная инфраструктура, состоящая из Центра управления системой, Центра управления связным комплексом, Центральных и Региональных станций, Центра управления полетом и Баллистического центра. Наземных региональных станций 4 штуки и располагаются они в г. Москве, г. Железногорске (Красноярский край), г. Южно-Сахалинске и на полуострове Тикси. На данный момент спутниковая система связи обеспечивает покрытием всю территорию России и мощности системы, при условии выполнения программы и доведения орбитальной группировки спутников до 14 шт, будет достаточно для обеспечения связью в труднодоступных районах России до 200 000 абонентов. В 2012 году должны были запустить еще 5 спутников «Гонец-М», однако о результатах мне не известно. До 2015 года планируется расширить состав спутников связи до 14 штук.

Полярная звезда – спутниковая система связи, разрабатываемая ОАО «Газпром космические системы». Система «Полярная звезда» предназначена для обеспечения широкополосной мобильной связи на территории России и приполярных областях. Правда использоваться она будет в основном для обеспечения связи и доступа в интернет подвижных и удаленных объектов ОАО «Газпром». На данный момент (2012 год) орбитальная группировка спутников насчитывает четыре космических аппарата, располагающихся на высокоэллиптической орбите.

Глонасс – российская спутниковая навигационная система, состоящая из 31 спутника располагающихся на орбитах на высоте 19100 км, из которых 24 спутника используются по назначению, остальные спутники в резерве или на этапе технического обслуживания, а одни спутник на этапе испытания (по данным на конец 2012 года). Спутниковая система Глонасс обеспечивает определение координат с точностью 3-6 метров при использовании 7-8 спутников. Навигационные устройства абонентов могут одновременно со спутниками навигационной системы Глонасс использовать данные спутников навигационной системы GPS в общем количестве 14-19 спутников, при этом точность определения координат составит 2-3 метра.
Спутники, входящие в систему Глонасс, синхронно выдают сигнал. Устройства абонентов, принимая сигналы от спутников, засекают время получения сигнала от каждого спутника. Зная положения спутников (спутники двигаются по известным орбитам с известной скоростью) и задержки между приемами сигнала от них (чем дальше спутник, тем позже синхронный сигнал будет получен) составляется система уравнений (минимум нужно получить сигнал от четырех спутников) из которой рассчитывается положение устройства абонента. Чем больше спутников участвует в расчете, тем более точно будут определены координаты абонента.

GPS – спутниковая навигационная система, созданная министерством обороны США. GPS состоит из 30 спутников обращающихся вокруг земли по круговым орбитам на высоте порядка 20200 км. На самом деле количество спутников больше, но часть из них находится на техническом обслуживании, но в работе (на конец 2012 года) используется только 30 спутников. Система GPS обеспечивает точность определения координат 2-4 метра при использовании 6-11 спутников. Принцип работы системы GPS и Глонасс схожи, но создание спутниковой системы GPS было начато раньше. Так первый спутник системы GPS был запущен 14 июля 1974 г, а первый спутник системы Глонасс был выведен на орбиту только в 12 октября 1982 года. Так же в систему GPS входит больше спутников и GPS позволяет получить точность определения координат большую, чем система Глонасс.


На этом обзор существующих технологий, стандартов и систем беспроводной связи я закончу. Естественно, это далеко не полный перечень, но в нем приведены примеры наиболее популярных и часто используемых видов беспроводной связи. Надеюсь, обзор поможет вам проще ориентироваться в столь обширном и многообразном сегменте науки и техники, в мире беспроводных технологий, который быстро и уверенно и идет на смену устаревающим, неудобным и непрезентабельным технологиям проводной связи.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ВВЕДЕНИЕ

Исследование технологий сетей является очень важным в современных условиях рыночной экономики, в особенности в сфере информационных технологий. Так как на выбор сети оказывают влияние много факторов, я продемонстрировал наиболее важные из них: расстояние, качество связи, кодек и контейнер в котором закодирован файл. Приложение позволяет рассчитать приблизительное время передачи данных, так как заявленная в сети скорость не всегда является фактической. Таким образом можно подобрать оптимальную технологию для передачи данных в нужных условиях.

Беспроводная связь - в первую очередь - возможность передачи информации на расстояния без кабельной системы. Преимущество беспроводной связи - простота установки. Когда не требуется прокладывать физические провода до офиса, процедура установки может быть быстрой и экономически эффективной. Беспроводная связь упрощает также подключение труднодоступных объектов, таких как складские и заводские помещения. Затраты на построение беспроводной связи обходятся дешевле, поскольку при этом ликвидируются проблемы с организацией прокладки проводов и затраты, связанные с этим процессом.

В беспроводной связи наиболее распространенными и известными на сегодняшний день являются три семейства технологий передачи информации, такие как Wi - Fi, GSM, Bluetooth. Эти технологии детально рассматриваются в плане защищенности от возможных атак.

Технология Wi-Fi (сокращение от wireless fidelity - "Беспроводная надёжность") применяется при соединении большого количества компьютеров. Другими словами, это беспроводное подключение к сети. Одна из самых перспективных технологий на сегодняшний день в области компьютерной связи.

GSM - (Global System for Mobile Communications - глобальная система связи с подвижными объектами). Технология GSM родилась в недрах компании Group Special Mobile, от которой и получила сокращение GSM, однако со временем сокращение получило другую расшифровку Global System for Mobile.

Bluetooth - это технология беспроводной передачи данных малой мощности, разрабатываемая с целью замены существующих проводных соединений персональных офисной и бытовой техники с широким спектром переносных устройств, таких, как мобильные телефоны и гарнитуры к мобильным телефонам, датчики сигнализации и телеметрии, электронные записные книжки и карманные компьютеры.

1. АНАЛИЗ БЕЗПРОВОДНЫХ СЕТЕЙ

1.1 Беспроводная связь технологии WI - FI

Wi-Fi - это современная технология беспроводного доступа в интернет. Доступ в интернет по технологии Wi-Fi осуществляется посредством специальных радиоточек доступа.(AP Access Point).

Существует такие разновидности Wi - Fi сетей:

Первая работает на частоте 5 ГГц, остальные на частоте 2.4ГГц. Каждый тип имеет разную пропускную способность (максимально теоретически возможную скорость):

для 801.11a это 54 Мбит/c;

для 801.11b это 11 Мбит/c;

для 801.11g это 54 Мбит/с;

для 801.11n это 600 Мбит/с.

Любая беспроводная сеть состоит как минимум из двух базовых компонентов - точки беспроводного доступа, клиента беспроводной сети (режим ad-hoc, при котором клиенты беспроводной сети общаются друг с другом напрямую без участия точки доступа). Стандартами беспроводных сетей 802.11a/b/g предусматривается несколько механизмов обеспечения безопасности, к которым относятся различные механизмы аутентификации пользователей и реализация шифрования при передаче данных. Подключиться к сети Wi-Fi можно с помощью ноутбуков, карманных компьютеров, смартфонов, оснащенных специальным оборудованием. На сегодняшний день практически все современные портативные и карманные компьютеры являются Wi-Fi-совместимыми.

Если же ноутбук не оснащен специальным оборудованием, то можно легко использовать эту удобную технологию, необходимо, лишь в PCMCIA-слот компьютера установить специальную Wi-Fi-карточку, или через USB-порт подключить внешнее Wi-Fi-устройство. Для подключения к Wi-Fi сети, достаточно просто попасть в радиус действия (100-300 м.) беспроводной точки доступа Wi-Fi.

Преимущества Wi-Fi:

простой и удобный способ подключения к услуге;

отсутствие необходимости подключения дополнительных устройств - модемов, телефонных линий, выделенных каналов для соединения с сетью Интернет;

простой способ настройки компьютера;

нет зависимости от времени использования услуги, оплата только за используемый Интернет - трафик;

скорость приема/передачи данных - до 54 Мбит/с;

защищенность передачи данных;

постоянно расширяемая сеть точек доступа Wi-Fi.

Рассмотрим недостатки Wi-Fi. Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, Беларусь и Италия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.

В России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.

На Украине использование Wi-Fi без разрешения Украинского государственного центра радиочастот «Український державний центр радіочастот», возможно лишь в случае использования точки доступа со стандартной всенаправленной антенной (<6 Дб, мощность сигнала? 100 мВт на 2.4 ГГц и? 200 мВт на 5 ГГц). Для внутренних (использование внутри помещения) потребностей организации (Решение Национальной комиссии по регулированию связи Украины № 914 от 2007.09.06) В случае сигнала большей мощности либо предоставления услуг доступа в Интернет, либо к каким-либо ресурсам, необходимо регистрировать передатчик и получить лицензию.

1.1.1 Описание протоколов безопасности беспроводной сети Wi -Fi

Все современные беспроводные устройства (точки доступа, беспроводные адаптеры и маршрутизаторы) поддерживают протокол безопасности WEP (Wired Equivalent Privacy), который был изначально заложен в спецификацию беспроводных сетей IEEE 802.11.Протокол WEP используется для обеспечения конфиденциальности и защиты передаваемых данных авторизированных пользователей беспроводной сети от прослушивания. Существует две разновидности WEP: WEP-40 и WEP-104, различаются только длиной ключа. В настоящее время данная технология является устаревшей, так как ее взлом может быть осуществлен всего за несколько минут. Тем не менее, она продолжает широко использоваться. Для безопасности в сетях Wi-Fi рекомендуется использовать WPA.

В протоколе безопасности WEP есть множество слабых мест:

механизмы обмена ключами и проверки целостности данных;

малая разрядность ключа и вектора инициализации;

способ аутентификации;

алгоритм шифрования.

Данный протокол, является своего рода протоколом, аналогом проводной безопасности (во всяком случае, расшифровывается он именно так), однако реально никакого эквивалентного проводным сетям уровня безопасности он, конечно же, не предоставляет. Протокол WEP позволяет шифровать поток передаваемых данных на основе алгоритма RC 4 с ключом размером 64 или 128 бит. Данные ключи имеют так называемую статическую составляющую длиной от 40 до 104 бит и дополнительную динамическую составляющую размером 24 бита, называемую вектором инициализации (Initialization Vector, IV).

Процедура WEP-шифрования выглядит следующим образом: первоначально передаваемые в пакете данные проверяются на целостность (алгоритм CRC-32), после чего контрольная сумма (integrity check value, ICV) добавляется в служебное поле заголовка пакета. Далее генерируется 24-битный вектор инициализации, (IV) и к нему добавляется статический (40-или 104-битный) секретный ключ. Полученный таким образом 64-или 128-битный ключ и является исходным ключом для генерации псевдослучайного числа, использующегося для шифрования данных. Далее данные шифруются с помощью логической операции XOR с псевдослучайной ключевой последовательностью, а вектор инициализации добавляется в служебное поле кадра (рис. 1.1).

Рисунок 1.1 - Формат кадра WEP

Кадр WEP включает в себя следующие поля:

незашифрованная часть;

вектор инициализации (англ. Initialization Vector) (24 бита);

пустое место (англ. Pad) (6 бит);

идентификатор ключа (англ. Key ID) (2 бита);

зашифрованная часть;

контрольная сумма (32 бита).

Инкапсуляция данных в WEP происходит следующим образом (рис. 1.2.):

контрольная сумма от поля «данные» вычисляется по алгоритму CRC32 и добавляется в конец кадра;

данные с контрольной суммой шифруются алгоритмом RC4, использующим в качестве ключа SEED;

проводится операция XOR над исходным текстом и шифртекстом;

в начало кадра добавляется вектор инициализации и идентификатор ключа.

Рисунок 1.2 - Инкапсуляция WEP

Декапсуляция данных в WEP происходит следующим образом (рис. 1.3):

к используемому ключу добавляется вектор инициализации;

происходит расшифрование с ключом, равным SEED;

проводится операция XOR над полученным текстом и шифротекстом;

проверяется контрольная сумма.

Протокол безопасности WEP предусматривает два способа аутентификации пользователей: открытая и общая аутентификация. При использовании открытой аутентификации, любой пользователь может получить доступ в беспроводную сеть. Однако даже при использовании открытой системы допускается использование WEP-шифрования данных. Протокол WEP имеет ряд серьёзных недостатков и не является для взломщиков труднопреодолимым препятствием.

В 2003 году был представлен следующий протокол безопасности - WPA (Wi-Fi Protected Access). Главной особенностью этого протокола является технология динамической генерации ключей шифрования данных, построенная на базе протокола TKIP (Temporal Key Integrity Protocol), представляющего собой дальнейшее развитие алгоритма шифрования RC4. WPA поддерживается шифрование в соответствии со стандартом AES (Advanced Encryption Standard, усовершенствованный стандарт шифрования), который имеет ряд преимуществ над используемым в WEP RC4, например, гораздо более стойкий криптоалгоритм.

Некоторые отличительные особенности WPA:

обязательная аутентификация с использованием EAP;

система централизованного управления безопасностью, возможность использования в действующих корпоративных политиках безопасности.

Суть протокола WPA можно выразить определенной формулой:

WPA = 802.1X + EAP + TKIP + MIC

WPA, по сути, является суммой нескольких технологий. В протоколе WPA используется расширяемый протокол аутентификации (EAP) как основа для механизма аутентификации пользователей. Непременным условием аутентификации является предъявление пользователем свидетельства (иначе называют мандатом), подтверждающего его право на доступ в сеть. Для этого права пользователь проходит проверку по специальной базе зарегистрированных пользователей. Без аутентификации работа в сети для пользователя будет запрещена. База зарегистрированных пользователей и система проверки в больших сетях, как правило, расположены на специальном сервере (чаще всего RADIUS). Но следует отметить, что WPA имеет упрощённый режим. Этот режим получил название Pre-Shared Key (WPA-PSK). При применении режима PSK необходимо ввести один пароль для каждого отдельного узла беспроводной сети (беспроводные маршрутизаторы, точки доступа, мосты, клиентские адаптеры). Если пароли совпадают с записями в базе, пользователь получит разрешение на доступ в сеть.

Стандарт "IEEE 802.1X" определяет процесс инкапсуляции данных EAP, передаваемых между запрашивающими устройствами (клиентами), системами, проверяющими подлинность (точками беспроводного доступа), и серверами проверки подлинности (RADIUS).

EAP (англ. Extensible Authentication Protocol, расширяемый протокол аутентификации) - в телекоммуникациях расширяемая инфраструктура аутентификации, которая определяет формат посылки и описана документом RFC 3748. Протоколы WPA и WPA2 поддерживают пять типов EAP как официальные инфраструктуры аутентификации (всего существует порядка 40 типов EAP); для беспроводных сетей актуальны EAP-TLS, EAP-SIM, EAP-AKA, PEAP, LEAP и EAP-TTLS.

TKIP - протокол целостности временного ключа (англ. Temporal Key Integrity Protocol) в протоколе защищённого беспроводного доступа WPA (Wi-Fi Protected Access). Был предложен Wi-Fi Alliance для замены уязвимого протокола WEP при сохранении инсталлированной базы беспроводного оборудования заменой программного обеспечения. TKIP вошел в стандарт IEEE 802.11i как его часть.TKIP, в отличие от протокола WEP использует более эффективный механизм управления ключами, но тот же самый алгоритм RC4 для шифрования данных. Согласно протоколу TKIP, сетевые устройства работают с 48-битовым вектором инициализации (в отличие от 24-битового вектора инициализации протокола WEP) и реализуют правила изменения последовательности его битов, что исключает повторное использование ключей и осуществление replay-атак. В протоколе TKIP предусмотрены генерация нового ключа для каждого передаваемого пакета и улучшенный контроль целостности сообщений с помощью криптографической контрольной суммы MIC (Message Integrity Code), препятствующей атакующему изменять содержимое передаваемых пакетов (forgery-атака).

1.2 Технология GSM

GSM относится к сетям второго поколения (2 Generation), хотя на 2010 год условно находится в фазе 2,75G благодаря многочисленным расширениям (1G -- аналоговая сотовая связь, 2G -- цифровая сотовая связь, 3G -- широкополосная цифровая сотовая связь, коммутируемая многоцелевыми компьютерными сетями, в том числе Интернет). Сотовые телефоны выпускаются для 4 диапазонов частот: 850 МГц, 900 МГц, 1800 МГц, 1900 МГц. В зависимости от количества диапазонов, телефоны подразделяются на классы и вариацию частот в зависимости от региона использования:

Однодиапозонные -- телефон может работать на одной из частот. В настоящее время не выпускаются, но существует возможность ручного выбора определённой частоты в некоторых моделях телефонов, например MotorolaC115, или с помощью инженерного меню телефона;

двухдиапазонные (DualBand) _ для Европы, Азии, Африки, Австралии 900/1800 и 850/1900 для Америки и Канады;

трёхдиапазонные (TriBand) _ для Европы, Азии, Африки, Австралии 900/1800/1900 и 850/1800/1900 для Америки и Канады;

четырехдиапазонные (QuadBand) _ поддерживают все диапазоны 850/900/1800/1900.

В стандарте GSM применяется GMSK модуляция с величиной нормированной полосы ВТ _ 0,3, где В _ ширина полосы фильтра по уровню минус 3 дБ, Т - длительность одного бита цифрового сообщения.

На сегодняшний день GSM является наиболее распространённым стандартом связи. По данным ассоциации GSM (GSMA) на данный стандарт приходится 82 % мирового рынка мобильной связи, 29 % населения земного шара использует глобальные технологии GSM. В GSMA в настоящее время входят операторы более чем 210 стран и территорий. Изначально GSM обозначало «Groupe Spйcial Mobile», по названию группы анализа, которая создавала стандарт. Теперь он известен как «Global System for Mobile Communications» (Глобальная Система для Мобильной Связи), хотя слово «Cвязь» не включается в сокращение. Разработка GSM началась в 1982 году группой из 26 Европейских национальных телефонных компаний. Европейская конференция почтовых и телекоммуникационных администраций (CEPT), стремилась построить единую для всех европейских стран сотовую систему диапазона 900 MГц.

Достижения GSM стали «одними из наиболее убедительных демонстраций, какое сотрудничество в Европейской промышленности может быть достигнуто на глобальном рынке». В 1989 году Европейский Телекоммуникационный Институт Стандартов (ETSI) взял ответственность за дальнейшее развитие GSM. В 1990 году были опубликованы первые рекомендации. Спецификация была опубликована в 1991 году. Коммерческие сети GSM начали действовать в Европейских странах в середине 1991 г. GSM разработан позже, чем обычная сотовая связь и во многих отношениях лучше был сконструирован. Северо-Американский аналог -- PCS, вырастил из своих корней стандарты, включая TDMA и CDMA цифровые технологии, но для CDMA реально возросшая возможность обслуживания так и не была никогда подтверждена.

1.2.1 Механизмы защиты от НСД в технологии GSM

В технологии GSM определены следующие механизмы обеспечения безопасности;

аутентификация;

секретность передачи данных;

секретность абонента;

секретность направлений соединения абонентов;

секретность при обмене сообщениями между Н1.К VIК и МSС;

защита модуля подлинности абонента;

защита от НСД в сети передачи данных GPRS.

Защита сигналов управления и данных пользователя осуществляем только по радиоканалу. В линиях проводной связи информация передается без шифрования.

1.2.2 Механизмы аутентификации

Для исключения несанкционированного использования ресурсов системы связи вводятся и определяются механизмы аутентификации - удостоверения подлинности абонента.

Каждый подвижный абонент (абонентская станция) на время пользования системой связи получает стандартный модуль подлинности абонента (SIM-карту), который содержит:

международный идентификационный номер подвижного абонента (ISMI);

свой индивидуальный ключ аутентификации (Ki);

алгоритм аутентификации (А3).

С помощью, заложенной в SIM информации в результате взаимного обмена данными между абонентской станцией и сетью, осуществляется полный цикл аутентификации и разрешается доступ абонента к сети. Аутентификация абонента показана на рис. 2.1.

Центр коммутации сети передает случайный номер RAND на абонентскую станцию, которая вычисляет значение отклика SRES, вычисленного сетью. Если оба значения совпадают, АС может осуществлять передачу сообщений. В противном случае связь прерывается, и индикатор АС должен показать, что опознавание не состоялось.

Для повышения стойкости системы к прямым атакам вычисление SRES происходит внутри SIM - карты. Несекретная информация (такая как Ki) не подвергается обработке в модуле SIM.

Рисунок 2.1 - Аутентификация абонента

1.2.3 Обеспечение секретности абонента

Для исключения определения (идентификации) абонента путем перехвата сообщений, передаваемых по радиоканалу, каждому абоненту системы связи присваивается «временное удостоверение личности» -- временный международный идентификационный номер пользователя (TMSI -- Temporary Mobile Subscriber Identify), который действителен только в пределах зоны расположения (LA). В другой зоне расположения ему присваивается новый TMSI. Если абоненту еще не присвоен временный номер (например, при первом включении АС), то идентификация проводится через международный идентификационный номер (TMSI). После окончания процедуры аутентификации и начала режима шифрования временный идентификационный номер TMSI передается на АС только в зашифрованном виде. Этот TMSI будет использоваться при всех последующих доступах к системе. Если АС переходит в новую область расположения, то ее TMSI должен передаваться вместе с идентификационным номером зоны (LAI), в которой TMSI был присвоен абоненту.

1.3 Технология ближней беспроводной радиосвязи bluetooth

Технология Bluetooth получила свое название в честь датского короля X-го века Гаральда II Блатана. В переводе с датского «Блатан» -- Синий Зуб, соответственно в английском варианте -- Bluetooth. Этот король прославился своей способностью находить общий язык с князьями-вассалами и в свое время объединил Данию и Норвегию. Через 1000 лет его имя предложила в качестве названия для новой технологии шведская компания Ericsson, которая выступила инициатором проекта Bluetooth. Bluetooth _ технология беспроводной передачи данных, позволяющая соединять друг с другом любые устройства, в которых имеется встроенный микрочип Bluetooth. Наиболее активно технология применяется для подключения к мобильным телефонам всевозможных внешних устройств: беспроводных гарнитур handsfree, беспроводных модемом, приемников спутниковой навигации, и собственно для подключения к персональному компьютеру.

Bluetooth может общаться с несколькими (до семи) устройствами Bluetooth: одно устройство при этом будет активным, а остальные находятся в режиме ожидания. Радиоволны, которые используются в Bluetooth, могут проходить через стены и неметаллические барьеры и соединяться с Bluetooth-устройствами на расстоянии от 10 до 100 метров в зависимости от спецификации устройства. Для спецификации 1.1 класс 1 радиус действия составляет до 100 метров, для класса 2 (применяемого в мобильных телефонах) _ до 10 - м. Так как во всем мире Bluetooth работает на не лицензируемой и единой частоте промышленного, научного и медицинского применения ISM 2,45 ГГц, то пространственных границ для использования Bluetooth не существует. Как не существует и проблемы несовместимости Bluetooth-устройств различных производителей, поскольку технология стандартизирована. Так что никаких препятствий для распространения Bluetooth нет.

Каждое Bluetooth _ устройство имеет свой уникальный адрес и имя, поэтому после процедуры регистрации соединяется только с зарегистрированным с ним телефоном. Для настройки необходимо зарядить гарнитуру, включить оба устройства (телефон и гарнитуру) и поместить поблизости друг от друга.

После запуска процедуры поиска гарнитуры на дисплее телефона высветится ее спецификация и будет запрошен пароль (обычно требуется ввести пароль 0000). После его введения гарнитура считается зарегистрированной за вашим телефоном. Однако при всех плюсах Bluetooth, есть у него 3 огромных минуса: невысокая дальность действия, низкая (в сравнении с тем же Wi-Fi) скорость и огромное количество мелких и не очень «ошибок». И если с первыми двумя недостатками можно мириться или бороться, то количество недоработок заставляет поразиться любого, даже далёкого от высоких технологий человека.

Радиоизлучение Bluetooth может создавать помехи для различных технических устройств, поэтому в больницах и в местах, где используются слуховые аппараты и кардиостимуляторы следует его отключать.

1.3.1 Спецификации Bluetooth

Устройства версий 1.0 (1998) и 1.0B, имели плохую совместимость между продуктами различных производителей. В 1.0 и 1.0B была обязательной передача адреса устройства (BD_ADDR) на этапе установления связи. И делало невозможной реализацию анонимности соединения на протокольном уровне и, было основным недостатком данной спецификации.

Bluetooth 1.1 было исправлено множество ошибок, найденных в 1.0B, добавлена поддержка для нешифрованных каналов, индикация уровня мощности принимаемого сигнала (RSSI). В версии 1.2 была добавлена технология адаптивной перестройки рабочей частоты (AFH), что улучшило сопротивляемость к электромагнитной интерференции (помехам) путём использования разнесённых частот в последовательности перестройки. Также увеличилась скорость передачи и добавилась технология eSCO, которая улучшала качество передачи голоса путём повторения повреждённых пакетов. В HCI добавилась поддержка трёх-проводного интерфейса UART.

Главные улучшения включают следующее:

быстрое подключение и обнаружение;

адаптивная перестройки частоты с расширенным спектром (AFH), которая повышает стойкость к радиопомехам;

более высокие, чем в 1.1, скорости передачи данных, практически до 721 кбит/с;

расширенные Синхронные Подключения (eSCO), которые улучшают качество передачи голоса в аудио потоке, позволяя повторную передачу повреждённых пакетов, и при необходимости могут увеличить задержку аудио, чтобы оказать лучшую поддержку для параллельной передачи данных.

Bluetooth версии 2.0 был выпущен 10 ноября 2004 г. Имеет обратную совместимость с предыдущими версиями 1.x. Основным нововведением стала поддержка EDR (Enhanced Data Rate) для ускорения передачи данных. Номинальная скорость EDR около 3 Мбит/с, однако, на практике это позволило повысить скорость передачи данных только до 2,1 Мбит/с. Дополнительная производительность достигается с помощью различных радио технологий для передачи данных. Стандартная (или Базовая) скорость передачи данных использует Гауссово Кодирование со сдвигом частот (GFSK) модуляцию радиосигнала, при скорости передачи в 1 Мбит/с. EDR использует сочетание GFSK и PSK-модуляцию с двумя вариантами, р/4-DQPSK и 8DPSK. Они имеют большие скорости передачи данных по воздуху 2 и 3 Mбит/с соответственно. Bluetooth SIG издала спецификацию как «Технология Bluetooth 2.0 + EDR», которая подразумевает, что EDR является дополнительной функцией. Кроме EDR есть и другие незначительные усовершенствования к 2.0 спецификации, и продукты могут соответствовать «Технологии Bluetooth 2.0», не поддерживая более высокую скорость передачи данных. По крайней мере, одно коммерческое устройство, HTC TyTNPocket PC, использует «Bluetooth 2.0 без EDR» в своих технических спецификациях. Согласно 2.0 + EDR спецификации, EDR обеспечивает следующие преимущества:

увеличение скорости передачи в 3 раза (2,1 Мбит/с) в некоторых случаях;

уменьшение сложности нескольких одновременных подключений из-за дополнительной полосы пропускания;

более низкое потребление энергии благодаря уменьшению нагрузки.

Bluetooth 3.0 + HS спецификация была принята Bluetooth SIG 21 апреля 2009 года. Она поддерживает теоретическую скорость передачи данных до 24 Мбит/с. Её основной особенностью является добавление AMP (Асимметричная Мультипроцессорная Обработка) (альтернативно MAC/PHY), дополнение к 802.11 как высокоскоростное сообщение. Две технологии были предусмотрены для AMP: 802.11 и UWB, но UWB отсутствует в спецификации.

Модули с поддержкой новой спецификации соединяют в себе две радиосистемы: первая обеспечивает передачу данных в 3 Мбит/с (стандартная для Bluetooth 2.0) и имеет низкое энергопотребление; вторая совместима со стандартом 802.11 и обеспечивает возможность передачи данных со скоростью до 24 Мбит/с (сравнима со скоростью сетей Wi-Fi). Выбор радиосистемы для передачи данных зависит от размера передаваемого файла. Небольшие файлы передаются по медленному каналу, а большие _ по высокоскоростному. Bluetooth 3.0 использует более общий стандарт 802.11 (без суффикса), то есть не совместим с такими спецификациями Wi-Fi, как 802.11b/g или 802.11n.

Bluetooth 4.0 пропускная способность осталась на уровне Bluetooth 3.0 со значением 24 Мбит/с, но дальность действия повысилась до 100 метров.

Одновременно с этим произошло снижение энергопотребления, что позволяет использовать технологию в устройствах на батарейках. Разработка также поддерживает шифрование AES-128 и предоставляет еще более низкое время отклика, повышая безопасность и становясь более удобной для пользователей.

1.3.2 Инициализация соединения Bluetooth

Инициализацией, касательно Bluetooth, принято называть процесс установки связи. Её можно разделить на три этапа:

генерация ключа Kinit;

генерация ключа связи (он носит название linkkey и обозначается, как Kab);

аутентификация.

Первые два пункта входят в так называемую процедуру паринга. Паринг (PAIRING) - или сопряжение -процесс связи двух (или более) устройств с целью создания единой секретной величины Kinit, которую они будут в дальнейшем использовать при общении. В некоторых переводах официальных документов по Bluetooth можно также встретить термин «подгонка пары». Перед началом процедуры сопряжения на обеих сторонах необходимо ввести PIN-код. Обычная ситуация: два человека хотят связать свои телефоны и заранее договариваются о PIN-коде. Далее соединяющиеся устройства будут обозначаться A и B, более того, одно из устройств при сопряжении становится главным (Master), а второе _ ведомым (Slave). Будем считать устройство A главным, а B _ ведомым. Создание ключа Kinit начинается сразу после того, как были введены PIN-коды.

Kinit формируется по алгоритму E22, который оперирует следующими величинами:

BD_ADDR _ уникальный адрес BT-устройства. Длина 48 бит (аналог MAC-адреса сетевой карты PC);

PIN-код и его длина;

IN_RAND. Случайная 128-битная величина.

На выходе E22 алгоритма получаем 128-битное слово, именуемое Kinit. Число IN_RAND отсылается устройством A в чистом виде. В случае если PIN неизменяем для этого устройства, то при формировании Kinit используется BD_ADDR, полученное от другого устройства. В случае если у обоих устройств изменяемые PIN-коды, будет использован BD_ADDR(B) _ адрес slave-устройства. Первый шаг сопряжения пройден. За ним следует создание Kab. После его формирования Kinit исключается из использования.

Для создания ключа связи Kab устройства обмениваются 128-битными словами LK_RAND(A) и LK_RAND(B), генерируемыми случайным образом. Далее следует побитовый XOR с ключом инициализации Kinit. И снова обмен полученным значением. Затем следует вычисление ключа по алгоритму E21.Для этого необходимы величины:

128-битный LK_RAND (каждое устройство хранит своё и полученное от другого устройства значение). Алгоритм Е21 представлен на рис. 3.1.

На данном этапе pairing заканчивается и начинается последний этап инициализации Вluetooth _ Mutual authentication или взаимная аутентификация. Основана она на схеме «запрос-ответ». Одно из устройств становится верификатором, генерирует случайную величину AU_RAND(A) и засылает его соседнему устройству (в plaintext), называемому предъявителем (claimant в оригинальной документации).

Рисунок 1.3.1 - Вычисление ключа по алгоритму Е21

Как только предъявитель получает это «слово», начинается вычисление величины SRES по алгоритму E1, и она отправляется верификатору. Соседнее устройство производит аналогичные вычисления и проверяет ответ предъявителя. Если SRES совпали, то, значит, всё хорошо, и теперь устройства меняются ролями, таким образом, процесс повторяется заново.E1-алгоритм представлен на рис. 3.2 и оперирует такими величинами:

случайно созданное AU_RAND;

свой собственный BD_ADDR.

1.3.3 Механизмы безопасности Bluetooth

Спецификация BT основана на модели обеспечения безопасности, предусматривающей три механизма: аутентификация (опознавание), авторизация (разрешение доступа) и шифрование (кодирование). Суть опознавания состоит в том, чтобы удостовериться, является ли устройство, инициирующее сеанс связи, тем, за кого оно себя выдает.

Рисунок 1.3.2 - Алгоритм Е1

Основан это процесс на посылке 48-битового идентификатора Bluetooth Device Address (BDA) (он присваивается каждому устройству его производителем). Результатом обычно является “предварительная” договоренность устройств (создается временный или инициализационный ключ связи) либо отказ в установлении связи. О какой-либо безопасности здесь говорить нечего, BDA всегда передается в открытом виде, и любой владелец антенны с хорошей чувствительностью может “видеть” работающих BT-пользователей и даже опознавать их по этому идентификатору. Так что уникальность BDA _ понятие весьма скользкое.

Процесс авторизации подразумевает установление полномочий для подключаемого устройства, причем возможен выбор одного из трех допустимых уровней доступа: trusted (неограниченный доступ к ресурсам), non-trusted (нет доступа к ресурсам, но есть возможность его открытия) и unknown (неизвестное устройство, доступ запрещен при любых обстоятельствах).

Установленный уровень доступа соответствует уровню доверия к соответствующему устройству и может варьироваться. В любом BT-устройстве есть сервис менеджера безопасности (составная часть протокола), который позволяет устанавливать эти уровни не только для конкретных устройств, но и для видов обслуживания или групп сервисов. Так, например, здесь можно установить, что передача файлов может осуществляться только после аутентификации и авторизации.

Шифрование. Осуществляется при помощи ключа (длина его варьируется от 8 до 128 бит), который, в свою очередь, генерируется на основе 128-битового ключа аутентификации. Другими словами, расшифровывающий ключ основан на ключе связи; с одной стороны, это упрощает процесс генерации ключа, но в то же время упрощает и процесс взлома системы. К тому же при аутентификации код может быть введен вручную либо автоматически предоставлен процессом прикладного уровня. Критическим случаем можно считать обнуление этого кода самим пользователем (это означает, что разрешено подключение любого устройства), что резко снижает эффективность системы безопасности.

Все перечисленные механизмы являются встроенными, следовательно они предназначены для аутентификации самих BT-устройств, а не пользователей. Поэтому для некоторых устройств, например для чипов идентификации пользователя, должна быть предусмотрена комплексная защита (дополнительный пароль, использование смарт-карт и т.п.). Не случайно некоторые модели сотовых телефонов, карманных компьютеров и ноутбуков, ориентированные на корпоративный сектор, оснащаются биометрической защитой. Устройства могут быть потеряны или украдены, и еще одно лишнее звено в цепи безопасности только улучшает общую защищенность системы.

1.4. Выводы по разделу

В заключении, Wi-Fi- это современная технология беспроводной связи, которая является мобильной и практичной, но ее защищенность оставляет желать лучшего.

Из вышесказанного можно заключить, что WEP - устаревший протокол защиты беспроводного соединения. Рекомендуется не использовать WEP, если циркулирующая информация в сети имеет коммерческую важность.

Говоря о протоколе WPA, пришедшему на замену WEP протоколу, следует сказать, что его плюсами являются усиленная безопасность данных и усиленный контроль доступа к беспроводным сетям. Но в практическом примере реализации атаки на протокол WPA видно, что протокол WPA, так же, как и WEP, имеет ряд недостатков. Для безопасного использования протокола WPA необходимо при выборе пароля использовать слова, не имеющие смысла (axdrtyh5nuo275bgdds - случайную или псевдослучайную последовательность символов), используя такие слова, вероятность успешного выполнения словарной атаки сводится к нулю.

Для создания надёжной системы безопасности беспроводных сетей разработано немало методов. К примеру, самым надёжным способом считается использование виртуальных частных сетей VPN (Virtual Private Network). Создание беспроводной виртуальной частной сети предполагает установку шлюза непосредственно перед точкой доступа и установку VPN-клиентов на рабочих станциях пользователей сети. Путём администрирования виртуальной частной сети осуществляется настройка виртуального закрытого соединения (VPN-туннеля) между шлюзом и каждым VPN-клиентом сети. Впрочем, VPN-сети редко используются в небольших офисных сетях и практически не используются в домашних условиях. Как и стандарт 802.1x, VPN-сети - прерогатива корпоративных сетей.

Комплекс мероприятий по защите устройств Bluetooth тривиален. Стоит отключать функцию обнаружения устройства и включать ее только при необходимости сопряжения с новым устройством. В некоторых телефонах это реализовано следующим образом: функция обнаружения активизируется только на 60 секунд, после чего автоматически отключается. Эта контрмера не является абсолютной защитой, но достаточно эффективна в большинстве случаев. На более интеллектуальных, чем сотовые телефоны, устройствах, как правило, имеется возможность настройки предоставляемых сервисов. Стоит отключать те из них, которые не используются на данном конкретном устройстве.

Для тех сервисов, которые активно используются, необходимо требовать использования режима 3 (Mode 3) и, возможно, дополнительной авторизации. Что касается процесса сопряжения, его желательно проводить только с доверенными устройствами в приватных местах. Периодически нужно проверять список сопряженных устройств на предмет наличия незнакомых записей и удалять те записи, которые не узнали с первого раза. Не забывать про управление обновлениями безопасности. Патчи выходят не только для Windows, но и для сотовых телефонов и КПК. Следует отключить функцию ответов на широковещательное сканирование.

Как можно заметить, многие уязвимости присущи любым устройствам, однако не стоит волноваться по этому поводу. На это есть 2 причины:

первая - радиус действия Вluetooth слишком мал, соответственно для атаки необходимо быть в зоне прямой видимости;

вторая - все устройства позволяют включить защиту Вluetooth или по крайней мере стать «невидимым» для остальных.

Проведен обзор технологии сотовой подвижной связи GSM. Определена структура СПС и рассмотрены механизмы информационной безопасности, реализованные в стандарте GSM. Проведен анализ реализованных механизмов ИБ и представлен прогноз перспектив развития механизмов обеспечения ИБ в сетях 3G. Проведен анализ существующих угроз ИБ и уязвимостей в сетях СПС.

По результатам проведенного анализа можно сделать вывод, что сети СПС технологии GSM представляют собой интегрированную структуру и включают в себя механизмы обеспечения ИБ абонентов сети. При этом, как было отмечено, технологии связи, применяемые в сетях СПС, продолжают развиваться, в том числе и механизмы обеспечения ИБ. Однако, как показал анализ угроз и уязвимостей сетей СПС GSM, их безопасность может быть нарушена.

В целом реализация атак на GSM требует огромных денежных средств. Определяется количеством от нескольких сотен тысяч долларов до миллионов, необходим широкий штат сотрудников, поддержка силовых структур. Если же у нарушителя будет стоять задача на некоторое время заглушить мобильную связь в определенном месте, будь то здание, офисное помещение, особого труда и денежных затрат такая операция не потребует. Оборудование на такую операцию стоит от нескольких сотен долларов до пару тысяч.

Все эксперты в области защиты информации сходятся во мнении, что разработка мер безопасности для широко используемых систем втайне от общественности это в корне порочный путь. Единственный способ гарантировать надежную безопасность это дать возможность проанализировать систему всему сообществу специалистов.

2. ПРОПУСКНАЯ СПОСОБНОСТЬ БЕЗПРОВОДНЫХ СЕТЕЙ

Скорость беспроводной сети зависит от нескольких факторов.

Производительность беспроводных локальных сетей определяется тем, какой стандарт Wi-Fi они поддерживают. Максимальную пропускную способность могут предложить сети, поддерживающие стандарт 802.11n - до 600 Мбит/сек (при использовании MIMO). Пропускная способность сетей, поддерживающих стандарт 802.11a или 802.11g, может составить до 54 Мбит/сек. (Сравните со стандартными проводными сетями Ethernet, пропускная способность которых составляет 100 или 1000 Мбит/сек.)

На практике, даже при максимально возможном уровне сигнала производительность Wi-Fi сетей никогда не достигает указанного выше теоретического максимума. Например, скорость сетей, поддерживающих стандарт 802.11b, обычно составляет не более 50% их теоретического максимума, т. е. приблизительно 5.5 Мбит/сек. Соответственно, скорость сетей, поддерживающих стандарт 802.11a или 802.11g, обычно составляет не более 20 Мбит/сек. Причинами несоответствия теории и практики являются избыточность кодирования протокола, помехи в сигнале, а также изменение расстояния Хемминга с изменением расстояния между приемником и передатчиком. Кроме того, чем больше устройств в сети одновременно участвуют в обмене данными, тем пропорционально ниже пропускная способность сети в расчёте на каждое устройство, что естественным образом ограничивает количество устройств, которое имеет смысл подключать к одной точке доступа или роутеру (другое ограничение может быть вызвано особенностями работы встроенного DHCP-сервера, у устройств из нашего ассортимента итоговая цифра находилась в диапазоне от 26 до 255 устройств).

Ряд производителей выпустили устройства, с поддержкой фирменных расширений протоколов 802.11b и 802.11g, с теоретической максимальной скоростью работы 22Мбит/сек и 108Мбит/сек соответственно, однако радикальной прибавки в скорости по сравнению с работой на стандартных протоколах в данный момент от них не наблюдается.

Кроме того, скорость работы любой пары устройств существенно падает с уменьшением уровня сигнала, поэтому зачастую наиболее эффективным средством поднятия скорости для удалённых устройств является применение антенн с большим коэффициентом усиления.

Эфир -- и, соответственно, радиоканал -- в качестве среды передачи существует лишь в единственном экземпляре и ведет себя так же, как раньше концентратор в сети Ethernet: при попытке передачи данных несколькими сторонами одновременно сигналы мешают друг другу. Поэтому стандартами WLAN предусматривается, что перед передачей станция проверяет, свободна ли среда. Однако это отнюдь не исключает ситуацию, когда две станции одновременно идентифицируют среду как свободную и начинают передачу. В «разделяемом» Ethernet соответствующий эффект называется коллизией.

В проводной сети отправители могут распознать коллизии уже в процессе передачи, прервать ее и повторить попытку после случайного интервала времени. Однако в радиосети таких мер недостаточно. Поэтому 802.11 вводит «пакет подтверждения» (ACK), который получатель передает обратно отправителю; на эту процедуру отводится дополнительное время ожидания. Если сложить все предусмотренные протоколом периоды ожидания -- короткие межкадровые интервалы (Short Inter Frame Space,

SIFS) и распределенные межкадровые интервалы функции распределенной координации (Distributed Coordination Function Inter Frame Space, DIFS) для беспроводной сети стандарта 802.11а, то накладные расходы составляют 50 мкс на пакет (см. Рисунок 1).

Рисунок 1. Если станция WLAN собирается начать передачу и находит среду занятой, то ей придется подождать некоторое время. Доступ к среде регулируется при помощи «межкадровых интервалов» разной длины (DIFS и SIFS)

Помимо этого, при вычислении издержек следует учесть, что каждый пакет данных содержит не только полезные данные, но и необходимые заголовки для многих протокольных уровней (см. Рисунок 2). В случае пакета длиной 1500 байт, передаваемого по стандарту 802.11 со скоростью 54 Мбит/с, появляются «лишние» 64 байт с издержками в 20 мкс. Пакет АСК обрабатывается физическим уровнем так же, как и пакет данных, в нем отсутствуют лишь части от порядкового номера до контрольной суммы. Вдобавок заголовок укорочен, поэтому для пакета АСК необходимо всего 24 мкс.

В общей сложности передача 1500 байт полезной нагрузки со скоростью 54 Мбит/с занимает 325 мкс, поэтому фактическая скорость передачи составляет 37 Мбит/с.

С учетом издержек на ТСР/IP (еще 40 байт на пакет, пакеты подтверждения TCP) и повторов из-за сбоев в передаче достигаемая на практике скорость будет равна 25 Мбит/с -- такое же соотношение значений номинальной/фактической скоростей получается и при использовании 802.11b (от 5 до 6 при 11 Мбит/с).

Для 802.11g, наследника 11b, принцип работы которого мало чем отличается от 802.11а, требование обратной совместимости с IEEE 802.11b может привести к тому, что скорость передачи окажется еще меньше. Проблема возникает, когда в диалог двух станций 11g может вмешаться карта 802.11b: последняя не способна распознать, что среда в данный момент занята, поскольку в 802.11g используется отличный от 11b метод модуляции.

3. АЛГОРИТМЫ В БЕЗПРОВОДНЫХ СЕТЯХ

беспроводная сеть bluetooth

В данной работе предлагается оптимизированный вариант - алгоритм альтернативной маршрутизации, разработанный на основе существующих решений. Он использует принципы построения кратчайших путей, которые применяются в алгоритмах Дейкстри и Беллмана-Форда, и методы определения средней задержки, традиционные для сетей с пакетной коммутацией.

Разработанный для ретрансляторов алгоритм альтернативной маршрутизации основан на минимизации средней задержки на всех кратчайших маршрутах, причем определение задержек на участках включает анализ статических характеристик сети (топологии и пропускных способностей каналов связи) и характера передаваемого трафика (учет оптимальных показателей задержек для разных видов трафика).

В алгоритме предусмотрены механизмы анализа пропускных способностей каналов связи с точки зрения их оптимальности, расчет оптимального веса путей на основании этой информации и минимизации функции задержки у сети на основании анализа потока по маршрутам, при котором размер задержки мог бы соответствовать общепринятым характеристикам передачи определенных видов трафика.

Алгоритм использует принципы построения кратчайших путей, которые используются в алгоритмах Дейкстры и Беллмана-Форда, и способы определения средней задержки, традиционные для сетей с пакетною коммутацией. Функциональная блок-схема алгоритма приведена на рисунке и включает следующие составляющие:

1. Блок определения оптимальных пропускных способностей - анализирует базовую топологию сети и определяет оптимальность пропускных способностей. На основании полученных данных подсчитывает вес каналов связки сети для дальнейшего анализа.

2. Блок анализа среднего времени задержки - отвечает за расчет среднего времени задержки в сети на основании оптимальных пропускных способностей и начальных потоков в сети.

3. Блок определения маршрутов - отвечает за построение кратчайших маршрутов между всеми узлами сети.

4. Блок построения допустимого потока - обеспечивает распределение потоков по кратчайшим путям.

5. Блок минимизации средней задержки - обеспечивает расчет девиации потоку на основе минимизированной функции значения средней задержки в сети.

6. Тело алгоритма - объединяет работу каждого из блоков и обеспечивает последовательное функционирование алгоритма.

Рисунок - блок-схема алгоритма

Сформулируем задачи, которые должны быть решены с помощью спроектированного алгоритма:

наиболее рациональное использование каналов для решения задачи используются следующие приемы:

а) анализ пропускных способностей каналов связи в сети и расчет оптимальных меток;

б) использование альтернативных маршрутов;

в) распределение трафика между альтернативными маршрутами исходя не из соотношения суммарных метрик маршрутов, а из соотношения максимальных метрик каналов данного маршрута;

г) выбор доступных для использования альтернативных маршрутов только по критерию максимального времени передачи (маршрут может быть принят к использованию, если время передачи по маршруту не превышает установленного для данного типа трафика максимально допустимого).

2) соблюдение требований к параметрам сетевой передачи.

а) минимизация задержки передачи сообщений в сетях сложной топологии;

б)минимизация СКВ задержки.

Сделаем оценку оптимальности функционирования по алгоритму.

Введем обозначения:

где і - номер пары узел-адресат - узел-получатель; первая формула - поток пакетов, которые поступают в і-ый канал; вторая - поток пакетов, поступающих из узла в сеть.

Нагрузку і-ого канала пакетами считаем по следующей формуле:

где первый множитель - средняя длина пакета, Di - пропускная способность

і-ого канала.

Среднее количество пакетов в і-ом канале составляет:

Учитывая общее количество узлов в сети, среднее количество пакетов у сети в целом составляет:

В соответствии с формулой Литтла

где Т - средняя задержка в сети. Таким образом, получаем формулу

Клейнрока для анализа средней задержки в сети:

Полученная формула для оценки времени задержки эффективно используется для решения различных оптимизационных задач. К таким задачам относят оптимизацию пропускной способности каналов и выбор маршрутов передачи сообщений.

4. ПОСТАНОВКА ЗАДАЧИ

Предположим, что имеется некоторое количество видео-файлов, объем которых не превышает 10 Гигабайт. Эти файлы нужно передать абоненту на расстояние, на котором сигнал способен передаваться на максимально допустимой скорости. Из предлагаемых сетей 3G, LTE, VANet, WiMax необходимо выбрать оптимальную беспроводную сеть для передачи видеоконтента на расстояние, которое задает пользователь.

Специфика использования радиоэфира в качестве среды передачи данных накладывает свои ограничения на топологию сети. Если сравнивать ее с топологией проводной сети, то наиболее близкими вариантами оказываются топология "звезда" и комбинированная топология "кольцо" и "общая шина". Следует упомянуть, что развитие беспроводных сетей, как и многое другое, проходит под неусыпным контролем соответствующих организаций. И са мой главной среди них является Институт инженеров электротехники и элек троники (Institute of Electrical and Electronic Engineers, IEEE). В частности, беспроводные стандарты, сетевое оборудование и все, что относится к бес проводным сетям, контролирует Рабочая группа по беспроводным локаль ным сетям (Working Group for Wireless Local Area Networks, WLAN), в состав которой входят более 100 представителей из разных университетов и фирм- разработчиков сетевого оборудования. Эта комиссия собирается несколько раз в год с целью совершенствования существующих стандартов и создания новых, базирующихся на последних исследованиях и компьютерных дости жениях.

В России также организована ассоциация БЕспроводных СЕтей передачи ДАнных ("БЕСЕДА"), которая занимается ведением единой политики в области беспроводных сетей передачи данных. Она же и контролирует развитие рынка беспроводных сетей, предоставляет различные услуги при подключении, создает и развивает новые центры беспроводного доступа и т. д. Теперь что касается непосредственно топологии беспроводных сетей. На сегодняшний день используют два варианта беспроводной архитектуры или, проще говоря, варианта построения сети: независимая\ конфигурация (Ad-Hoc) и инфраструктурная конфигурация. Отличия между ними незначительные, однако они кардинально влияют на такие показатели, как количество подключаемых пользователей, радиус сети, помехоустойчивость и т. д.

НЕЗАВИСИМАЯ КОНФИГУРАЦИЯ

Режим независимой конфигурации (рис. 9.1), часто еще называемый "точка-точка", или независимый базовый набор служб (Independent Basic Service Set, IBSS), - самый простой в применении. Соответственно такая беспроводная сеть является самой простой в построении и настройке.

Чтобы объединить компьютеры в беспроводную сеть, достаточно, чтобы каж-дый из них имел адаптер беспроводной _связи. Как правило, такими адаптерами изначально оснащают переносные компьютеры, что вообще сводит построение сети только к настройке доступа к ней. Обычно такой способ организации используют, если сеть строится хаотично или временно, а также если другой способ построения не подходит по каким-либо причинам. Режим независимой конфигурации, хоть и прост в построении, имеет некоторые недостатки, главными из которых являются малый радиус действия сети и низкая помехоустойчивость, что накладывает ограничения на расположение компьютеров сети. Кроме того, если нужно подключиться к внешней сети или к Интернету, то сделать это будет непросто.

ИНФРАСТРУКТУРНАЯ КОНФИГУРАЦИЯ

Инфраструктурная конфигурация, или, как ее еще часто называют, режим "клиент/сервер", - более перспективный и быстроразвивающийся вариант беспроводной сети.

Подобные документы

    Эволюция беспроводных сетей. Описание нескольких ведущих сетевых технологий. Их достоинства и проблемы. Классификация беспроводных средств связи по дальности действия. Наиболее распространенные беспроводные сети передачи данных, их принцип действия.

    реферат , добавлен 14.10.2014

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

    курсовая работа , добавлен 24.12.2006

    Характеристика и разновидности беспроводных сетей, их назначение. Описание технологии беспроводного доступа в интернет Wi-Fi, протоколы безопасности. Стандарты связи GSM, механизмы аутентификации. Технология ближней беспроводной радиосвязи Вluetooth.

    курсовая работа , добавлен 31.03.2013

    Понятие беспроводной связи, организация доступа к сети связи, к интернету. Классификация беспроводных сетей: спутниковые сотовые модемы, инфракрасные каналы, радиорелейная связь, Bluetooth. WI-FI - технология передачи данных по радиоканалу, преимущества.

    реферат , добавлен 06.06.2012

    Общие понятия о беспроводных локальных сетях, изучение их характеристик и основных классификаций. Применение беспроводных линий связи. Преимущества беспроводных коммуникаций. Диапазоны электромагнитного спектра, распространение электромагнитных волн.

    курсовая работа , добавлен 18.06.2014

    Изучение особенностей беспроводных сетей, предоставление услуг связи вне зависимости от места и времени. Процесс использования оптического спектра широкого диапазона как среды для передачи информации в закрытых беспроводных коммуникационных системах.

    статья , добавлен 28.01.2016

    История появления сотовой связи, ее принцип действия и функции. Принцип работы Wi-Fi - торговой марки Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Функциональная схема сети сотовой подвижной связи. Преимущества и недостатки сети.

    реферат , добавлен 15.05.2015

    Протокол беспроводной передачи данных, помогающий соединить n-ное количество компьютеров в сеть. История создания первого Wi-Fi. Стандарты беспроводных сетей, их характеристики, преимущества, недостатки. Использование Wi-Fi в промышленности и быту.

    реферат , добавлен 29.04.2011

    Знакомство с современными цифровыми телекоммуникационными системами. Принципы работы беспроводных сетей абонентского радиодоступа. Особенности управления доступом IEEE 802.11. Анализ электромагнитной совместимости группировки беспроводных локальных сетей.

    дипломная работа , добавлен 15.06.2011

    Исследование обычной схемы Wi-Fi сети. Изучение особенностей подключения двух клиентов и их соединения. Излучение от Wi-Fi устройств в момент передачи данных. Описания высокоскоростных стандартов беспроводных сетей. Пространственное разделение потоков.

Описание, схема подключения, оборудование

Технология Wi-Fi является самой распространенной на сегодняшний день технологией беспроводной передачи данных. По сравнению с ИК-связью увеличено максимальное расстояние между двумя соединяемыми устройствами для установления стабильного Wi-Fi подключения, а также отсутствует необходимость прямой видимости между соединяемыми устройствами, в разы возросла скорость передачи данных .


Название "Wi-Fi " является сокращением сочетания слов "Wireless Fidelity", что в переводе на русский означает "Беспроводная Точность", по аналогии с Hi-Fi . И это, в каком-то смысле отражает предназначение данного беспроводного интерфейса. Wi-Fi предназначен для объединения между собой двух и более устройств.

Типы Wi-Fi сетей

Существует два типа Wi-Fi сетей: Ad-hoc и Infrastructure .


Ad-hoc (Точка-точка) . Соединение двух устройств напрямую с использованием встроенного или дополнительно установленного в каждом из них Wi-Fi адаптера. Такое подключение называется "Точка-точка". Этими устройствами могут быть любые электронные аппараты, например настольные ПК, ноутбуки, КПК, смартфоны и т.п. Wi-Fi сеть типа Ad-hoc аналогична обычной проводной локальной сети с топологией "линия", т.е. одноранговой сети, в которой первый компьютер соединен со вторым, второй с третьим и т.д.


Как я уже сказал, для организации соединения беспроводной сети такого типа применяются встроенные или устанавливаемые Wi-Fi адаптеры, наличие которого необходимо в каждом входящем в сеть устройстве. Со встроенными адаптерами все понятно: он установлен где-то внутри, и нам о нем необходимо знать только то, есть он там или нет. С устанавливаемыми адаптерами интереснее. Они могут подключаться к устройству по внутренним (PCI, PCI-E, mini-PCI) или внешним (USB, PCMCIA, CompactFlash, SD). К настольному компьютеру WiFi-адаптеры подключаются посредством интерфейсов PCI, PCI-E и USB. Последний удобнее в виду возможности горячего подключения (можно будет втыкать адаптер при включенном компьютере без риска сжечь оборудование) и более высокой скоростью передачи данных. На долю оставшихся двух интерфейсов приходятся случаи, когда в вашем распоряжении нет свободных USB-слотов. Лично я всегда стремлюсь использовать устройства, подключаемые к внутренним интерфейсам компьютера, если таковые в нем свободны. USB-порты все-таки больше подходят для переносных устройств. Например, если вам приходится пользоваться разными компьютерами, то можно купить USB Wi-Fi адаптер и, начиная работать с компьютером, подключать к нему адаптер по соответствующему интерфейсу. А если установка адаптера будет производиться на бессрочный период, то целесообразнее воспользоваться Wi-Fi адаптером, подключаемым к PCI или PCI-E, если таковые есть в наличии (а обычно так и бывает).


Infrastructure . Подключение сети типа Ad-hoc к интернету или другой сети Ad-hoc. Для организации этого подключения используется точка доступа (Wireless Access Point). Она оснащается одним разъемом LAN для подключения кабеля проводного доступа к интернету и, как правило, несколькими такими же разъемами для подлючения к ней компьютеров для образования проводной локальной сети. Точка доступа вполне может быть заменена компьютером (сервером) с установленными в нем сетевой картой и Wi-Fi картой. Первая будет служить для подключения сервера к интернету, вторая обеспечит связь с компьютерами по беспроводной локальной сети. По функциональности получим примерно одно и то же в обоих случаях.


Однако использование точки доступа предпочтительнее компьютера. Во-первых, ее приобретение обойдется намного дешевле. Во-вторых, она проще в настройке.

Протоколы Wi-Fi

802.11 . Скорость передачи Wi-Fi по нему равна 1-2 Мб/с.


802.11a . по этому протоколу может достигать 54 Мб/с. Реальная скорость обычно располагается в пределах 22-26 Мб/с. Wi-Fi частота данного протокола равна 5 ГГц. Передача данных осуществляется с помощью метода OFDM (мультиплексирование с ортогональным делением частот). В помещении скорость передачи Wi-Fi равна 54 Мб/с. При этом расстояние между устройствами сети должно быть не больше 12-15 м. Если удалить их друг от друга на 50-90 м, то скорость упадет до 6 Мб/с. На открытом пространстве дальнобойность растет: 54 Мб/с на 30-40 м, а 6 Мб/с - 250-350 м.


802.11b . Теоретическая скорость передачи Wi-Fi до 11 Мб/с. Реальная - 5-7 Мб/с. Wi-Fi частота - 2.4 ГГц. Передача данных осуществляется методом DSSS (прямая последовательность с разнесением сигнала по широкому диапазону). В замкнутом пространстве максимальная скорость передачи WiFi может дойти до 11 Мб/с, расстояние между устройствами 30-40 м, или 1 Мб/с на 80-100 м. На открытом пространстве скорость передачи Wi-Fi составляет 11 Мб/с, расстояние от 200-300 м и 1 Мб/с на 500-600 м.


802.11g . Наиболее распространенный протокол. Теоретическая скорость передачи Wi-Fi до 54 Мб/с. Реальная скорость составляет примерно 50% от теоретической, т.е. около 25 Мб/с. Для передачи данных использованы методы OFDM и FSSS. Wi-Fi частота 802.11g 2.4 ГГц. В закрытом пространстве скорость передачи Wi-Fi достигает 54 Мб/с, расстояние 30-40 м, и 1 Мб/с на 80-100 м. На улице дистанция увеличивается до 150-200 м и 400-500 м соответственно. Обратно совместим с протоколом 802.11b.


802.11i . Набирающий обороты протокол. Максимальная теоретическая скорость передачи Wi-Fi достигает 480 Мб/с. Wi-Fi частота 802.11i 2.4 - 2.5 или 5.0 ГГц.


Устройства, поддерживающие протокол 802.11i , способны работать в трех режимах:


Legacy (наследуемый). Обеспечивается совместимость с 802.11b/g и 802.11a устройствами.


Mixed (смешанный). К этому списку добавляются 802.11i устройства.


- «Чистый» режим. Возможно соединение только с 802.11i устройствами.

Преимущества и недостатки технологии Wi-Fi

Преимущества технологии Wi-Fi. Ну, отсутствие проводов в данном случае я считаю скорее не преимуществом, а свойством, из которого и вытекает немало плюсов беспроводного интерфейса. Во-первых, Wi-Fi сеть может быть полезна в случае, когда прокладка проводов просто недопустима. Например, здание, в котором расположиться сеть, имеет историческую ценность, и даже крупинка штукатурки не может упасть с его стен. А представляете, сколько строительных пыльных работ (например, сверление) нужно выполнить, чтобы просто протянуть кабель с улицы внутрь помещения. Во-вторых, в беспроводную сеть проще добавить новое устройство, нежели сделать тоже самое, имея проводную сетку. Как в первом, так и во втором случае новое устройство придется оснастить сетевым оборудованием (Wi-Fi адаптером или сетевой картой соответственно). Но вот в случае с беспроводной сетью далее необходимо произвести лишь программные настройки, а при работе с проводами придется этот самый провод сначала подготовить, а потом еще его и протащить куда надо. В третьих, если вы пользуетесь интернетом с носимых устройств, можно перемещаться по зоне покрытия вашей WiFi сети. Что нельзя себе позволить, если за вами повсюду будет тянуться провод локалки.


Теперь о недостатках данной технологии. Во-первых, чувствительность к помехам, таким, как, например, электромагнитные, излучаемые различной техникой, стоящей в зоне покрытия сети. Они влияют прежде всего на скорость соединения. Она может существенно упасть при попадании радиопотока в зону помех. В этом случае получим слабый сигнал Wi-Fi. Во-вторых, скорость кабельного соединения все равно остается выше чем скорость скорость wifi соединения . По крайней мере, на равных расстояниях между источником сигнала и потребителем сигнала.

Wi-Fi, где ты?

Теперь о том, как применяется технология Wi-Fi в повседневной жизни. В первую очередь, это конечно беспроводные локальные и, возможно так будет в будущем, глобальная сети. Например, сейчас в России наконец-то начали появляться места (их называют Wi-Fi кафе), оснащенные Wi-Fi точками доступа. Это могут быть кафе, бары, клубы, вокзалы, аэропорты и т.п. Подключение клиентского устройства, оснащенного Wi-Fi адаптером, может быть платным либо абсолютно безвозмездным в зависимости от заведения, в котором находится точка доступа. Также точки устанавливают в институты, университеты, библиотеки и пр. Сейчас появляются Wi-Fi телефоны. Вряд ли они могут полностью заменить своих GSM-собратьев. Ведь GSM-вышек сейчас не в пример больше, и количество точек доступа является по сравнению с GSM-антеннами не в пример меньше, то есть при использовании Wi-Fi роуминг значительно сузится. А вот применение Wi-Fi телефонов в заранее оговоренном пространстве весьма эффективно. Например, на территории какой-либо организации. Установил точки доступа, где необходимо, и готово дело, роуминг на нужной территории будет всегда и везде. Существует огромное количество и других применений технологии Wi-Fi, но, чтобы упомянуть их все, придется, наверное, занять весь интернет, поэтому сейчас, я думаю, мы не будем этим заниматься.

В заключение

Вот и закончили мы с вами обсуждение беспроводных технологий, вместе с которым завершился и цикл статей, посвященных разговору об инфракрасной связи, а также Bluetooth и Wi-Fi. Ни в одну из четырех статей я не старался впихнуть никаких очень уж сложных научных терминов, понятных лишь ограниченному кругу читателю. Они были написаны так, что бы быть удобоусваиваемыми для широкого круга читателей. Надеюсь, все было ясно и вам.

Похожие статьи