Разъем ieee 1394 firewire. FireWire или чем ещё помогла цифровому миру компания Apple

20.05.2019

Внешний вид современного персонального компьютера радует глаз. Серенькие китайские «тазики» давно канули в Лету. Фирмы-производители корпусов соревнуются, предлагая покупателю ультрасовременный дизайн на любой вкус, но если посмотреть на заднюю стенку «системника», создается впечатление, что за последние 10-15 лет ничего не изменилось: та же путаница кабелей, множество разъемов самых разных форм и размеров…

В декабре 1995 года был утверждён стандарт под названием IEEE-1394 (IEEE – Institute of Electrical and Electronic Engineers, 1394 – порядковый номер стандарта). Новый стандарт сулил фантастические по тем временам скорости обмена и удобство подключения оборудования.

Такое положение дел – следствие идеологической ошибки, допущенной на самых ранних этапах развития персоналок. Тогда никому и в голову не приходила идея о необходимости создания единого программно-аппаратного интерфейса для связи ПК с периферийным оборудованием. Для клавиатуры использовали разъем DIN, для принтера – LPT, для мыши – COM, причем разъемы COM существовали в двух конструктивах. Потом для подключения мыши и клавиатуры стали использовать разъемы mini-DIN (PS/2), свои разъемы устанавливались на звуковых картах для джойстиков и на SCSI-контроллерах. Словом, подключение периферийного оборудования к ПК стало для пользователей причиной изрядной головной боли, а для производителей периферии сложившаяся ситуация грозила падением объема продаж и снижением доходов. Со всей остротой встал вопрос о создании единого программно-аппаратного интерфейса для подключения к ПК любого периферийного оборудования.

В середине 90-х годов фирма Intel объявила о создании USB – Universal Serial Bus и начала активно продвигать свою разработку на рынок, однако первой была все-таки не она.

Для цифровых видеокамер IEEE-1394 оказался единственно возможным внешним интерфейсом.

Еще в 1986 году Комитет по стандартам микрокомпьютеров поставил перед своими специалистами задачу по созданию универсального I/O (Input/Output) внешнего интерфейса, пригодного как для работы с мультимедиа, так и для работы с накопителями данных и другой периферией вроде принтеров и сканеров. В результате почти десятилетней работы в декабре 1995 года был утверждён стандарт под названием IEEE-1394 (IEEE – Institute of Electrical and Electronic Engineers, 1394 – порядковый номер стандарта). Новый стандарт сулил фантастические по тем временам скорости обмена и удобство подключения оборудования. Пожалуй, главный вклад в разработку нового стандарта внесла американская фирма Apple, которая традиционно считается законодателем мод в области ПК. Вскоре Apple зарегистрировала товарный знак «FireWire» и начала использовать новый стандарт в своих компьютерах. В апреле 1997 года поддержка FireWire впервые появилась в составе операционной системы Mac OS, а массовое появление периферии с интерфейсом FireWire началось в 1999 году, когда он стал стандартным компонентом всех профессиональных компьютеров Power Macintosh G3 и G4, а с осени – потребительских систем iMac DV.

Распространению FireWire в значительной степени способствовало то обстоятельство, что для цифровых видеокамер IEEE-1394 оказался единственно возможным внешним интерфейсом, и было принято решение использовать IEEE-1394 как стандартный интерфейс для них. Первыми цифровыми камерами с FireWire были модели DCR-VX1000 и DCR-VX700 фирмы Sony, но вскоре, оценив преимущества нового интерфейса, его стали использовать и другие производители. В настоящее время все современные цифровые видеокамеры имеют интерфейс IEEE-1394.

Что представляет собой FireWire

FireWire – это по сути высокоскоростная последовательная шина, обеспечивающая «горячее» подключение до 63 устройств с полной поддержкой принципа Plug-and-Play. Передача данных осуществляется по тонкому и гибкому кабелю длиной до 4,5 метров со скоростью 50 МБ/с (400 Мбит/с).


Интерфейс IEEE-1394 условно разбит на три уровня: физический уровень, уровень компоновки данных и уровень обработки.

Главными особенностями IEEE-1394 являются:

  • Высокая скорость передачи данных;
  • Поддержка «горячего» («fire», то есть без отключения питания и/или перезагрузки операционной системы) подключения периферийного оборудования;
  • Возможность питания подключаемых устройств от блока питания компьютера через IEEE-1394 кабель;
  • Возможность строить сети различной конфигурации из самых разных устройств. Это означает, что оборудование с интерфейсом IEEE-1394 можно соединять не только с ПК, но и друг с другом, причем конфигурирование сети выполняется автоматически;
  • Использование последовательной шины вместо параллельного интерфейса. Благодаря этому стало возможным использовать тонкие (диаметром всего лишь 6 мм) кабели и миниатюрные разъемы;
  • Поддержка асинхронной и синхронной передачи данных. Синхронная передача данных, как правило, применяется в мультимедийных приложениях, где временные задержки недопустимы, а асинхронная – при передаче файлов, где потеря даже одного пакета является критичной.

Интерфейс IEEE-1394 условно разбит на три уровня: физический уровень, уровень компоновки данных и уровень обработки (см. рис 1).


Рис. 1 Функциональная схема интерфейса IEEE 1394

Физический уровень с помощью устройств интерфейса носителей, кодирования-декодирования сигнала и арбитража шины обеспечивает преобразование и передачу электрических сигналов по кабелям и управление каналом, то есть определение последовательности доступа к нему подключенных устройств.

Уровень компоновки данных с помощью приемника и передатчика пакетов, а также устройства управления циклом обеспечивает пересылку данных по сети FireWire-устройств.

Физический уровень и уровень компоновки данных являются аппаратными (Hardware) и представляют собой специализированные микросхемы.

На уровне обработки происходит проверка наличия и целостности полученных пакетов. Если какой-либо пакет не принят или принят с ошибками, осуществляется возврат на физический уровень и повторное получение данных.

Если к ПК подключено более одного FireWire-устройства, автоматически создается логическая сеть

Если к ПК подключено более одного FireWire-устройства, автоматически создается логическая сеть по следующему алгоритму.

При подключении или отключении какого-либо FireWire-устройства происходит инициализация сети, которая начинается со сброса шины. Затем по определенному алгоритму строится логическое дерево и определяется корневой узел сети. Одно из устройств будет являться родительским, а остальные – дочерними, причем для каждого порта строится свое дерево. На этапе самоидентификации каждое устройство получает свой идентификационный номер (ID) в пределах дерева. Одновременно определяются скорости передачи информации, которые может обеспечить каждое устройство.


Рис. 2. Дерево узлов IEEE 1394

После окончания инициализации сеть переходит в рабочий режим. Арбитраж работы в сети осуществляет родительское устройство. Дочернее устройство, пославшее запрос на канал первым, выигрывает арбитраж и получает доступ к каналу. Одновременно остальным дочерним устройствам доступ к нему запрещается. Для того чтобы какое-нибудь одно устройство монопольно не захватило канал, введены специальные интервалы равнодоступности (fairness interval). В течение одного интервала каждое устройство получает однократную возможность передачи данных. После передачи порции данных доступ устройства к шине блокируется. Чтобы вновь получить доступ к шине, ему необходимо дождаться конца интервала равнодоступности и начала следующего цикла.

По сигналу разрешения начинается работа на уровне компоновки, где формируются пакеты данных по 512 байт с интервалами между ними, и определяется их адресация. 160 бит в каждом пакете занимает заголовок, куда входит информация об отправителе и получателе пакетов, а также о циклическом коде CRC исправления ошибок. Передача данных начинается по получению ответа о готовности запрашиваемого устройства к приему информации.

В течение времени до 0,75 мс после отправки каждого пакета данных ожидается получение подтверждения об их получении в виде байтовой посылки. Далее следует интервал > 1 мс, разделяющий пакеты, и т. д.

Синхронная передача данных применяется, в мультимедийных приложениях, когда приоритетом является минимум задержки на получение информации по сравнению с возможной потерей или ошибками какой-то ее части.

Синхронная передача данных применяется, как уже говорилось, в мультимедийных приложениях, когда приоритетом является минимум задержки на получение информации по сравнению с возможной потерей или ошибками какой-то ее части. В этом режиме данные передаются пакетами длительностью по 125 мс, т.е. чем выше скорость, тем больше данных может быть передано за это время. Пакеты следуют друг за другом, не ожидая байтов подтверждения получения. Для идентификации пакетов синхронной и асинхронной передачи промежуток между ними в первом случае короче, чем во втором. Это позволяет комбинировать и различать синхронные и асинхронные данные в каждом сеансе. На синхронные данные выделено до 85% канала передачи, из которых устройство может занимать не более 65%.

Интерфейсом IEEE1394 допускается одновременная передача информации на разных скоростях от разных устройств, причем способности их общения на какой-либо из скоростей определяются автоматически.

Интерфейсом IEEE1394 допускается одновременная передача информации на разных скоростях от разных устройств, причем способности их общения на какой-либо из скоростей определяются автоматически. Это делает интерфейс весьма дружественным, так как пользователю не нужно заботиться о правильности подключения устройств.

Как уже говорилось, при синхронной передаче данных проверка целостности информации не выполняется, поэтому пакеты механически следуют один за другим.

Кабели и разъемы

Поскольку скорость передачи информации весьма высока, для IEEE-1394 используют специальные кабели (см. рис. 3). Диаметр такого кабеля равен 6 мм, он содержит три витые пары проводников диаметром 0,87 мм, одна из которых типа 22 AWG предназначена для питания напряжением от 8 до 30 В и током до 1,5 А внешней нагрузки, а две другие – раздельно экранированные пары сигнальных проводов типа 28 AWG. Все шесть жил кабеля закрыты общим плетеным металлическим экраном и защищены изоляцией из ПВХ.


Рис. 3. Разрез кабеля FireWire

После долгих поисков удалось подобрать прочный и компактный разъем, который можно подключать вслепую. Его взяли от игровой приставки Nintendo GameBoy. По конструкции разъем напоминает отечественный разъем типа РША: силовые и сигнальные контакты размещены по центру и защищены прочным прямоугольным пластмассовым кожухом, два угла которого скошены, чтобы исключить неправильное подключение (рис. 4, 5).

Для устройств, не использующих питание по кабелю FireWire, в частности для цифровых видеокамер, предусмотрели облегченный четырехжильный кабель с миниатюрным разъемом. Длина такого кабеля равна 96 см.

Для устройств, не использующих питание по кабелю FireWire, в частности для цифровых видеокамер, предусмотрели облегченный четырехжильный кабель с миниатюрным разъемом. Длина такого кабеля равна 96 см. Как правило, материнские платы компьютеров, поддерживающие FireWire, имеют в комплекте планку с обоими типами разъемов (рис. 6).


Рис. 6. Кабель IEEE 1394 i-Link

IEEE 1394a

При переносе FireWire с «Маков» на платформу РС появились неприятные проблемы, связанные с совместимостью «железа». Поэтому в 2000 году была принята новая редакция стандарта – IEEE 1394a. Стандарт стал более четким, в него были внесены усовершенствования, улучшившие производительность. В частности, было введено время ожидания 1/3 секунды на сброс шины до окончания переходного процесса подключения или отключения устройств. Без этого иногда возникал не один, а целая серия сбросов шины по подключению нового устройства.

Практика показала, что устройства IEEE 1394 могут оказаться несовместимыми, если пакеты в серии передаются с разной скоростью. В IEEE 1394а эта проблема решена путем добавления сигнала скорости в каждый пакет, если скорость его передачи отличается от предыдущей.

Практика показала, что устройства IEEE 1394 могут оказаться несовместимыми, если пакеты в серии передаются с разной скоростью. В IEEE 1394а эта проблема решена путем добавления сигнала скорости в каждый пакет, если скорость его передачи отличается от предыдущей. Предусмотрены также возможности программного отключения порта FireWire, включения аппаратуры и перевода ее в дежурный режим. Большое внимание разработчики уделили повышению эффективности шины за счет уменьшения общей длительности технологических промежутков, разделяющих пакеты записи. С этой целью по IEEE 1394а:

  • Повторные байты подтверждения получения не ожидаются, после первого обнаружения такого байта передача продолжается без остановок;
  • Введена возможность неоднократного запроса на передачу от одного устройства в одном цикле, если другим устройствам шина не нужна;
  • Уменьшено время на сброс шины. В IEEE 1394 передающее устройство не обнаруживает сигнал сброса, пока не закончится передача текущего пакета данных. Поэтому сигнал сброса поддерживался в течение времени, большего, чем максимальное время передачи одного пакета. Если же сигнал сброса формируется по признаку выигрыша устройством арбитража, в этом нет необходимости, и в IEEE 1394a сброс шины выполняется по завершению передачи этого устройства;
  • Предусмотрены возможности прикрепления пакетов информации к уже передающимся пакетам, за счет чего достигается экономия на времени арбитража.

IEEE 1394b

Эта версия стандарта, принятая в 2002 году, рассчитана на последовательную шину с увеличенной до 800 Мб/с и 1,6 Гб/с пропускной способностью. В перспективе пропускная способность может возрасти и до 3,2 Гб/с. Основой интерфейса IEEE 1394b является кодирование 8В10В в соответствии с алгоритмами, применяемыми в оборудовании для гигабайтных сетей и в оптоволоконных линиях связи. Введено измерение времени отклика, что позволило работать со стеклянными оптоволоконными кабелями длиной до 100 метров. При использовании пластикового оптоволокна максимальная длина кабеля уменьшается до 50 метров, а пропускная способность до 200 Мб/с. Изменились и разъемы: теперь это 9-контактные двухрядные разъемы. Вид разъемов на кабельном переходнике 9↔4 контактов показан на рисунке 7.


Рис. 7. Кабельный переходник IEEE 1394

Этот переходник и ему аналогичный 9↔6 контактов обеспечивает кабельную совместимость шины IEEE 1394b с предшествующими версиями IEEE 1394. В новом стандарте предусмотрено два режима передачи данных: β‑режим, когда общаются устройства, поддерживающие IEEE 1394b, и режим обратной совместимости, при котором возможно подключение к шине устройств IEEE 1394a и максимальная скорость автоматически уменьшается до 400 Мб/с.

Из других особенностей IEEE 1394b следует отметить новый способ арбитража. Если в предшествующих стандартах функцию арбитража выполняло корневое устройство, то теперь такую функцию выполняет любое устройство, постоянно посылающее сигналы запроса на передачу. Новый метод арбитража называется Bus Owner/Supervisor/Selector (BOSS). Его логическая схема показана на рисунке 8, а принцип работы заключается в следующем.


Рис. 8. Арбитраж BOSS IEEE 1394b

В новом стандарте предусмотрено два режима передачи данных: β-режим, когда общаются устройства, поддерживающие IEEE 1394b, и режим обратной совместимости, при котором возможно подключение к шине устройств IEEE 1394a и максимальная скорость автоматически уменьшается до 400 Мб/с.

Устройство, готовое к передаче данных, постоянно посылает сигналы запроса, но передача данных блокируется, пока на соответствующей шине присутствуют сигналы, передаваемые другим устройством. Как только последние прекращаются, по этой шине начинают передаваться сигналы ждущего устройства, в свою очередь блокирующего режимы передачи других устройств. Очевидно, что для работы системы арбитража BOSS шина данных должна быть двунаправленной. Поэтому такой арбитраж работает только в среде IEEE 1394b. Если в нее входит хотя бы одно другое устройство, для арбитража применяется ранее рассмотренный метод.

USB 2.0 и IEEE 1394а

Все современные компьютеры оснащены портами USB 2.0, которые являются быстродействующей версией получивших массовое распространение портов USB 1.1. Основная сфера применения USB 2.0 осталась прежней. Это подключение периферийных устройств типа мышей, цифровых фотокамер, картридеров и других устройств, не требующих гарантированно постоянной пропускной способности.

Все современные компьютеры оснащены портами USB 2.0, которые являются быстродействующей версией получивших массовое распространение портов USB 1.1. Основная сфера применения USB 2.0 осталась прежней. Это подключение периферийных устройств типа мышей, цифровых фотокамер, картридеров и других устройств, не требующих гарантированно постоянной пропускной способности. USB 2.0, как и USB 1.1, использует 4-х контактные разъемы, полностью совместимые между собой. Единственное отличие в подключении USB 2.0 и USB 1.1 заключается в том, что новый стандарт требует экранированных кабелей. Теоретическая скорость по USB 2.0 составляет 480 Мб/с, максимальная передаваемая мощность на питание внешних устройств – 2,5 Вт. Общение устройств стандарта USB 2.0 происходит по схеме Master/Slave, т. е. все потоки данных управляются компьютером, что замедляет работу интерфейса. Длина кабеля для соединения двух устройств по шине USB 2.0 не должна превышать 5 метров. Преимуществами USB 2.0 является большая распространенность, совместимость с USB 1.1 и дешевизна.

Теоретическая скорость по USB 2.0 составляет 480 Мб/с, максимальная передаваемая мощность на питание внешних устройств – 2,5 Вт.


Преимуществами USB 2.0 является большая распространенность, совместимость с USB 1.1 и дешевизна.

С продвижением USB 2.0 на рынке стали появляться устройства, например, внешние жесткие диски со сдвоенным интерфейсом или одни и те же модели с разными интерфейсами. Казалось бы, по USB 2.0 они должны работать быстрее, чем по IEEE 1394a, но на практике, при прочих равных условиях производительность по FireWire 400 получается лучше, причем почти без проблем с «горячим» подключением. Вероятно, новая версия USB будет работать стабильней, но и IEEE 1394a к тому времени несколько устареет и будет заменяться на IEEE 1394b. Кроме того, архитектура USB 2.0 по гибкости несопоставима с IEEE 1394, особенно при работе с мультимедийной аппаратурой.

Таким образом, шина USB 2.0 эффективна для компьютерной периферии, низкоскоростной и со средними требованиями к пропускной способности. Она дешева и достаточно производительна для большинства задач. Шина FireWire гораздо гибче и отлично подходит для работы с мультимедиа. Цифровые видеокамеры и телевизоры, DVD-проигрыватели и игровые приставки – все это при наличии портов FireWire легко соединить между собой, причем не обязательно вокруг компьютера.

IEEE 1394

IEEE 1394 Interface
Тип Последовательная связь
История
Разработчик Apple Computer (сейчас Apple, Inc.)
Разработано 1995
Производитель Разнообразный
Произведено 1995–н.в
Спецификации
Длина 4.5 м максимально
Ширина 1
Подключение на ходу Да
Внешнее Да
Макс. напряжение 30 В
Макс. ток 1.5 A
Сигнал данных Да
Полоса пропускания 400–3200 Мбит /с (50–400 Мбайт/с)
Выводы 4, 6, 9

IEEE 1394 (FireWire, i-Link) - последовательная высокоскоростная шина , предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами.

Различные компании продвигают стандарт под своими торговыми марками:

  • Apple - FireWire
  • Sony - i.LINK
  • Yamaha - mLAN
  • - Lynx
  • Creative - SB1394

История

  • в 1986 году членами Комитета по Стандартам Микрокомпьютеров (Microcomputer Standards Committee) принято решение объединить существовавшие в то время различные варианты последовательной шины (Serial Bus)
  • в 1992 году разработкой интерфейса занялась Apple
  • в 1995 году принят стандарт IEEE 1394

Преимущества

  • Горячее подключение - возможность переконфигурировать шину без выключения компьютера
  • Различная скорость передачи данных - 100, 200 и 400 Мбит/с в стандарте IEEE 1394/1394a, дополнительно 800 и 1600 Мбит/с в стандарте IEEE 1394b и 3200 Мбит/с в спецификации S3200.
  • Гибкая топология - равноправие устройств, допускающее различные конфигурации (возможность «общения» устройств без компьютера)
  • Высокая скорость - возможность обработки мультимедиа-сигнала в реальном времени
  • Поддержка изохронного трафика
  • Поддержка атомарных операций - сравнение/обмен, атомарное увеличение (операции семейства LOCK - compare/swap, fetch/add и т. д.).
  • Открытая архитектура - отсутствие необходимости использования специального программного обеспечения
  • Наличие питания прямо на шине (маломощные устройства могут обходиться без собственных блоков питания). До полутора ампер и напряжение от 8 до 40 вольт.
  • Подключение до 63 устройств.

Шина IEEE 1394 может использоваться для:

  • Создания компьютерной сети .
  • Подключения аудио и видео мультимедийных устройств.
  • Подключения принтеров и сканеров .
  • Подключения жёстких дисков , массивов RAID .

Основные сведения

Кабель представляет собой 2 витые пары - А и B, распаянные как A к B, а на другой стороне кабеля как B к A. Также возможен необязательный проводник питания.

Устройство может иметь до 4 портов (разъёмов). В одной топологии может быть до 64 устройств. Максимальная длина пути в топологии - 16. Топология древовидная, замкнутые петли не допускаются.

При присоединении и отсоединении устройства происходит сброс шины, после которого устройства самостоятельно выбирают из себя главное, пытаясь взвалить это «главенство» на соседа. После определения главного устройства становится ясна логическая направленность каждого отрезка кабеля - к главному или же от главного. После этого возможна раздача номеров устройствам. После раздачи номеров возможно исполнение обращений к устройствам.

Во время раздачи номеров по шине идет трафик пакетов, каждый из которых содержит в себе количество портов на устройстве, а также ориентацию каждого порта - не подключен/к главному/от главного, а также максимальную скорость каждой связи (2 порта и отрезок кабеля). Контроллер 1394 принимает эти пакеты, после чего стек драйверов строит карту топологии (связей между устройствами) и скоростей (наихудшая скорость на пути от контроллера до устройства).

Операции шины делятся на асинхронные и изохронные.

Асинхронные операции - это запись/чтение 32-битного слова, блока слов, а также атомарные операции. Асинхронные операции используют 24-битные адреса в пределах каждого устройства и 16-битные номера устройств (поддержка межшинных мостов). Некоторые адреса зарезервированы под главнейшие управляющие регистры устройств. Асинхронные операции поддерживают двухфазное исполнение - запрос, промежуточный ответ, потом позже окончательный ответ.

Изохронные операции - это передача пакетов данных в ритме, строго приуроченном к ритму 8 КГц, задаваемому ведущим устройством шины путем инициации транзакций «запись в регистр текущего времени». Вместо адресов в изохронном трафике используются номера каналов от 0 до 31. Подтверждений не предусмотрено, изохронные операции есть одностороннее вещание.

Изохронные операции требует выделения изохронных ресурсов - номера канала и полосы пропускания. Это делается атомарной асинхронной транзакцией на некие стандартные адреса одного из устройств шины, избранного как «менеджер изохронных ресурсов».

Помимо кабельной реализации шины, в стандарте описана и наплатная (реализации неизвестны).

Использование

Сеть поверх 1394

Около 1998 г. содружество компаний, в том числе Microsoft, развивали идею обязательности 1394 для любого компьютера и использования 1394 внутри корпуса, а не только вне него. Существовали даже карты контроллеров с одним из разъемов, направленным внутрь корпуса. Также существовала идея Device Bay, то есть отсека для устройства со встроенным в отсек разъемом 1394 и поддержкой горячей замены.

Все это прослеживается в материалах Microsoft той поры, предназначенных для разработчиков компьютеров. Можно сделать вывод, что 1394 предлагали как замену ATA, то есть на роль, ныне выполняемую SATA.

Все эти идеи быстро кончились провалом, одна из главных причин - лицензионная политика Apple, требующего выплат за каждый чип контроллера.

MiniDV видеокамеры

Исторически первое использование шины. Используется и по сей день как средство захвата фильмов с MiniDV в файлы. Возможен и захват с камеры на камеру.

Видеосигнал, идущий по 1394, идет практически в том же формате, что и хранится на видеоленте. Это упрощает камеру, снижая требования к ней по наличию памяти.

Использование 1394 c miniDV положило конец проприетарным платам видеозахвата.

Отладчики

Интересным свойством контроллеров 1394 является способность читать и писать произвольные адреса памяти со стороны шины без использования процессора и ПО. Это проистекает из богатого набора асинхронных транзакций 1394, а также из ее структуры адресации.

Эта возможность чтения и редактирования памяти через 1394 без помощи процессора послужила причиной использования 1394 в двухмашинном отладчике ядра Windows - WinDbg. Такое использование существенно быстрее последовательного порта, но требует ОС не ниже Windows XP с обеих сторон. Также возможность используется в отладчиках для других ОС, например firescope для linux.

Организация устройств IEEE 1394

Устройства IEEE 1394 организованы по трехуровневой схеме - Transaction, Link и Physical, соответствующие трем нижним уровням модели OSI .

Transaction Layer - маршрутизация потоков данных с поддержкой асинхронного протокола записи-чтения.

Link Layer - формирует пакеты данных и обеспечивает их доставку.

Physical Layer - преобразование цифровой информации в аналоговую для передачи и наоборот, контроль уровня сигнала на шине, управление доступом к шине.

IEEE 1394a

В 2000 году был утверждён стандарт IEEE 1394а. Был проведён ряд усовершенствований, что повысило совместимость устройств.

Было введено время ожидания 1/3 секунды на сброс шины, пока не закончится переходный процесс установки надёжного подсоединения или отсоединения устройства.

IEEE 1394b

IEEE 1394c

Появившийся в 2006 году стандарт 1394c позволяет использовать кабель Cat 5e от Ethernet . Возможно использовать параллельно с Gigabit Ethernet , то есть использовать две логические и друг от друга не зависящие сети на одном кабеле. Максимальная заявленная длина - 100 м, Максимальная скорость соответствует S800 - 800 Мбит/с.

Разъёмы

Существуют четыре (до IEEE 1394c - три) вида разъёмов для FireWire:

  • 4pin (IEEE 1394a без питания) стоит на ноутбуках и видеокамерах. Витая пара (два контакта) для передачи сигнала (информации) и вторая витая пара (др. два контакта) - для приема.
  • 6pin (IEEE 1394a). Дополнительно два провода для питания.
  • 9pin (IEEE 1394b). Дополнительно два контакта для экранов витых пар (приёма и передачи информации). И еще один контакт - резерв.
  • RJ-45 (IEEE 1394c).

См. также

Примечания

Ссылки

  • Интерфейс IEEE 1394 По материалам курса Kramer AV Academy - Архив журнала «625» № 7/2005 картинки, грамотно показаны как функциональные схемы, дерево узлов, схемы арбитража, так и разрез кабеля и смысл переходников.
  • 1394 Trade Association (англ.)
  • Рабочая группа IEEE p1394c (англ.)

Все информационные технологии, так или иначе, крутятся вокруг данных, или проще говоря, информации. Каждая информационная технология имеет дело либо с использованием данных, либо с обработкой или передачей данных. Порт FireWire создан для быстрой передачи данных между различными устройствами. По сравнению с интерфейсом USB 2.0, он обеспечивает более высокую скорость передачи данных. В этой статье расскажем об интерфейсе IEEE 1394, или как его обычно называют, FireWire.

FireWire представляет собой последовательную шину, разработанную Apple в сотрудничестве с другими компаниями. Она стала де-факто стандартом на всех компьютерах компании Apple и многих цифровых устройствах, например, в цифровых видеокамерах, принтерах и др. на компьютерах Apple используется как FireWire, в устройствах от Sony как iLink и Lynx в устройствах от компании Texas Instruments. Несмотря на то, что под разными названиями скрывается один интерфейс, портом FireWire принято называть 6-контактный разъем, а iLink — четырехконтактный.

Дополнительные контакты служат для питания устройства. Как говорилось выше, такая технология служит для высокоскоростной передачи данных в реальном времени между и периферийными устройствами. Тот факт, что это последовательная шина, означает, что данные передаются по одному биту зараз. По сравнению с более старыми технологиями, предназначенными для передачи данных, например, параллельной шине SCSI (подробнее об интерфейсе ) , такая технология дешевле и выгоднее. Несмотря на то, что такие порты дороже USB 2.0, они имеют более высокую производительность.

FireWire 400 обеспечивает скорость 400 Мбит / в секунду, новый стандарт 800 (IEEE 1394b или firewire 1394) обеспечивает скорость до 800 Мбит/в секунду.

FireWire 400, имеет 4 и 6-контактный разъем, новый стандарт FireWire 800 использует 9-контактный разъем.

Обе версии устройств поддерживают технологию Plug and Play (технологию «горячего» подключения устройств), что позволяет подключать периферийные устройства (видеокамеры, и т.д.) без необходимости выключения и перезагрузки компьютера.

По сравнению с USB 2.0, такие порты являются более дорогостоящими для реализации, поэтому этот интерфейс не нашел применения в подключении таких устройств, как флэш-накопители. В продаже есть специальные адаптеры (firewire переходники), позволяющие подключать устройства FireWire к USB.

Для достижения максимальной скорости передачи данных, с портом 800 необходимо использовать 9-контактный кабель. FireWire 800 и 400 имеют обратную совместимость. Однако в режиме обратной совместимости максимальная скорость передачи данных не превышает 400 Мбит / в секунду. Он может обеспечивать питание подключенным устройствам. 6-контактный и 9 контактный порт обеспечивает питание подключенным периферийным устройствам мощностью до 45 Вт.

Для каких устройств используется порт FireWire
Учитывая высокую скорость передачи данных, которую может обеспечить данная технология, интерфейс был изначально предназначен для подключения цифровых видеокамер . Данный интерфейс позволяет передавать данные на большие расстояния, это побудило использовать его в мультимедийных студиях. Он является основным портом для передачи данных в компьютерах Apple, включая настольные компьютеры Mac и MakBook.


Внешние жесткие диски, оснащенные интерфейсом FireWire, могут быть подключены к соответствующему порту на ПК. Они используются для подключения сканеров и принтеров с компьютером. Каждый порт может поддерживать до 63 устройств одновременно . Он может подключать устройства в дереве топологии сети и может поддерживать одноранговую связь.

Хотя этот порт используется не так широко как USB 2.0, новый интерфейс FireWire 800 обеспечивает скорость передачи данных до 800 Мбит в секунду. Это делает его лучшим последовательным интерфейсом, в случае использования устройств и приложений, требующих высокой скорости передачи данных, например, видеокамер.

Везде, где есть потребность в высокой скорости передачи данных на большие расстояния, интерфейс FireWire 400 или FireWire 800 является предпочтительным выбором.


Следовало бы начать с перечисления правил, которым нужно следовать при захвате видео с цифровой видеокамеры. Но все гораздо проще! Правило одно — захват производится только по интерфейсу IEEE 1394 (он же FireWire , он же iLink ). За путаницу в названиях можно поблагодарить пиар-технологов компаний, пытавшихся в свое время перетянуть одеяло на себя, «застолбив» за фирмой свое, собственное имя стандарта. К великой радости новичков, данный интерфейс все чаще называют с виду безликим IEEE 1394 , и все реже мелькают сбивающие с толку «фирменные» наименования.

Возможно, кто-то спросит: а как же порт USB? С какой целью производитель добавил в камеру еще и этот интерфейс? А предназначен он всего лишь для копирования цифровых фото с карты памяти, редкая камера теперь не обладает возможностью делать цифровые снимки. Если же у кого-то из читателей «знакомый недавно слил видео по USB», совет один: осторожно поинтересуйтесь, уж не на мобильном ли своем телефоне ваш знакомый просматривает такое видео?

И все же, «справедливости ради и порядка для»: USB и карты памяти используются не только ИСКЛЮЧИТЕЛЬНО для фотографий. Дело в том, что некоторые модели камер всё же позволяют при помощи фирменных утилит захватывать DV-видео по USB2.0, хотя правильным назвать этот способ можно с большой с натяжкой.

В любой цифровой видеокамере присутствует гнездо, внешне напоминающее порт mini-USB, однако оно имеет меньшие размеры и часто обозначается буквами DV и рядышком i . Тем, у кого есть не очень старый ноутбук, не приходится задумываться — скорее всего в нем уже есть встроенный порт IEEE 1394, а в комплекте с таким ноутбуком имеется и шнур. Только подключай! Но что же делать владельцам стандартных коробок из магазина, называемых «домашний компьютер»? Редко у кого из них на материнской плате присутствует такой порт. Да и при покупке компьютера, конечно же, не задумывались о возможности обработки видео. Решение — на рисунке. Стандартная PCI плата IEEE-1394 и шнур к ней, производитель себя не называет (видимо, из скромности).

С виду — сама невзрачность, да и стоимость такого добра нынче около $10-15. Но это — все, что требуется для «правильного» перегона цифрового видео на жесткий диск компьютера для дальнейшей обработки. Если вы, конечно, запаслись необходимой программой. Впрочем, дальнейшие искания убедят вас, что пресловутый захват вполне можно производить и с помощью «программ-комбайнов», а то и вовсе с помощью встроенного в Windows XP хоть и примитивного, но видеоредактора, называемого Windows Movie Maker .

Итак, распечатывайте эту фотографию и — в ближайшую лавку компьютерных комплектующих! Пусть вас не смущает цена, ведь не секрет, что за одну лишь яркую наклейку с именем известного производителя подчас просят втрое против noname-изделия. Как правило, платы и кабели «врассыпуху» от неизвестных производителей работают ничуть не хуже тех, что продаются в красочных коробках. Если же хотите прежде услышать мнения других людей, прочтите соответствующее в форуме.

И, наконец, последний совет (если вы еще не ушли в магазин). Захватите с собой вашу видеокамеру. Дело в том, что производители встраивают в камеры разные типы портов IEEE 1394: 4 или 6-пиновые. Соответственно, в продаже могут быть и разные платы, разные кабели. Попросите продавца подобрать вам такую плату и такой кабель, которые подходят друг к другу, и, разумеется, к вашей камере.

Остается лишь вставить плату в PCI-слот компьютера (в Windows XP драйверы установятся автоматически), и подключить камеру. Имейте в виду: чтобы ваша камера опозналась системой как цифровое видеоустройство, она должна быть включенной и находиться в режиме Play, при этом те камеры, где есть переключатель режимов Video/Memory, должны быть включены в режим Video. В процессе установки драйверов могут быть затребованы необходимые файлы, находящиеся на диске с драйверами к вашей камере.

Если вы подключили все как полагается, в Диспетчере устройств появятся два новых пункта:

А в трее рядом с часами появится значок, обозначающий готовое к работе цифровое видеоустройство:

Теперь ваша камера может работать в связке с компьютером как DV-камкордер, подчиняясь командам управляющей программы. Об этих программах читайте в соответствующем разделе Путеводителя .

При разработке идеального ПК особо важное значение приобретает правильный выбор шины для подключения периферийных устройств. Этот канал связи между компьютером и его компонентами оказывает существенное влияние на производительность ПК и его стоимость.

Ieee 1394 (Firewire, iLink)

IEEE 1394 (Firewire, iLink) – это последовательная высокоскоростная шина, предназначенная для обмена цифровой информацией между компьютером и другими электронными устройствами. Эта шина также идеально подходит для работы мультимедийных приложений в реальном времени. Интерфейс IEEE-1394 разрабатывался для того, чтобы обеспечить высокоскоростной доступ, главным образом к устройствам хранения информации, таким как жесткие диски, приводы CD и DVD.

Технические характеристики ieee 1394

Скорость передачи данных до 400 Mbits/s по стандарту IEEE-1394a и 800 Mbits/s по стандарту IEEE-1394b,

16-ти разрядный адрес позволяет адресовать до 64K узлов на шине

Предельная теоретическая длина шины 224 метра

- "горячее" подключение/отключение без потери данных

Автоматическое конфигурирование, аналогичное Plug&Play

Произвольная топология шины - по аналогии с локальными сетями может использоваться как "звезда" так и общая шина (только в виде цепочки, в отличие от сети на коаксиальном кабеле)

Отсутствие терминаторов (при подключении к SCSIна последнем устройстве необходим терминатор)

Возможность обмена с гарантированной пропускной способностью, что крайне необходимо для передачи видеоизображений

Максимальное расстояние между двумя устройствами в цепочке по IEEE-1394a - 4.5 м, по IEEE-1394b - 100 м.

При этом шина обеспечивает:

1. цифровой интерфейс - позволяет передавать данные между цифровыми устройствами без потерь информации

2. небольшой размер - тонкий кабель заменяет груду громоздких проводов

3. простота в использовании - отсутствие терминаторов, идентификаторов устройств или предварительной установки

4. небольшая стоимость для конечных пользователей

5. возможность обработки мультимедиа-сигнала в реальном времени

6. открытая архитектура - отсутствие необходимости использования специального программного обеспечения

Работа шины ieee 1394

Стандарт 1394 определяет общую структуру шины, а также протокол передачи данных и разделения носителя. Древообразная структура шины всегда имеет "корневое" устройство, от которого происходит ветвление к логическим "узлам", находящимся в других физических устройствах. Корневое устройство отвечает за определенные функции управления. Так, если это ПК, он может содержать мост между шинами 1394 и PCI и выполнять некоторые дополнительные функции по управлению шиной. Корневое устройство определяется во время инициализации и, будучи однажды выбранным, остается таковым на все время подключения к шине.

рис. 1. Пример топологии IEEE-1394.

Сеть 1394 может включать до 63 узлов, каждый из которых имеет свой 6-разрядный физический идентификационный номер. Несколько сетей могут быть соединены между собой мостами. Максимальное количество соединенных шин в системе – 1023. При этом каждая шина идентифицируется отдельным 10-разрядным номером. Таким образом, 16-разрядный адрес позволяет иметь до 64449 узлов в системе. Поскольку разрядность адресов устройств 64 бита, а 16 из них используются для спецификации узлов и сетей, остается 48 бит для адресного пространства, максимальный размер которого 256 Терабайт (256х10244 байт) для каждого узла. Конструкция шины удивительно проста. Устройства могут подключаться к любому доступному порту (на каждом устройстве обычно 1 – 3 порта). Шина допускает "горячее" подключение – соединение или разъединение при включенном питании. Нет также необходимости в каких-либо адресных переключателях, поскольку отсутствуют электронные адреса.

Каждый раз, когда узел добавляется или изымается из сети, топология шины автоматически переконфигурируется в соответствии с шинным протоколом. Однако есть несколько ограничений. Между любыми двумя узлами может существовать не больше 16 сетевых сегментов, а в результате соединения устройств не должны образовываться петли. К тому же для поддержки качества сигналов длина стандартного кабеля, соединяющего два узла, не должна превышать 4,5 м. С технической точки зрения работа по подключению устройств к сети тривиальна.

Похожие статьи