Метрика программного обеспечения. Метрики как средство управления качеством

14.05.2019

В этой статье я хочу рассмотреть одни из самых важных QA метрик на мой взгляд. Это будут такие показатели, коэффициенты и индикаторы, которые позволят охватить общую картину происходящего на проекте с точки зрения качества и определить шаги по его улучшению. Метрики будут касаться 5 разных областей: требования, качество ПО, эффективность команды тестирования, качество работы QA и обратная связь. Важно измерять и отслеживать показатели одновременно в различных срезах процесса разработки ПО, чтобы обнаруживать общие, корневые проблемы, уметь настраивать и оптимизировать весь процесс

Группа 1 - Требования к разрабатываемому ПО

Эта группа метрик позволит оценить, насколько мы проработали требования (user story) к ПО, определить уязвимые места и наиболее сложные, потенциально проблемные фичи ПО, понять, где требуется особый контроль:

1. Тестовое покрытие требования

Иными словами, это количество тестов на 1 требование.

Назначение метрики: выявить слабые места в тестовом покрытии, подсветить риски.

  • Конечно, данная метрика будет работать, только если требования хорошо декомпозированы и более или менее равнозначные. Разумеется это не всегда возможно, но если получается сделать требования достаточно атомарными, то данная метрика покажет отклонение покрытия каждого требования от среднего уровня. Чем больше значение отличается от 1, тем меньше\больше тестов написано для одного требования, чем обычно.
  • Важнее всего обратить внимание на требования, для которых коэффициент будет равен или близок к 0. Для них нужно рассмотреть возможность добавления тестов.
  • Если требования не атомарные, то данная метрика позволит убедиться только в том, что для каждого требования есть хотя бы 1 тест. Для этого коэффициент всегда должен быть больше 0.

2. Степень взаимосвязанности требований

Метрика вычисляется как среднее количество связей каждого требования с остальными требованиями.

Назначение метрики: дать основание для оценки сроков тестирования и учета возможных рисков. Зная степень взаимного влияния требований друг на друга можно, например, запланировать дополнительное время и кейсы для сквозного тестирования, проработать регрессионные проверки, посмотреть в сторону интеграции и т.п.

  • Значение этой метрики будет находиться от 0 до 1. 1 означает, что каждое требование связано с каждым, а 0 – что взаимосвязей нет.
  • Тут сложно вводить какие-то ограничения для значений данного коэффициента, многое зависит от специфики функционала, архитектуры, технологий. Однако, по своему опыту могу сказать, что хорошо, когда степень связанности не превышает 0,2-0,3. В противном случае доработка в рамках одного из требований будет вести к цепочке изменений, а значит и возможных ошибок, в значительной части продукта.

3. Коэффициент стабильности требований

Назначение метрики: показать, как много уже реализованных требований приходиться переделывать от релиза к релизу при разработке новых фич.

  • Разумеется, полностью изолированного функционала не существует, но количество новых требований должно преобладать над изменяемыми а коэффициент желательно должен быть меньше 0,5. В этом случае мы внедряем новых фич в 2 раза больше, чем переделываем существующих.
  • Если коэффициент выше 0,5, особенно если больше 1, то это скорее всего значит, что ранее мы сделали то, что оказалось ненужным. Команда фокусируется не на создании новых ценностей для бизнеса, а на переделывании ранее выпущенных фич.
  • Также метрика дает представление о том, насколько легко масштабируется функционал системы, добавляются новые возможности.

Группа 2 - Качество разрабатываемого продукта

Как следует из названия, эта группа метрик демонстрирует качество ПО, а также и качество самой разработки.

1. Плотность дефектов

Вычисляется доля дефектов, приходящаяся на отдельный модуль в течение итерации или релиза.

Назначение метрики: подсветить, какая часть ПО является наиболее проблемной. Эта информация поможет при оценке и планировании работ с данным модулем а также при анализе рисков.

  • Причины большого количества дефектов к каком-то одном конкретном модуле (коэффициент больше 0,3) могут быть различны: некачественные требования, квалификация разработчика, техническая сложность и т.д. В любом случае данная метрика сразу обратит наше внимание на проблемную зону.

2. Коэффициент регрессии

Назначение метрики: показать, на что уходят усилия команды: занимаемся ли мы больше созданием и отладкой новых фич или основную часть времени вынуждены латать уже существующие части ПО

  • Чем ближе коэффициент к 0, тем меньше было внесено ошибок в существующий функционал при реализации новых требований. Если значение больше 0,5, то мы больше половины времени тратим на восстановление работавших ранее функций ПО

3. Коэффициент повторно открытых дефектов

Назначение метрики: дать оценку качеству разработки и исправления дефектов, а также сложности продукта или отдельного модуля

  • Эту метрику можно рассчитывать для всего ПО, отдельного модуля или функциональности. Чем полученное значение ближе к 0, тем меньше при разработке повторяются старые ошибки.
  • Если коэффициент получился больше 0,2-0,3, это может говорить либо о технической сложности модуля и высокой связанности требований в нем, либо о корявой архитектуре, либо о том, что предыдущий фикс был сделан некачественно.

4. Средняя стоимость исправления дефекта

Отношение суммы затрат понесенных командой при работе со всеми дефектами (например, в рамках релиза) к общему числу дефектов.

Назначение метрики: показать как дорого нам обходиться обнаружение и исправление каждого дефекта. Это даст возможность посчитать выгоду от сокращения числа допускаемых ошибок, оценить целесообразность соответствующих техник.

  • Каких-либо правильных значений тут конечно нет, все будет определяться спецификой конкретной ситуации

5. Количество дефектов в коде конкретного разработчика

Назначение метрики: подсветить возможные сложности в команде разработки, кому из специалистов не хватает опыта, знаний или времени, нужна помощь.

  • Если, например, 50% всех дефектов приходиться на 1 разработчика, а всего в команде их 5, то тут явно есть проблема. Из этого не следует, что данный программист плохо работает, но сигнализирует обязательно разобраться в причинах подобной ситуации.
  • Метрика помимо прочего может быть индикатором особенно сложного для разработки и поддержки модуля\функционала\системы.

Группа 3 – Возможности и эффективность команды QA

Основная задача данной группы метрик заключается в том, чтобы выразить в цифрах, на что способна команда тестирования. Эти показатели можно рассчитывать и сравнивать на регулярной основе, анализировать тенденции, наблюдать по ним, как на работу команды влияют те или иные изменения.

1. Скорость работы (velocity) команды QA

Рассчитывается как отношение реализованных story points (или требований, или user stories) за несколько, например, 4-5 итераций (Sprint) к количеству выбранных итераций.

Назначение метрики: численно выразить возможности, скорость работы команды для дальнейшего планирования объема работ и анализа трендов развития

  • Метрика позволяет следить за скоростью работы QA, наблюдать за тем, какие внутренние процессы или внешние воздействия на команду могут на эту скорость повлиять.

2. Среднее время жизни дефекта

Общее время, в течение которого были открытыми дефекты, найденные в рамках итерации или релиза к сумме дефектов.

Назначение метрики: показать, сколько в среднем времени уходит на работу с одним дефектом: на его регистрацию, исправление и воспроизведение. Данный показатель позволит оценить время, необходимое на тестирование, выделить области ПО с которыми возникают наибольшие сложности.

  • Обычно время жизни дефекта, это все время от его создания (статус Created) до закрытия (Closed) за вычетом всех возможных Postponed и Hold. Любой баг-трекер позволяет рассчитать и выгрузить данную информацию для отдельного спринта или релиза.
  • Также среднее время жизни дефекта можно рассчитывать для различных модулей и функций ПО, или, что самое интересное, отдельно для каждого из тестировщиков и разработчиков из команды. Так есть шанс выявить особенно сложные модули или слабое звено в команде ПО.

Группа 4 - Качество работы команды тестирования

Задача этого набора метрик оценить насколько качественно тестировщики выполняют свои задачи, определить уровень компетенций и зрелости команды QA. Обладая таким набором показателей можно сравнивать команду с ней же самой в разные моменты времени или с другими, внешними группами тестирования.

1. Эффективность тестов и тестовых наборов

Назначение метрики: показать как много ошибок в среднем позволяют обнаружить наши кейсы. Эта метрика отражает качество тест дизайна и помогает следить за тенденцией его изменения.

  • Лучше всего рассчитывать данную метрику для всех наборов тестов: для отдельных групп функциональных проверок, регрессионного набора, Smoke тестирования и т.д.
  • Данный показатель «убойности» тестов позволяет мониторить эффективность каждого из наборов, как она меняется с течением времени и дополнять их «свежими» тестами.

2. Коэффициент ошибок, пропущенных на продуктив

Кол-во ошибок обнаруженных после выпуска релиза \ общее кол-во ошибок в ПО обнаруженных в процессе тестирования и после выпуска

Назначение метрики: продемонстрировать качество тестирования и эффективность обнаружения ошибок - какая доля дефектов была отфильтрована, а какая прошла на продуктив.

  • Допустимый процент ошибок, которые были пропущены на продуктив, конечно же будет зависеть от многих факторов. Однако, если коэффициент получился >0,1 – это плохо. Это значит, что каждый десятый дефект не был обнаружен во время тестирования и привел к проблемам в ПО, уже переданном пользователям.

3. Реальное время работы команды QA

Отношение времени потраченного командой непосредственно на QA активности к общему кололичеству часов.

Назначение метрики: во-первых, увеличить точность планирования, а во-вторых, отслеживать и управлять эффективностью работы той или иной команды.

  • Целевые активности, это анализ, дизайн, оценки, тестирование, рабочие встречи и многое другое. Возможные побочные вещи - это простой из-за блокеров, проблемы в коммуникациях, недоступность ресурсов и т.п.
  • Естественно, данный коэффициент никогда не будет равен 1. Практика показывает, что для эффективных команд он может составлять 0,5-0,6.

4. Точность оценки времени по областям\видам\типам работ

Назначение метрики: позволяет использовать поправочный коэффициент для последующих оценок.

  • Степень точности оценки можно определить для всей команды или отдельных тестировщиков, для всей системы или отдельных модулей ПО.

5. Доля неподтвержденных (отклоненных) дефектов

Назначение метрики: показать сколько дефектов были заведены «вхолостую».

  • Если доля дефектов, которые были отклонены превышает 20%, то в команде может наблюдаться рассинхронизация в понимании, что является дефектом, а что нет

Группа 5 - Обратная связь и удовлетворенность пользователей

И в заключение, группа метрик, показывающая, как продукт был принят конечными пользователями, насколько он соответствовал их ожиданиям. Но важна не только обратная связь о ПО: еще одна важная задача этой группы метрик - показать, удовлетворены ли пользователи процессом взаимодействия с командой ИТ в целом и QA в частности.

1. Удовлетворенность пользователей ИТ сервисом

Регулярный опрос удовлетворенности пользователей сервисом ИТ с выставлением баллов.

Назначение метрики: показать, доверяют ли пользователи команде ИТ, понимают ли, как и почему организована ее работа, насколько эта работа оправдывает ожидания.

  • Метрика может служить индикатором того, что необходимо сфокусироваться на оптимизации процесса или сделать его понятнее и прозрачнее для пользователей.
  • Расчет показателя удовлетворенности можно проводить на основе результатов опроса по итогам релиза. Собираем все оценки и считаем средний балл. Далее можно повторно рассчитать такой балл, после того как будут сделаны изменения в процессе.

2. Удовлетворенность пользователей продуктом

Регулярный опрос пользователей о том, насколько они удовлетворены продуктом.

Назначение метрики: определить, насколько разрабатываемый продукт соответствует ожиданиям пользователей, в том ли направлении мы движемся, правильно ли определяем важность фич и выбираем варианты решений.

  • Для расчета этой метрики также проводим опрос пользователей и вычисляем средний балл. Рассчитывая такой показатель на регулярной основе (например, после каждого релиза) можно следить за трендом удовлетворенности пользователей.

3. Вовлеченность стейкхолдеров

Количество инициатив и предложений по улучшению процесса и продукта, поступивших в течение итерации (релиза) со стороны стейкхолдеров

Назначение метрики: определить степень участия внешних стейкхолдеров в работе над продуктом. Имея на руках такую метрику можно сориентироваться, где требуется получить обратную связь, чтобы однажды не столкнуться с презрением и ненавистью проблемами и непониманием.

Мы выпустили новую книгу «Контент-маркетинг в социальных сетях: Как засесть в голову подписчиков и влюбить их в свой бренд».

Подписаться

Создаем отчет. В метриках выбираем, «Достижение целей» – «Цель, на которую у вас настроена конверсия». Обычно это страница «Спасибо за покупку».

В итоге получим данные о том, сколько по каждой РК было покупок и сколько было потрачено на привлечение пользователей, их совершивших. Количество конверсий делим на стоимость кликов, получаем стоимость одного лида. Если у вас настроена , можно добавить столбец «Доход», чтобы оценить полученную прибыль.

Сегменты для ретаргетинга и корректировки ставок: новый уровень отношений с потенциальными покупателями

В этом разделе мы создадим и сохраним Яндекс.Метрики, определим корректировки, чтобы использовать их при настройке кампаний в Директе.

Не забывайте выставлять период времени так, чтобы выборка была репрезентативна. Нужно, чтобы данные строились на основе поведения большой группы посетителей.

Пол и возраст – корректировка

После создания этого отчета мы сможем увидеть, кто лучше покупает у нас на сайте, мужчины или женщины, и каков возраст таких покупателей. После этого ничто не помешает нам установить корректировку ставок на данный сегмент.

Выбираем: «Отчеты» – «Посетители» – «Пол» (1).

В итоге делаем корректировку на женщин. При этом полученные данные помогли нам увидеть, что представители сильного пола тоже проводят время на нашем сайте. С этой информацией нужно работать. Например, написать соответствующие объявления.

Время и часы – корректировка

У ваших посетителей может быть разная активность в течение дня или недели, поэтому в данном пункте мы выявим наиболее конверсионные дни и часы для вашего ресурса, после чего можно будет установить корректировки по времени в Директе.

«Отчеты» – «Посетители» – «Посещаемость по времени суток».

В группировках добавляем: Поведение: дата и время – «Фрагменты даты/времени» – «День недели визита»(2). Выбираем цель – сортируем по конверсии. Получаем отчет, в котором показано, в какой день и в каком часу она (конверсия) максимальна.

География

«Отчеты» – «Посетители» – «География».

Отчет поможет сайтам определить регионы, в которых продажи идут лучше, чем в других. Обычно для многих ниш львиную долю продаж приносят Москва или Петербург и их области. Поэтому основная масса рекламодателей разделяет свои РК на города федерального значения и остальную Россию.

Отчет по географии поможет вам найти курс для дальнейшего дробления кампаний в Директе или выявить региональные РК со слабой отдачей.

Сегмент «Забытая корзина»

Создаем: «Отчеты» – «Посетители» – «Время с первого визита».

В целях выберем макроцель – покупка, запись на консультацию в офисе и т. д. Сортируем по конверсии. Выбираем первые 2 строки для построения графика. В итоге получим информацию о том, сколько времени наши клиенты тратят на обдумывание решения о покупке. Кроме того, мы сможем использовать данные в интерфейсе Директа, чтобы не показывать рекламу тем, кто уже не нуждается в нашем предложении.

Из отчета видим, что в основном цель достигается в день визита, но и на протяжении месяца пользователи возвращаются и конвертируются.

Теперь сам сегмент. Создадим его для тех, кто оставил товар в корзине, но так и не купил.

Зайдем в уже знакомый отчет «Источники» – «Сводка», оставляем галочку только в графе «Переходы с рекламы», нажимаем + и в меню выбираем: «Поведение» – «Достижение целей» – «Цель: добавил в корзину» (цель javascript должна быть настроена на кнопки «Добавить в корзину»). Сохраняем и называем сегмент, теперь переходим в Директ.

Находим объявление, которое хотим показать этому сегменту, щелкаем в «Условия подбора аудитории», затем – в «Добавить условие».

Отчеты для анализа сайта: изучаем и улучшаем

Вебвизор

Его данные помогут нам выявить слабые места сайта, понять, какие трудности возникают у пользователей.

Рассмотрим сегменты Вебвизора для визитов, в которых была достигнута наша макроцель.

Сделаем выборку и посмотрим, как пользователи достигали ее. Возможно, мы поймем поведенческие паттерны наших покупателей, о которых мы и не догадывались. Вдруг перед отправкой заказа большинство из них просматривало альбом с фото или взаимодействовало с интерактивными элементами на сайте, а, может быть, долго останавливалось на отзывах? Такие данные помогут решить, как правильно расположить и оформить блоки на сайте.

Второй сегмент – пользователи, которые провели достаточно времени на нашем сайте, чтобы совершить покупку, но так и не совершили. Анализ подобных визитов даст понимание основных сложностей, с которыми сталкиваются посетители.

Карты скроллинга / кликов

Карта скроллинга поможет понять, на каком экране посетители проводят больше времени. Возможно, какая-то нужная информация, которая поможет принять решение о покупке, находится в «холодной зоне» и ее нужно перенести в другое место. Например, клиент рекламируется только по запросам с указанием станции метро, а карта с адресом и схемой проезда расположена внизу страницы.

Результат – большой процент отказов, потому что клиентам, приходящим по таким запросам, важно местоположение офиса организации.

Поскольку количественные методы хорошо зарекомендовали себя в других областях, многие теоретики и практики информатики пытались перенести данный подход и в разработку программного обеспечения . Как сказал Том ДеМарко, «вы не можете контролировать то, что не можете измерить».

Метрики

Набор используемых метрик включает:

  • порядок роста (имеется в виду анализ алгоритмов в терминах асимптотического анализа и O-нотации),
  • анализ функциональных точек,
  • количество ошибок на 1000 строк кода,
  • степень покрытия кода тестированием,
  • количество классов и интерфейсов ,
  • метрики программного пакета от Роберта Сесиль Мартина,

Критика

Потенциальные недостатки подхода, на которые нацелена критика:

  • Неэтичность: Утверждается, что неэтично судить о производительности программиста по метрикам, введенным для оценки эффективности программного кода. Такие известные метрики, как количество строк кода и цикломатическая сложность, часто дают поверхностное представление об "удачности" выбора того или иного подхода при решении поставленных задач, однако, нередко они рассматриваются, как инструмент оценки качества работы разработчика. Такой подход достаточно часто приводит к обратному эффекту, приводя к появлению в коде более длинных конструкций и избыточных необязательных методов.
  • Замещение «управления людьми» на «управление цифрами», которое не учитывает опыт сотрудников и их другие качества
  • Искажение: Процесс измерения может быть искажён за счёт того, что сотрудники знают об измеряемых показателях и стремятся оптимизировать эти показатели, а не свою работу. Например, если количество строк исходного кода является важным показателем, то программисты будут стремиться писать как можно больше строк и не будут использовать способы упрощения кода, сокращающие количество строк.
  • Неточность: Нет метрик, которые были бы одновременно и значимы и достаточно точны. Количество строк кода - это просто количество строк, этот показатель не даёт представление о сложности решаемой проблемы. Анализ функциональных точек был разработан с целью лучшего измерения сложности кода и спецификации, но он использует личные оценки измеряющего, поэтому разные люди получат разные результаты.

См. также

  • Основные метрики кода: LOC, SLOC, Джилб, Маккейб, Холстед, ООП и другие

Wikimedia Foundation . 2010 .

  • Одометр
  • Стетоскоп

Смотреть что такое "Метрика программного обеспечения" в других словарях:

    Качество программного обеспечения

    Оценка затрат на разработку программного обеспечения - При разработке программного обеспечения очень важной является проблема оценки материальных затрат и/или затрат времени на успешное завершение проекта. Существует множество методов для выполнения такой оценки, среди которых можно выделить общие… … Википедия

    Метрика - имеет несколько значений: В математике Метрика функция, определяющая расстояния в метрическом пространстве. Метрика альтернативное название метрического тензора, в частности Метрика пространства времени 4 тензор, который… … Википедия

    Покрытие кода - У этого термина существуют и другие значения, см. Покрытие. Покрытие кода мера, используемая при тестировании программного обеспечения. Она показывает процент, насколько исходный код программы был протестирован. Техника покрытия кода была… … Википедия

    Количество строк кода - См. также: Объем кода Количество строк кода (англ. Source Lines of Code SLOC) это метрика программного обеспечения, используемая для измерения его объёма с помощью подсчёта количества строк в тексте исходного кода. Как правило,… … Википедия

    Нагрузочное тестирование - (англ. Load Testing) определение или сбор показателей производительности и времени отклика программно технической системы или устройства в ответ на внешний запрос с целью установления соответствия требованиям, предъявляемым к данной системе … Википедия

    Тестирование производительности - В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

    Scrum - Разработка программного обеспечения Процесс разработки ПО Шаги процесса Анализ Проектирование Программирование Докумен … Википедия

    Цикломатическая сложность - программы (англ. Cyclomatic complexity of a program) структурная (или топологическая) мера сложности программ, используемая для измерения качества программного обеспечения, основанная на методах статического анализа кода. ЦСП равна… … Википедия

    Zabbix - 1.1 alpha 6 running under GNU/Linux … Википедия

Берг О.Ю.

МЕТРИКИ ОЦЕНКИ КАЧЕСТВА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Поскольку обработка данных затрагивает нашу жизнь всё в большей степени, ошибки ЭВМ могут теперь иметь такие последствия, как нанесение материального ущерба, нарушение секретности и многие другие, включая смерть. Надёжность программного обеспечения (ПО) есть вероятность его работы без отказов в течение определённого периода времени, рассчитанная с учётом стоимости для пользователя каждого отказа. Следовательно, необходимо иметь возможность измерять качество ПО на протяжении всего цикла разработки. Качество ПО целесообразно оценивать на основе критериев качества , которые должны:

Численно характеризовать основную целевую функцию программы;

Обеспечивать возможность определения затрат, необходимых для достижения требуемого уровня качества, а также степени влияния на показатель качества различных внешних факторов;

Быть по возможности простым, хорошо измеримым и иметь малую дисперсию.

Для измерения характеристик и критериев качества используют метрики. В настоящее время известно большое количество метрик, оценивающих отдельные производственные и эксплуатационные свойства ПО . Однако погоня за их универсальностью, игнорирование области применения разрабатываемого ПО, этапов жизненного цикла существенно снижает эффективность их использования.

Метрика качества программ - система измерений качества программ. Эти измерения могут проводиться на уровне критериев качества программ или на уровне отдельных характеристик качества. В первом случае система измерений позволяет непосредственно сравнивать программы по качеству. При этом сами измерения не могут быть проведены без субъективных оценок свойств программ. Во втором случае измерения характеристик можно выполнить объективно и достоверно, но оценка качества ПО в целом будет связана с субъективной интерпретацией получаемых оценок.

В исследовании метрик ПО различают два основных направления:

Поиск метрик, характеризующих наиболее специфические свойства программ, т.е. метрик оценки самого ПО;

Использование метрик для оценки технических характеристик и факторов разработки программ, т.е. метрик оценки условий разработки программ.

По виду информации, получаемой при оценке качества ПО метрики можно разбить на три группы :

Метрики, оценивающие отклонение от нормы характеристик исходных проектных материалов. Они устанавливают полноту заданных технических характеристик исходного кода.

Метрики, позволяющие прогнозировать качество разрабатываемого ПО. Они заданы на множестве

возможных вариантов решений поставленной задачи и их реализации и определяют качество ПО, которое

будет достигнуто в итоге.

Метрики, по которым принимается решение о соответствии конечного ПО заданным требованиям. Они позволяют оценить соответствие разработки заданным требованиям.

В настоящее время в мировой практике используется несколько сотен метрик программ. Существующие качественные оценки программ можно сгруппировать по шести направлениям:

Оценки топологической и информационной сложности программ;

Оценки надежности программных систем, позволяющие прогнозировать отказовые ситуации;

Оценки производительности ПО и повышения его эффективности путем выявления ошибок проектирования;

Оценки уровня языковых средств и их применения;

Оценки трудности восприятия и понимания программных текстов, ориентированные на

психологические факторы, существенные для сопровождения и модификации программ;

Оценки производительности труда программистов для прогнозирования сроков разработки программ и планирования работ по созданию программных комплексов.

В зависимости от характеристик и особенностей применяемых метрик им ставятся в соответствие различные измерительные шкалы:

Номинальной шкале соответствуют метрики, классифицирующие программы на типы по признаку наличия или отсутствия некоторой характеристики без учета градаций;

Порядковой шкале соответствуют метрики, позволяющие ранжировать некоторое характеристики путем сравнения с опорными значениями, т.е. измерение по этой шкале фактически определяет взаимное положение конкретных программ;

Интервальной шкале соответствуют метрики, которые показывают не только относительное положение программ, но и то, как далеко они отстоят друг от друга;

Относительной шкале соответствуют метрики, позволяющие не только расположить программы определенным образом и оценить их положение относительно друг друга, но и определить, как далеко оценки отстоят от границы, начиная с которой характеристика может быть измерена.

Анализ технологического опыта лидеров производства ПО показывает, насколько дорого обходится несовершенство ненаучного прогноза разрешимости и трудозатрат, сложности программ, негибкость контроля и управления их разработкой и многое другое, указывающее на отсутствие сквозной методической поддержки и приводящее в конечном итоге к его несоответствию требованиям пользователя, требуемому стандарту и к последующей болезненной и трудоемкой его переделке. Эти обстоятельства, требуют тщательного отбора методик, моделей, методов оценки качества ПО, учета ограничений их пригодности для различных жизненных циклов, установления порядка их совместного использования, применения избыточного разномодельного исследования одних и тех же показателей для повышения достоверности текущих оценок, накопления и интеграции разнородной метрической информации для принятия своевременных производственных решений и заключительной сертификации продукции.

В заключение, необходимо отметить, что при выборе метрик оценки качества ПО необходимо руководствоваться следующими правилами :

метрика должна иметь смысл, как для заказчика, так и для исполнителя;

метрика должна быть объективна и ее определение недвусмысленно;

метрика должна давать возможность отслеживать тенденцию изменений;

метрика может быть автоматизирована.

Тщательно проведенный метрический анализ качества в соответствии с целями разработки создает основу для корректного планирования и контроля затрат на качество для достижения требуемых показателей и эффективности использования ресурсов.

ЛИТЕРАТУРА

1. Liu K., Zhou S. Yang H., Quality Metrics of Object Oriented Design for Software Development and Re-development,- Proceedings of the First Asia-Pacific Conference on Quality Software, 2000 IEEE

2. Boehm B. W., Brown J. R., Lipow M. QUANTITATIVE EVALUATION OF SOFTWARE QUALITY Proceedings of the 2nd International Conference on Software Engineering on International conference on software engineering October 1976

3. Houdek F., Kempter H. Quality patterns - An approach to packaging software engineering experience ACM SIGSOFT Software Engineering Notes , Proceedings of the 1997 symposium on Symposium on software reusability May 1997

4. У. Ройс Управление проектами по созданию программного обеспечения, Москва, ЛОРИ

С учетом новых методик, таких как экстремальное программирование или Scrum, разработка может осуществляться быстрее, а наличие новых платформ и абстрагирование от нижних уровней позволяют избегать многих ошибок. Тем не менее контроль качества должен осуществляться на самых различных уровнях – начиная с методологического и заканчивая технологическим уровнем, когда процессы контроля качества протекают в автоматическом режиме, например при автоматических сборках проекта. Однако любой контроль предполагает наличие метрик, которые позволяют оценить достижение того или иного уровня качества программного проекта.

Метрики кода

Метрика программного обеспечения (software metric) – численная мера, позволяющая оценить определенные свойства конкретного участка программного кода. Для каждой метрики обычно существуют ее эталонные показатели, указывающие, при каких крайних значениях стоит обратить внимание на данный участок кода. Метрики кода разделяются на категории и могут оценивать совершенно различные аспекты программной системы: сложность и структурированность программного кода, связность компонентов, относительный объем программных компонентов и др. Наиболее простая для понимания метрика – количество строк кода в программной системе, – хотя и элементарно вычисляется, но в совокупности с другими метриками может служить для получения формализованных данных для оценки кода. Например, можно построить соотношение между количеством строк кода в классе и количеством методов/свойств в классе, получив характеристику, показывающую, насколько методы данного класса являются объемными. Кроме того, такие оценки можно использовать в совокупности с метриками сложности (например, цикломатической сложностью Мак-Кейба) для определения наиболее сложных участков в программном коде и принятия соответствующих мер.

Метрики кода могут служить также для выявления архитектурных особенностей. Наибольший эффект применение таких метрик дает при анализе больших программных систем, когда ручной анализ и просмотр исходного кода может занимать значительное время. Например, можно различным образом визуализировать метрики, как указано на рис. 1, где каждый программный блок представляется в виде прямоугольника, при этом длина каждой стороны прямоугольника отражает значение какой-либо из метрик (например, сложность, структурированность и т.д.). Подобное представление можно строить как для высокоуровневых программных сущностей (сборки, библиотеки, пространства имен), так и для более частных элементов (свойства, методы). При этом при анализе высокоуровневой диаграммы можно быстро выявить проблемные библиотеки и спуститься на уровень ниже, чтобы исследовать проблемные сущности.

Метрики программного кода являются важным инструментом и уже сегодня используются многими производителями ПО. Так, при сертификации на более высокие уровни по моделям ISO/IEC или CMM/CMMI использование метрик кода является обязательным, что позволяет в определенной степени достичь контролируемости процесса разработки.

Существует множество различных классификаций метрик программного обеспечения, трактующих метрики с различных позиций и ранжирующих одни и те же характеристики по различным критериям. Одной из таких классификаций может служить разделение метрик на группы по субъектам оценки:

    размер – сравнительная оценка размеров ПО;

    сложность – оценка архитектуры и алгоритмов программной системы (отрицательные показатели этой группы метрик говорят о проблемах, с которыми можно столкнуться при развитии, поддержке и отладке программного кода);

    поддерживаемость – оценка потенциала программной системы для последующей модификации.

Безусловно, существуют и другие группы, которые не вошли в эту классификацию, например, метрики удовлетворенности пользователя или показатели соответствия исходным требованиям, но в данном случае нас будет интересовать качество программного обеспечения с точки зрения именно технической реализации.

Имеет ли значение размер?

Метрика SLOC (source lines of code) отражает количество строк исходного кода. Данный показатель не всегда может использоваться для объективной оценки объемов программной системы – его числовое значение зависит от множества случайных факторов, например стиля кодирования. Сравнивать две программные системы лишь по этому критерию вряд ли правомерно, поэтому для SLOC появилось множество производных показателей: количество пустых строк; количество строк, содержащих комментарии; процентное соотношение комментариев; количество строк кода, содержащихся в методах/функциях; среднее количество строк кода на метод/функцию; среднее количество строк кода на класс/пакет; среднее количество строк кода на модуль и т.д.

Кроме SLOC, при оценке размера часто используют показатель «логических» строк кода LSI (logical source instructions), вычисляемый после нормализации (приведения исходного кода к надлежащему виду) листинга: устранение размещения нескольких инструкций на одной строке, пустых строк, очистка от комментариев, форматирование строк кода для инициализации данных и т.д. Такой показатель может служить для более объективной оценки объема системы (показатель с применением нормализации выглядит так же, как и SLOC, – количество строк, но не физических, а логических). У LSI также существуют производные, например метрика, вычисляемая не как физическое количество строк кода на исходном языке программирования, а как количество инструкций на языке более низкого уровня (язык Ассемблера, MSIL и др.), что устраняет необходимость в нормализации.

Другие метрики этого типа базируются на сущностях, относящихся к конкретной парадигме программирования. Наиболее популярной на сегодняшний день является парадигма объектно-ориентированного программирования, однако для функционального и процедурного подхода к программированию также имеется свой специфический набор метрик. С точки зрения объектно-ориентированного подхода размер системы можно вычислять как количество содержащихся в ней классов. Показатель количества классов является одной из основных метрик в данном подходе, однако в зависимости от используемого языка программирования могут применяться такие метрики, как количество пространств имен в проекте, количество структур, перечислений, количество методов и др. Кроме того, можно вычислить «плотность» этих показателей, определив соотношение значений этих метрик. Например, можно вычислить соотношение количества классов к количеству методов и понять, сколько методов в среднем содержится в одном классе. Однако для определения пороговых значений для такого типа метрик требуются дополнительные исследования. Наиболее простым способом определения граничных величин может быть эксперимент, в котором значения этих метрик вычисляются для уже существующих систем. Вычисление подобных соотношений позволит скорректировать представление о системе, которое сложилось на основе количественных метрик.

Напрямую качество системы не зависит от использования данных показателей, однако опытные разработчики со временем могут примерно прогнозировать объем системы на заданный функционал, необходимый заказчику. В этом случае при заметном отклонении от заданных показателей (например, существенном увеличении количества классов при низком количестве методов на класс) стоит задуматься о том, что в системе может присутствовать избыточное количество объектов, и на более ранней стадии выполнить рефакторинг кода.

Сложность

Для оценки и контроля качества кода могут непосредственно использоваться метрики сложности: цикломатическая сложность, связность кода, глубина наследования и др.

Метрика цикломатической сложности (cyclomatic complexity) показывает количество ветвлений управляющего потока программы, увеличенное на единицу. Для вычисления данной метрики на основе исходного кода строится ориентированный граф, содержащий один вход и один выход. При этом вершины графа соотносят с теми участками кода программы, в которых содержатся лишь последовательные вычисления и отсутствуют операторы ветвления и цикла. Дуги в этом случае соотносят с переходами от блока к блоку. При этом каждая вершина графа достижима из начальной, а конечная точка достижима из любой другой. В этом случае цикломатическую сложность можно вычислить как разницу количества дуг и количества вершин, увеличенную на два. Такой показатель может отразить сложность управляющего потока программы и дать сигнал о возможном наличии некачественного участка кода. К сожалению, несмотря на очевидную практическую полезность, эта метрика не способна различать циклические операторы. Кроме того, программные коды, представленные одними и теми же графами, могут иметь совершенно различные по сложности предикаты (логические выражения, содержащие переменную). По этой причине иногда цикломатическую сложность используют одновременно с другими метриками, например с метрикой числа операторов.

Метрика связности классов позволяет определить степень зависимости программных компонентов системы друг от друга. Повышенные значения данной метрики относительно пороговых значений могут говорить о чрезмерной связанности системы, которая появляется из-за слабой модульной инкапсуляции. Такое свойство программной системы может привести к трудностям при повторном использовании кода. На данную метрику можно ориентироваться при построении и переработке архитектуры программной системы. Основными способами уменьшения связности объектов является более строгая инкапсуляция логики в объекты, пересмотр работы алгоритмов с концептуальной точки зрения и структурная декомпозиция. При этом используются фабрики объектов, которые позволяют избежать лишней связности в момент создания экземпляров классов. Благодаря применению сырых значений данной метрики удается снизить связность программной системы, а следовательно, и сложность кода.

Иногда используют вариацию метрики, отражающей связность кода, – количество вызовов операции. Эта метрика позволяет определить количественный показатель связности системы в виде вызовов методов. Метрика подсчитывает вызовы только тех операций, которые определены пользователем. Например, если метод A() вызывает метод B() три раза, то значение этой метрики будет равно единице; если же метод B() вызывается по одному разу из методов A(), C() и D(), то значение метрики будет равняться трем. Однако абсолютное значение данной метрики может существенно изменяться от проекта к проекту в зависимости от подходов к проектированию и кодированию программных систем. Даже в рамках одной и той же команды разработчиков на идентичных проектах значение данной метрики может отличаться в силу субъективных факторов (например, стиля конкретного разработчика при выделении логики в отдельные методы), которые оказывали влияние при построении программной системы.

Прямой результат вычисления этой метрики имеет сомнительное практическое значение, однако в совокупности с суммарным значением метрики количество методов в классе может дать объективную оценку связности системы. Например, если использовать эту метрику наряду с метрикой сложности, а также объемными характеристиками, то по совокупности значений этих метрик можно обнаружить недостаточно качественный код.

Еще одной важной метрикой оценки сложности является средняя глубина наследования, которая вычисляется как среднее значение глубины наследования для всех классов системы, определенных пользователем. При этом не учитываются классы, стоящие не на самом нижнем уровне иерархии наследования. Высокие значения метрики могут сигнализировать о том, что архитекторы программной системы слишком увлеклись приемами объектно-ориентированного программирования, а это может негативно сказываться на дальнейшем развитии системы. Наследование существенно повышает связность, которая при этом может не отражаться остальными метриками оценки системы. Зачастую при построении программного кода можно избежать применения наследования, заменив его равноценными приемами. Например, вместо этого можно использовать инъекцию зависимостей и IoC-контейнеры. Результат вычисления данной метрики, как правило, используется в сыром виде в практических задачах построения архитектуры и рефакторинга. Полученные показатели метрики также можно использовать в более сложных комплексных метриках. Иначе говоря, если значение этой метрики велико, то можно сразу выявить аномалию. Кроме того, эту метрику можно использовать в совокупности с другими, например подсчитать сложность системы по Мак-Кейбу и ее объем, чтобы точнее измерить программную систему.

В целом метрики сложности могут оказать существенную помощь производителям программного обеспечения в процессе контроля и управления качеством программного обеспечения.

Поддерживаемость

Метрики данного типа показывают трудоемкость процесса поддержки и развития программного кода и, как правило, тесно связаны с метриками сложности, но имеют свои особенности, отражающие возможности поддержки системы.

Одной из основных метрик этой категории является метрика Холстеда, в рамках которой определяют четыре измеряемые характеристики программы: число уникальных операторов программы, включая символы-разделители, имена процедур и знаки операций (словарь операторов); число уникальных операндов программы (словарь операндов); общее число операторов в программе; общее число операндов в программе. На основании этих характеристик производятся базовые оценки: составляется словарь программы; определяется длина программы, ее объем и сложность. Далее предлагается вычислить различные меры, которые позволяют оценить программный код. Например, выражение для вычисления качества программирования, сложности понимания программы, умственные затраты на создание программы и др.

Метрика Холстеда носит исключительно информационный характер, тем не менее она остается одной из немногих, которые позволяют количественно оценить показатель поддерживаемости системы в будущем, при этом данный показатель имеет прямую корреляцию с качеством выпускаемого продукта.

Инструмент анализа кода

Разработчики на платформе Microsoft могут воспользоваться версией Visual Studio 2008, которая позволяет вычислять базовый набор основных метрик и отслеживать их в режиме реального времени (рис. 2). Тем не менее основной сценарий использования метрик – это информирование менеджеров разработки о том, что качество продукта, возможно, понизилось или повысилось. Поэтому имеет смысл вычислять такие метрики в процессе сборки проекта.

Visual Stuido 2008 и Microsoft Build не позволяют выстроить серьезную иерархию метрик, и для этого следует воспользоваться другими инструментами, например NDepend, позволяющим для платформы.NETрассчитывать различные типы связности, наследования и абстрактности, интегрируясь в процесс создания программ в соответствии с требованиями конкретной команды разработчиков.

Проблемы при использовании метрик кода

Несмотря на то что метрики позволяют контролировать процесс разработки, работа с ними сопряжена с рядом проблем.

Во-первых, все известные на сегодняшний день метрики кода недостаточно значимы и точны. Они не способны обеспечить получение объективной картины о состоянии программной системы, а лишь выдают показатели, которые вычислены по заданному алгоритму. Во-вторых, процесс измерения может быть искусственно искажен за счет того, что сотрудники будут «оптимизировать» свой программный код так, чтобы метрики выдавали лучшие результаты. Кроме того, формальное использовании метрик не учитывает опыт сотрудников, уровень компании и может принести не только пользу, но и вред.

Тем не менее метрики являются достаточно полезным инструментом в руках разработчиков и менеджеров проектов, позволяющим выявить моменты ухода разработки на более низкий качественный уровень и распознать наиболее сложные участки в системе. Определение числовых показателей может дать новые сведения о разрабатываемом продукте и помочь более грамотно планировать расходы на его дальнейшее развитие.

Сергей Звездин ([email protected]) – аспирант Южно-Уральского государственного университета (Челябинск).

В МГУ открыт портал дистанционного обучения

Школа дистанционного образования Московского государственного университета им. М.В. Ломоносова открыла собственный Internet-портал . На нем предлагается доступ к совместной открытой электронной библиотеке МГУ и Российской академии наук, учебникам и курсам, аудио- и видеоматериалам, а также к образовательным программам с применением дистанционных образовательных технологий. Часть ресурсов портала доступна только слушателям дистанционных программ, оплатившим обучение согласно договору с университетом. Видеоматериалы МГУ теперь доступны на канале университета в YouTube. Образовательный канал содержит записи лекций, а также мероприятий университета.

eLearning только для 17% российских компаний

Исследовательский центр портала SuperJob.ru представил результаты опроса, посвященного онлайн-обучению персонала российских компаний. Среди отечественных работодателей использование электронного обучения в работе с персоналом не слишком распространено. Только 17% компаний предлагают персоналу подобную форму обучения. В основном эти технологии применяют в крупных компаниях со штатом от 5 тыс. человек (50%). Вообще не применяют подобную практику 79% работодателей. Причины кроются либо в отсутствии необходимого технического оборудования, либо в нежелании руководства применять такой вид обучения. В целом опыт дистанционного обучения имеют лишь 11% россиян. Из этого числа 9% респондентов остались довольны результатом, а 2% – недоучились и бросили. Среди тех, кто прошел обучение, мужчин оказалось почти вдвое больше, чем женщин (11% и 6% соответственно). При этом россияне в возрасте от 35 до 55 лет учатся через Internet чаще, чем молодежь. Успешным опытом дистанционного обучения может похвастаться 12% респондентов в возрасте от 40-50 лет и лишь 9% россиян в возрасте до 23 лет.

Итоги конкурса «Максимальная масштабируемость 2009»

Конкурс проектов по высокопроизводительным вычислениям «Максимальная масштабируемость», как и в прошлом году, был приурочен к международному форуму по нанотехнологиям. На победу в нем претендовали ученые из двадцати городов России, однако организаторы, компания Intel и «Российская корпорация нанотехнологий», отдали все призовые места столичным проектам. Гран-при получил Владимир Боченков с химического факультета МГУ им. Ломоносова за проект «Разработка и реализация параллельного алгоритма температурно-ускоренной динамики». Предложенная автором система позволяет исследовать конденсацию наноструктур, молекулярно-лучевую эпитаксию и взаимодействие биологических молекул.

Стартовал чемпионат мира по программированию

В финале 34-го ежегодного командного чемпионата мира по программированию (International Collegiate Programming Contest, ICPC), который проводится ассоциацией Association for Computing Machinery (ACM) и спонсируется IBM, встретятся сто победивших в региональных соревнованиях студенческих команд. Перед ними будут поставлены как минимум восемь задач, которые потребуется решить за 5 часов. Финал пройдет 5 февраля 2010 года в Харбинском инженерном университете (Китай). Среди задач прошлых лет были, например, такие как поиск потерянного в море корабля, триангуляция местоположения испорченного радиопередатчика, вычисление препятствий при игре в гольф, кодирование и декодирование сообщений, печать шрифтом Брайля, поиск выхода из лабиринта. В прошлом году три из четырех золотых медалей завоевали российские команды. На стадии отборочных соревнований в чемпионате участвовало 7109 команд из 1838 университетов 88 стран мира. Второй год подряд чемпионом мира стала команда Санкт-Петербургского государственного университета информационных технологий, механики и оптики.

Похожие статьи