Из чего состоит процессор. Иллюстрация в картинках

13.05.2019

Практически все знают, что в компьютере главным элементом среди всех «железных» компонентов является центральный процессор. Но круг людей, которые представляют себе, как работает процессор, является весьма ограниченным. Большинство пользователей об этом и понятия не имеют. И даже когда система вдруг начинает «тормозить», многие считают, что это процессор плохо работает, и не придают значения другим факторам. Для полного понимания ситуации рассмотрим некоторые аспекты работы ЦП.

Что такое центральный процессор?

Из чего состоит процессор?

Если говорить о том, как работает процессор Intel или его конкурент AMD, нужно посмотреть, как устроены эти чипы. Первый микропроцессор (кстати, именно от Intel, модель 4040) появился еще в далеком 1971 году. Он мог выполнять только простейшие операции сложения и вычитания с обработкой всего лишь 4 бит информации, т. е. имел 4-битную архитектуру.

Современные процессоры, как и первенец, основаны на транзисторах и обладают куда большим быстродействием. Изготавливаются они методом фотолитографии из определенного числа отдельных кремниевых пластинок, составляющих единый кристалл, в который как бы впечатаны транзисторы. Схема создается на специальном ускорителе разогнанными ионами бора. Во внутренней структуре процессоров основными компонентами являются ядра, шины и функциональные частицы, называемые ревизиями.

Основные характеристики

Как и любое другое устройство, процессор характеризуется определенными параметрами, которые, отвечая на вопрос, как работает процессор, обойти стороной нельзя. Прежде всего это:

  • количество ядер;
  • число потоков;
  • размер кэша (внутренней памяти);
  • тактовая частота;
  • быстрота шины.

Пока остановимся на тактовой частоте. Не зря процессор называют сердцем компьютера. Как и сердце, он работает в режиме пульсации с определенным количеством тактов в секунду. Тактовая частота измеряется в МГц или в ГГц. Чем она выше, тем больше операций может выполнить устройство.

На какой частоте работает процессор, можно узнать из его заявленных характеристик или посмотреть информацию в Но в процессе обработки команд частота может меняться, а при разгоне (оверлокинге) увеличиваться до экстремальных пределов. Таким образом, заявленная является всего лишь усредненным показателем.

Количество ядер - показатель, определяющий число вычислительных центров процессора (не путать с потоками - количество ядер и потоков могут не совпадать). За счет такого распределения появляется возможность перенаправления операций на другие ядра, за счет чего повышается общая производительность.

Как работает процессор: обработка команд

Теперь немного о структуре исполняемых команд. Если посмотреть, как работает процессор, нужно четко представлять себе, что любая команда имеет две составляющие - операционную и операндную.

Операционная часть указывает, что должна выполнить в данный момент компьютерная система, операнда определяет то, над чем должен работать именно процессор. Кроме того, ядро процессора может содержать два вычислительных центра (контейнера, потока), которые разделяют выполнение команды на несколько этапов:

  • выработка;
  • дешифрование;
  • выполнение команды;
  • обращение к памяти самого процессора
  • сохранение результата.

Сегодня применяется раздельное кэширование в виде использования двух уровней кэш-памяти, что позволяет избежать перехвата двумя и более командами обращения к одному из блоков памяти.

Процессоры по типу обработки команд разделяют на линейные (выполнение команд в порядке очереди их записи), циклические и разветвляющиеся (выполнение инструкций после обработки условий ветвления).

Выполняемые операции

Среди основных функций, возложенных на процессор, в смысле выполняемых команд или инструкций различают три основные задачи:

  • математические действия на основе арифметико-логического устройства;
  • перемещение данных (информации) из одного типа памяти в другой;
  • принятие решения по исполнению команды, и на его основе - выбор переключения на выполнения других наборов команд.

Взаимодействие с памятью (ПЗУ и ОЗУ)

В этом процессе следует отметить такие компоненты, как шина и канал чтения и записи, которые соединены с запоминающими устройствами. ПЗУ содержит постоянный набор байт. Сначала адресная шина запрашивает у ПЗУ определенный байт, затем передает его на шину данных, после чего канал чтения меняет свое состояние и ПЗУ предоставляет запрошенный байт.

Но процессоры могут не только считывать данные из оперативной памяти, но и записывать их. В этом случае используется канал записи. Но, если разобраться, по большому счету современные компьютеры чисто теоретически могли бы и вовсе обойтись без ОЗУ, поскольку современные микроконтроллеры способны размещать нужные байты данных непосредственно в памяти самого процессорного чипа. Но вот без ПЗУ обойтись никак нельзя.

Кроме всего прочего, старт системы запускается с режима тестирования оборудования (команды BIOS), а только потом управление передается загружаемой операционной системе.

Как проверить, работает ли процессор?

Теперь посмотрим на некоторые аспекты проверки работоспособности процессора. Нужно четко понимать, что, если бы процессор не работал, компьютер бы не смог начать загрузку вообще.

Другое дело, когда требуется посмотреть на показатель использования возможностей процессора в определенный момент. Сделать это можно из стандартного «Диспетчера задач» (напротив любого процесса указано, сколько процентов загрузки процессора он дает). Для визуального определения этого параметра можно воспользоваться вкладкой производительности, где отслеживание изменений происходит в режиме реального времени. Расширенные параметры можно увидеть при помощи специальных программ, например, CPU-Z.

Кроме того, можно задействовать несколько ядер процессора, используя для этого (msconfig) и дополнительные параметры загрузки.

Возможные проблемы

Наконец, несколько слов о проблемах. Вот многие пользователи часто спрашивают, мол, почему процессор работает, а монитор не включается? К центральному процессору эта ситуация не имеет никакого отношения. Дело в том, что при включении любого компьютера сначала тестируется графический адаптер, а только потом все остальное. Возможно, проблема состоит как раз в процессоре графического чипа (все современные видеоускорители имеют собственные графически процессоры).

Но на примере функционирования человеческого организма нужно понимать, что в случае остановки сердца умирает весь организм. Так и с компьютерами. Не работает процессор - «умирает» вся компьютерная система.

Производство микросхем — весьма непростое дело, и закрытость этого рынка диктуется в первую очередь особенностями главенствующей в наши дни технологии фотолитографии. Микроскопические электронные схемы проецируются на кремниевую пластину через фотошаблоны, стоимость каждого из которых может достигать $200 000. А между тем для изготовления одного чипа требуется не меньше 50 таких масок. Добавьте к этому стоимость «проб и ошибок» при разработке новых моделей, и вы поймете, что производить процессоры могут только очень большие компании очень большими тиражами.

А что делать научным лабораториям и высокотехнологичным стартапам, которым необходимы нестандартные схемы? Как быть военным, для которых закупать процессоры у «вероятного противника» — мягко говоря, не комильфо?

Мы побывали на российском производственном участке голландской компании Mapper, благодаря которой изготовление микросхем может перестать быть уделом небожителей и превратится в занятие для простых смертных. Ну или почти простых. Здесь, на территории Технополиса «Москва» при финансовой поддержке корпорации «Роснано» производится ключевой компонент технологии Mapper — электронно-оптическая система.

Однако прежде чем разбираться в нюансах безмасочной литографии Mapper, стоит вспомнить основы обычной фотолитографии.

Неповоротливый свет

На современном процессоре Intel Core i7 может располагаться около 2 млрд транзисторов (в зависимости от модели), размер каждого из которых — 14 нм. В погоне за вычислительной мощностью производители ежегодно уменьшают размеры транзисторов и увеличивают их число. Вероятным технологическим пределом в этой гонке можно считать 5 нм: на таких расстояниях начинают проявляться квантовые эффекты, из-за которых электроны в соседних ячейках могут вести себя непредсказуемо.

Чтобы нанести на кремниевую пластину микроскопические полупроводниковые структуры, используют процесс, похожий на работу с фотоувеличителем. Разве что цель у него обратная — сделать изображение как можно меньше. Пластину (или защитную пленку) покрывают фоторезистом — полимерным фоточувствительным материалом, который меняет свои свойства при облучении светом. Требуемый рисунок чипа экспонируют на фоторезист через маску и собирающую линзу. Напечатанные пластины, как правило, в четыре раза меньше, чем маски.


Такие вещества, как кремний или германий, имеют по четыре электрона на внешнем энергетическом уровне. Они образуют красивые кристаллы, похожие на металл. Но, в отличие от металла, они не проводят электрический ток: все их электроны задействованы в мощных ковалентных связях и не могут двигаться. Однако все меняется, если добавить к ним немного донорной примеси из вещества с пятью электронами на внешнем уровне (фосфора или мышьяка). Четыре электрона вступают в связь с кремнием, а один остается свободным. Кремний с донорной примесью (n-типа) — неплохой проводник. Если добавить к кремнию акцепторную примесь из вещества с тремя электронами на внешнем уровне (бор, индий), аналогичным образом образуются «дырки», виртуальный аналог положительного заряда. В таком случае речь идет о полупроводнике p-типа. Соединив проводники p- и n-типа, мы получим диод — полупроводниковый прибор, пропускающий ток только в одном направлении. Комбинация p-n-p или n-p-n дает нам транзистор — через него ток протекает только в том случае, если на центральный проводник подается определенное напряжение.

Свои коррективы в этот процесс вносит дифракция света: луч, проходя через отверстия маски, немного преломляется, и вместо одной точки экспонируется серия концентрических кругов, как от брошенного в омут камня. К счастью, дифракция находится в обратной зависимости от длины волны, чем и пользуются инженеры, применяя свет ультрафиолетового диапазона с длиной волны 195 нм. Почему не еще меньше? Просто более короткая волна не будет преломляться собирающей линзой, лучи будут проходить насквозь, не фокусируясь. Увеличить собирающую способность линзы тоже нельзя — не позволит сферическая аберрация: каждый луч будет проходить оптическую ось в своей точке, нарушая фокусировку.

Максимальная ширина контура, которую можно отобразить с помощью фотолитографии, — 70 нм. Чипы с более высоким разрешением печатают в несколько приемов: наносят 70-нанометровые контуры, протравливают схему, а затем экспонируют следующую часть через новую маску.

Сейчас в разработке находится технология фотолитографии в глубоком ультрафиолете, с применением света с экстремальной длиной волны около 13,5 нм. Технология предполагает использование вакуума и многослойных зеркал с отражением на основе межслойной интерференции. Маска тоже будет не просвечивающим, а отражающим элементом. Зеркала лишены явления преломления, поэтому могут работать со светом любой длины волны. Но пока это лишь концепция, которую, возможно, станут применять в будущем.

Как сегодня делают процессоры


Идеально отполированную круглую кремниевую пластину диаметром 30 см покрывают тонким слоем фоторезиста. Равномерно распределить фоторезист помогает центробежная сила.


Будущая схема экспонируется на фоторезист через маску. Этот процесс повторяется многократно, потому что из одной пластины получается множество чипов.


Та часть фоторезиста, которая подверглась ультрафиолетовому излучению, становится растворимой и с легкостью удаляется с помощью химикатов.


Участки кремниевой пластины, не защищенные фоторезистом, подвергаются химическому травлению. На их месте образуются углубления.


На пластину вновь наносят слой фоторезиста. На этот раз с помощью экспонирования обнажают те участки, которые подвергнутся ионной бомбардировке.


Под воздействием электрического поля ионы примесей разгоняются до скоростей более 300 000 км/ч и проникают в кремний, придавая ему свойства полупроводника.


После удаления остатков фоторезиста на пластине остаются готовые транзисторы. Сверху наносят слой диэлектрика, в котором по все той же технологии протравливают отверстия под контакты.


Пластину помещают в раствор сульфата меди, и с помощью электролиза на нее наносят проводящий слой. Затем весь слой снимают шлифовкой, а контакты в отверстиях остаются.


Контакты соединяются многоэтажной сетью из металлических «проводов». Количество «этажей» может достигать 20, а общая схема проводников называется архитектурой процессора.


Только теперь пластину распиливают на множество отдельных чипов. Каждый «кристалл» тестируют и лишь затем устанавливают на плату с контактами и накрывают серебряной крышкой-радиатором.

13 000 телевизоров

Альтернативой фотолитографии считают электролитографию, когда экспонируют не светом, а электронами, и не фото-, а электрорезист. Электронный пучок легко фокусируется в точку минимального размера, вплоть до 1 нм. Технология напоминает электронно-лучевую трубку телевизора: сфокусированный поток электронов отклоняется управляющими катушками, рисуя изображение на кремниевой пластине.

До последнего времени эта технология не могла конкурировать с традиционным методом из-за низкой скорости. Чтобы электрорезист среагировал на облучение, он должен принять определенное количество электронов на единицу площади, поэтому один луч может экспонировать в лучшем случае 1 см2/ч. Это приемлемо для единичных заказов от лабораторий, однако неприменимо в промышленности.

К сожалению, решить проблему, увеличив энергию луча, невозможно: одноименные заряды отталкиваются, поэтому при увеличении тока пучок электронов становится шире. Зато можно увеличить количество лучей, экспонируя несколько зон одновременно. И если несколько — это 13 000, как в технологии Mapper, то, согласно расчетам, можно печатать уже десять полноценных чипов в час.


Конечно, объединить в одном устройстве 13 000 электронно-лучевых трубок было бы невозможно. В случае Mapper излучение из источника направляется на коллиматорную линзу, которая формирует широкий параллельный пучок электронов. На его пути встает апертурная матрица, которая превращает его в 13 000 отдельных лучей. Лучи проходят через матрицу бланкеров — кремниевую пластину с 13 000 отверстий. Около каждого из них располагается отклоняющий электрод. Если на него подается ток, электроны «промахиваются» мимо своего отверстия, и один из 13 000 лучей выключается.

Пройдя бланкеры, лучи направляются к матрице дефлекторов, каждый из которых может отклонять свой луч на пару микронов вправо или влево относительно движения пластины (так что Mapper все же напоминает 13 000 кинескопов). Наконец, каждый луч дополнительно фокусируется собственной микролинзой, после чего направляется к электрорезисту. На сегодняшний день технология Mapper прошла тестирование во французском научно-исследовательском институте микроэлектроники CEA-Leti и в компании TSMC, которая производит микропроцессоры для ведущих игроков рынка (в том числе и для Apple iPhone 6S). Ключевые компоненты системы, включая кремниевые электронные линзы, производятся на московском заводе.

Технология Mapper обещает новые перспективы не только исследовательским лабораториям и мелкосерийным (в том числе военным) производствам, но и крупным игрокам. В настоящее время для тестирования прототипов новых процессоров приходится изготавливать точно такие же фотошаблоны, как для массового производства. Возможность относительно быстрого прототипирования схем обещает не только снизить стоимость разработки, но и ускорить прогресс в этой области. Что в конечном счете на руку массовому потребителю электроники, то есть всем нам.

Здравствуйте, дорогие читатели. Сегодня мы Вам покажем, из чего состоит процессор изнутри. Многие пользователи, конечно, имели опыт с установкой процессора на материнскую плату, но не многие знают о том, как он выглядит изнутри. Мы постараемся объяснить Вам на достаточно простом языке, что бы было понятно, но в то же время не опуская подробностей. Прежде, чем начать рассказывать о составных частях процессора, Вы можете ознакомится с очень любопытным российским прототипом Эльбрус .

Многие пользователи считают, что процессор выглядит именно так, как показано на рисунке.

Однако это вся конструкция в сборе, которая состоит из более мелких и жизненно важных частей. Давайте посмотрим, из чего состоит процессор изнутри. В состав процессора входит:

На рисунке выше под номером 1 изображена защитная крышка, которая обеспечивает механическую защиту от попадания пыли и других мелких частиц. Крышка изготовлена из материала, который имеет высокий коэффициент теплопроводности, что позволяет забирать лишнее тепло с кристалла, тем самым обеспечивая нормальный температурный диапазон работы процессора.

Под номером 2 изображен «мозг» процессор и компьютера в целом — это кристалл. Именно он считается самым «умным» элементом процессора, который выполняет все возложенные на него задачи. Вы можете увидеть,что на кристалл нанесена тонким слоем микросхема, которая обеспечивает заданное функционирование процессора. Наиболее часто кристаллы процессора делают из кремния: это обуславливается тем, что этот элемент имеет достаточно сложные молекулярные связи, которые используются при формировании внутренних токов, что обеспечивает созданию многопоточной обработки информации.

Под номером 3 показана текстолитовая платформа, к которой крепятся все остальные делали: кристалл и крышка. Эта платформа так же играет роль хорошего проводника, который обеспечивает хороший электрический контакт с кристаллом. На обратной стороне платформы с целью повышения электропроводности находится много точек, изготовленных из драгоценного метала (иногда используют даже золото).

Вот как выглядят электопроводящие точки на примере процессора Intel.

Форма контактов зависит от того, какой сокет стоит на материнской плате. Бывет и так, что вмето точек на обратной стороне платформы Вы можете увидеть штырьки, которые выполняют ту же роль. Как правило, для процессоров семейства Intel штырьки находятся в самой материнской плате. В этом случае на подложке (она же платформа) будут располагаться точки. Для семейства процессоров AMD штырьки находяться непосредственно на самой подложке. Выглядят такие процессоры следующим образом.

Теперь рассмотрим сам способ крепления всех деталей. Для того, что бы крышка прочно удерживалась на подложке, ее «садят» при помощи специального клея-герметика, который устойчивый у большим температурам. Это позволяет конструкции находится в постоянной связке, не нарушая ее целостности.

Для того, что бы кристалл не перегревался, на него наносят специальную прокладку 1, поверх которой, в свою очередь, наносится термопаста 2, обеспечивающая эффективный теплоотвод на крышку. Крышка так же «смазывается» с внутренней стороны термопастой.

Давайте теперь посмотрим, как выглядит двухъядерный процессор. Ядро представляет собой отдельный функционально независимый кристалл, который параллельно устанавливается на подложку. Выглядит это так.

Таким образом 2 установленных рядом ядра увеличивают сумарную мощность процессора. Однако, если Вы увидите 2 кристалла, стоящих рядом, это не всегда будет означать, что у Вас двухъядерный процессор. На некоторых сокетах устанавливаются 2 кристалла, один из которых отвечает за арифметико-логическую часть, а другой — за обработку графики (некий встроенный графический процессор). Это выручает в тех случаях, когда у Вас встроенная видеокарта, мощности которой не хватает справится, например, с какой-нибудь игрой. В тих случаях львиную долю вычислений берет на себя графическая часть центрального процессора. Вот так выглядит процессор с графическим ядром.

Вот так вот, друзья, мы с Вами и разобрались, из чего состоит процессор. Теперь стало ясно, что все устройства, входящие в состав процессора, играют важную и незаменимую роль для качественной работы. Не забывайте комментировать статьи нашего сайта, подписывайтесь на нашу рассылку и узнавайте много интересного. Ваше мнение Важно для нас!

Идея прямого омывания кристалла процессора водой не нова. Современные процессоры снабжаются теплораспределителями, которые контактируют с кристаллом ядра через слой термопасты. Не секрет, что такое сопряжение является "узким местом" в цепочке, обеспечивающей отвод тепла от ядра процессора. Некоторые оверклокеры пытаются улучшить условия охлаждения ядра, для чего снимают крышки с процессоров. Однако, и после этого кристаллу ядра обычно приходится контактировать с подошвой водоблока или радиатора воздушного кулера.

Идея прямого омывания ядра заключается в том, чтобы поток воды забирал тепло непосредственно у кристалла, однако практическая реализация этой идеи до сих пор сдерживалась факторами риска, которые неизбежно возникают при контакте электронных компонентов с токопроводящей средой, коей является и вода.

Как сообщает сайт VR-Zone , швейцарским учёным из лаборатории IBM удалось разработать технологию микроканального прямого омывания микрочипов, которая может найти применение при охлаждении компонентов в обозримом будущем. Современные процессоры достигают плотности теплового потока 100 Вт на кв.см площади ядра, и эффективно отводить тепло от таких процессоров при помощи воздушных кулеров становится всё труднее. Новая технология позволяет отводить до 370 Вт с одного квадратного сантиметра площади ядра.

Принцип действия новой системы охлаждения демонстрируется этой иллюстрацией. Система из 50 000 микроканалов шириной 30-50 микрометров (0.03-0.05 мм) пронизывает радиатор охлаждения процессора, который монтируется непосредственно на "обнажённое" ядро. Между подошвой радиатора и поверхностью ядра создаётся небольшой зазор, который в рабочем состоянии заполняется водой. От протечек систему защищает специальное уплотнение.

По системе микроканалов, очень напоминающих кровеносную систему человека, вода подаётся в рабочую полость этого импровизированного водоблока, по этой же системе (но другим каналам) нагретая вода отсасывается. Разработчики утверждают, что на обеспечение циркуляции жидкости нужно тратить гораздо меньше сил, чем в случае с обычными системами водяного охлаждения. Данный принцип был заимствован у природы. Это означает, что помпа, подающая жидкость, не обязательно должна быть мощной.

Кстати, такая микроканальная структура может использоваться и в сфере воздушного охлаждения. Например, для равномерного распределения термопасты по поверхности кристалла ядра. Микроканальная система может встраиваться в теплораспределитель процессора, она не будет сообщаться с внешним миром.

На этой фотографии показан радиатор с микроканальной структурой, работающий по принципу прямого омывания ядра. На заднем плане виднеется сам чип, который он должен охлаждать. Снизу же расположен медный радиатор весом в несколько килограмм, имеющий сопоставимую с изобретением IBM эффективность.

Разработка позволяет повысить плотность теплового потока в шесть раз по сравнению с существующими системами воздушного охлаждения. Если учесть, что процессоры становятся всё более компактными, даже без учёта возможности роста тепловыделения плотность теплового потока будет расти. Вполне возможно, новую технологию охлаждения IBM применит на своих 0.065 мкм процессорах семейства Power6 , которые будут работать на частотах свыше 4.0 ГГц.

Похожие статьи
 
Авторы статьи: Гвинджилия Григорий и Пащенко Сергей