Светодиодные лампы для дома - как выбрать? Как рассчитать сопротивление светодиода. О возможностях и применении

20.04.2019

Хочется задать один вопрос. А вы часто меняете лапочки в своей квартире? Это не занимает много времени, да и сами лампочки стоят не дорого. Но вам не кажется, что времена немного изменились? Развитие технологий в сфере электрики, а точнее приборов и источников освещения, в настоящее время позволяет подходить к решению данных вопросов с другой стороны.

Сравнение различных светодиодных ламп

На рынке представлено огромное количество лампочек, которые различаются по дизайнерскому исполнению, материалов из которых они изготовлены и по цветовой палитре. Но основные элементы, из которых состоят лампы, для всех видов неизменны.

Светодиодные лампы состоят из:

  • Корпуса;
  • Рассеивающей колбы;
  • Светодиодов;
  • Драйвер.

Важную роль в нормальной работе светодиодной лампочки играет ее корпус, в состав которого входит радиатор, цоколь и рассеивающий элемент. Радиатор данных ламп изготавливается из алюминия или его сплавов и имеет сложную форму, за счет которой обеспечивается качественный теплоотвод, что в свою очередь определяет долговечность работы самих светодиодов.

В случае, если радиатор небольшого размера, или изготовлен из некачественных материалов, то срок службы данной лампы сокращается в несколько раз, из – за долговременного перегрева светодиодов. Основную массу светодиодной лампы составляет вес радиатора.


Некачественное соединение пластины со светодиодами к радиатору, не способно качественно отводить тепло.

Для бесперебойной и долговечной работы светодиодов, необходимо ограничивать ток. Данную функцию выполняет драйвер. На рынке представлены два вида ограничителей: при помощи конденсатора, и драйвера.

Существует огромное количество светодиодов различных производителей. Основным параметром светодиодов является количество Люмен/Ватт (яркость или светоотдача). Чем дороже светодиод, тем он качественней. Такие светодиоды ярче светятся, меньше греются, это определяет сколько прослужит лампа.

При сравнении разных по цене светодиодных ламп, было отмечено, что более дорогие модели меньше греются, нет видимого мерцания, и данные лапы обладают более высокой светоотдачей.

Мощность светодиодной лампочки

Исследованиями доказано, что наиболее экономичны и совершенны технологически, являются лампы на основе светодиодов. Но на современном рынке представлены и другие виды ламп, которые нашли широкое применение для частного и промышленного использования.

Виды источников света (лампы):

  • Накаливания;
  • Люминесцентные;
  • Галогенные.

Все эти источники света отличаются друг от друга по многим параметрам, но для каждого из них производителями заявлена определенная мощность и сила светового потока.

Мощность всех потребителей электроэнергии измеряется в Ваттах, что означает, мощность любой лампы, как и мощность различных электроприборов можно измерить при помощи Ваттметра.

Мощность светодиодных ламп, является их важнейшей характеристикой, так как данный параметр непосредственно виляет на количество и силу света лампы. Но стоит понимать, что мощность лампы, не является прямым фактором, указывающим на световую отдачу. Это говорит о том, что с развитием светодиодных технологий, производители стараются увеличить светоотдачу с одного потребляемого Ватта электроэнергии.

Например, светодиодная лампа одного и того же вида, но разного поколения при одинаковой светоотдаче, способна снизить энергопотребление на 10%. А это, в свою очередь выгодно с экономической точки зрения для тех, кто приобретает данный вид продукта.

Важно знать! Указанные на упаковке мощность и светоотдача, могут не соответствовать параметрам лампочки, из – за недобросовестности производителей.

Так же, стоит отметить, что одинаковая мощность ламп разных производителей никаким образом не влияет на светоотдачу. На этот параметр непосредственно указывают цифры силы светового потока, которые по тем или иным причинам у каждого производителя разные. Например, светодиодная лампа одного производителя на 10 Ватт, будет выдавать световой поток 700 – 800 Люмен, а лампа другого производителя 600 – 650 Люмен.


Потребляемая мощность светодиодных ламп варьируется от 2 до 30 Ватт.

КПД светодиодной и лампы накаливания: соответствие

Светодиодные лампы, являются отличной альтернативой обычным лампам накаливания, а так же обладают качествами, которые способствуют наиболее комфортному их использованию.

Преимущества светодиодных ламп:

  • Низкое энергопотребление;
  • Эффективная светоотдача;
  • Высокий световой поток;
  • Низкая температура работы.

Замену обычных ламп накаливания на источники света на основе светодиодов, следует производить грамотно. Так как, для того, чтобы получить нужный световой поток, необходимо сравнить значения яркости различных видов ламп и осуществить перевод значения яркости и мощности.

Таблица значений светодиодных и ламп накаливания:

Светодиодная лампа, модность, Ватт

Лампа накаливания, мощность, Ватт

Поток световой, Люмен

Используя данную таблицу, вы легко сделаете перевод и справитесь с подбором светодиодных ламп на замену устаревшим моделям ламп накаливания по мощности и количеству светового потока.

Согласно характеристикам видно, что светодиодная лампа 10 Ватт, световым потоком ровняется лампе накаливания на 60 Ватт.

Важно знать! Срок службы светодиодных ламп, в десятки раз превосходит время эксплуатации ламп накаливания.

Для того, чтобы, не возникало вопросов при выборе нужных светодиодных источников света, нужно знать, что используемый цоколь маркируется Е27. Светодиодные лампы с использованием данного цоколя представляют собой форму свечи, груши и других различных форм.

Применяя эти знания, вам не придется вместе с лампами покупать подходящие осветительные приборы что, несомненно, упростит работы по замене ламп на более экономичные.

Отличие светодиодных ламп от энергосберегающих

Светодиодные и энергосберегающие лампы, существенно отличаются друг от друга не только формой и содержанием, но и принципом работы (признакам, по которым происходит свечение).


Данные виды ламп сравнивают по:

  • Яркости;
  • Теплоотдаче при работе;
  • Долговечности.

Светодиодная лампа, по своей сути является твердотельным источником света, работа которого основана на излучении света при прохождении электрического тока, через полупроводники, которые в свою очередь для этого предназначены.

Работа энергосберегающих ламп основана на принципе работы люминесцентных, что позволяет при низких энергозатратах производить нужный световой поток. И если сравнить лампы подходящие под это определение, то с уверенностью можно сказать, что энергосберегающими являются только флуоресцентные.

Для того, чтобы определить, какая лампа лучше светит и сколько при этом затрачивает электроэнергии, возьмем для сравнения светодиодную и энергосберегающую лампы. Световой поток светодиодной лампы на 12 Ватт, составляет 900 Люмен, а энергосберегающая лампа той же мощности выдает 600 Люмен. Это говорит о том, что с экономической точки зрения выгодны оба вида ламп.

Низкая температура работы светодиодных ламп позволяет встраивать их в соответствии с любыми дизайнерскими решениями.

Если сравнивать эти виды ламп по количеству исходящего тепла, то в этом случае результаты сильно расходятся. Светодиодная лампа на 12 Ватт при работе нагревается не более чем до 31 0 С, а вот нагрев энергосберегающей соответствует 80 0 С.

А говоря о времени эксплуатации, то для энергосберегающих она составляет 8000 часов, а для светодиодных до 50000 часов.

Современные светодиодные лампы: мощность в таблице (видео)

Светодиодные технологии, постепенно вытесняют устаревшие. Связано это с тем, что несмотря на более высокую стоимость при покупке, данный вид освещения позволяет экономить в последующем.

Традиционный подход к светодиодным светильникам часто приводит к непониманию принципиальных обстоятельств. Речь идет о КПД светильников и влиянии конструкции светильников светодиодных и обычных на КПД.

КПД светильника — это отношение выходящего из светильника светового потока ко всему световому потоку, создаваемому источником света. Например, светильник в виде лампочки без осветительной арматуры, в первую очередь без отражателя, имеет КПД — 100 %. Это вовсе не значит, что это идеал, к которому надо стремиться, для светильников — меньше КПД, это ещё не значит хуже. Любые попытки сконцентрировать свет (направить) приводит к уменьшению КПД. Но способ концентрации и качество отражателя могут быть разными, и светильники будут иметь разный КПД. Сравнивать светильники по КПД можно только те, которые имеют похожее светораспределение (КСС), в этом случае КПД будет определяться качеством оптической системы светильника (отражателя, стекла). Светильники с разными КСС сравнивать по КПД не имеет смысла!

Принципиальное отличие светодиодов от ламп в том, что они светят только в одной полуплоскости. То есть светодиодный светильник без осветительной арматуры (100 % КПД) будет направленным! Угол излучения у светодиодов без вторичной оптики 90-120 градусов. Например, если сравнивать два «светильника» в виде лампочки и светодиода (100 % КПД) с одинаковым световым потоком, то на оси лампы на одинаковом расстоянии освещенность будет примерно в 2 раза меньше, чем на оси светодиода. Если же попытаться собрать световой поток лампы при помощи отражателя (добиться того же угла излучения), то в любом случае получить такую же освещенность, которую даёт светодиод не удастся из-за потерь на отражении. В этой связи замена источника света в виде лампочки на светодиодный источник в направленных светильниках будет иметь смысл, даже если эти источники имеют одинаковую световую эффективность (лм / Вт).

Если в светильнике с лампой имеется плоское стекло, то есть весь источник света «погружен» внутрь светильника, КПД светильника значительно уменьшится из-за того, что основная часть света, выходящая из светильника, будет отраженной, то есть с потерями на отражении. Для светодиодного светильника такой конструкции уменьшение КПД практически не происходит (только потери в стекле порядка 5 %), хотя интуитивно кажется, что по аналогии с ламповыми светильниками КПД должно уменьшиться.

Ламповый светильник с плоским стеклом будет иметь КПД порядка 50-60 %.

Светодиодный светильник с плоским стеклом будет иметь КПД порядка 95 %.

Это и есть основное принципиальное отличие светодиодных светильников от ламповых. Направленные светодиодные светильники гораздо более эффективны направленных ламповых светильников. Это связано в значительной степени с конструктивными особенностями светодиодов, а не только с их высокой световой эффективностью.

Понимание этого обстоятельства должно привести к пересмотру подходов в расчетах осветительных установок с применением светодиодных светильников.

На фото светодиодный светильник 20 Ватт. Он заменил две лампы накаливания в 75 Ватт и светит немного ярче, чем они.

Но прежде чем поговорим о светодиодных лампах, давайте развеем несколько мифов, которые уже довольно прочно завоевали своё место в сознании пользователей. Заодно рассмотрим вопросы, что такое лампы светодиодные, как выбрать (рекомендуем рассмотреть каталог Светодиодные люстры Mantra) , чем они лучше, чем хуже и почему именно они сегодня имеют такую мощную рекламную поддержку.

А у Вас свет в доме, какой температуры: теплый или холодный?

На самом деле, вопрос не праздный, поскольку именно спектр делает свет своим, приятным для глаз (тёплым), или напротив ярким (режущим), то есть холодным. Разные используют разные принципы преобразования электроэнергии в свет, поэтому и спектр у них разный. Отсюда и возник первый миф – свет светодиодных ламп наиболее естественный. На самом деле, это не совсем так, светодиодные лампы для дома могут иметь любое спектральное свечение, и в этом случае преимущество этих светильников становится недостатком. Не каждый потребитель полезет в технические характеристики, чтобы разобраться, что к чему.

Второй миф родился из маркировки, и состоит в том, что мощность светодиодных ламп ниже всех остальных.

Третий миф самый сложный, над его созданием работали долго, вбивая нам в головы идею, что светодиодное освещение в квартире самое энергосберегающее.

Есть ещё один слух, что светодиодные лампы для дома лучше не использовать, поскольку они не выдерживают плавной регулировки или скачков напряжения, а также быстро выходят из строя при частых включениях.

Давайте начнём с самого начала, потому, что понимание, что такое светодиод, поможет нам принять своё решение, не основанное на слухах, мифах и происках продавцов ламп накаливания.

Откуда и какой свет светодиодных ламп мы видим?

Ответ сразу – такой, который Вы выбрали, как с точки зрения температуры света (спектральных характеристик), так и с точки зрения затрат мощности на удельную освещаемую площадь. Или, проще говоря, лампа накаливания в сто ватт будет светить всё время в свои сто ватт так, как умеет, тогда, как светодиод будет не только светить туда, куда надо, но и тем светом, который Вам приятен. А светится, будет или элемент (точечный), или поверхность, в зависимости от того, какую светодиодную лампу выбрали для этой зоны помещения.

Наиболее спорным моментом является вопрос энергосбережения. Этот миф родился как аргумент в споре конкурирующих производителей, и если считать честно, то энергосберегающие лампы действительно потребляют энергии на освещение немного меньше, чем лампы светодиодные. Спросите, как тут выбрать? Если верить производителям, то никак. Это паритет. Равновесие хлипкого мира, находящегося в состоянии войны. Правда, светодиоды здесь скорее пострадавшая сторона, поскольку появились на рынке после того, как крупные корпорации вложили много денег в энергосбережение, решив, что светодиоды слишком дорогая игрушка.

А потом, произошло одно событие, которое имеет прямое отношение к подзаголовку. Выяснилось, что спектральные характеристики светодиодов немного лучше, чем даже дневной свет. Оказалось, что свет светодиодных ламп не имеет мерцания, которое есть даже у ламп накаливания. В лампе накаливания это частота сети (обычно 50 Герц), а у лампы дневного света (энергосберегающая) кратная тройной фазе, то есть примерно 3 герца. Наверное, все видели «моргающие» лампы дневного света? Это то самое. Лампа светится только тогда, когда есть ток, пока нет тока, она не светит. Просто в лампах дневного света это заметнее.

Светодиодная лампа не имеет этого недостатка, она не чувствительна ни к силе тока, ни к перепаду напряжения, ни к частоте. Есть напряжение – она светит, нет – не светит.

Если много работаете за столом, с документами или мелкой работой – купите настольную лампу на светодиодах и забудьте про утомление глаз. Проблемы зрения при такой работе – то самое мерцание, которого мы не замечаем.

В чём различие физики света светодиодных ламп от всех остальных?

В принципе преобразования энергии. Именно это решает несколько проблем освещения:

  1. Минимальный расход электричества на освещение.
  2. Наиболее правильный спектр освещения помещения (зоны в помещении).
  3. Точечное освещение выбранного участка (например, картины).
  4. Долговечность и уменьшение нагрева светящегося элемента.
  5. Возможность управления спектральными характеристиками освещения.
  6. Минимальная стоимость приборов освещения.

Все эти проблемы решили именно лампы светодиодные. Осталось решить, как выбрать подходящие и дело в шляпе. Правда, последний пункт светодиодные лампы никак не решают, являясь и сейчас наиболее дорогими. Всё дело в том самом преобразовании. Светодиод напрямую, без посредников, преобразует электрическую энергию в свет. Это довольно новая технология, поэтому и пункт 6 пока для многих становится ограничением в выборе.

Простые цифры в полезном преобразовании электричества в свет

  • Лампа накаливания. КПД 12% потери 75% (нагрев спирали);
  • Модернизированные лампы накаливания. КПД 15% потери 68% (сопротивление нити накаливания);
  • Лампы индуцированного свечения (люминесцентные, ртутные и пр.). КПД 22% потери 45% (реактивные, пусковые токи);
  • Светодиодные лампы . КПД 58% потери 18% (коммутация);
  • Лампы замкнутого цикла. КПД 84% потери 6% (замкнутый цикл до окончания заряда аккумулятора).

Если складывать эти цифры, то 100% Вы не получите. Это фактор экспериментальный. Но значение КПД это именно то, сколько электричества становится светом. Лампы замкнутого цикла – это светильники уличного типа с солнечными батареями и аккумуляторами. Они не требуют затрат на энергию, и при желании при их свете можно даже прочитать газету. Всё остальное видно по цифрам выше.

Ещё немного физики. Пъезоэлектрики (помните «вечные зажигалки для газовых плит»?) При выработке «искры» при нажатии не тратят «материю». Они действительно могут «вечно» выдавать искру разряда при нажатии на клавишу. И никаких батареек не надо. Примерно так же работает светодиод. На контакты подаётся напряжение, материал испускает фотон света. Лампа начинает светить. Как долго такие лампы могут светить, мы не знаем, поскольку они не так давно начали работать, а какова энергетическая насыщенность возбуждённых материалов «светом», пока не знает никто. Очевидно одно, светодиодное освещение в квартире проработает очень много лет. Проще говоря, в рамках отдельной квартиры это своего рода «Вечный световой осветитель». По крайней мере, в теории. Давайте теперь спустимся с небес на землю, и посмотрим, что происходит на практике.

Практические рекомендации по выбору освещения с комментариями и советами

Прежде чем приступить к вопросу, как выбрать лампы светодиодные, немного о технических характеристиках. Начнём с главного: с того, что светит.

Свечение светодиодной лампы – это непрерывное (без мерцания) преобразование электрической энергии в свет. Иначе говоря, 1 кВтч энергии будет преобразован в свет с КПД не менее 60%. Это, кстати, ответ на вопрос, я хочу светодиодные лампы, как рассчитать мощность, в сравнении с лампами накаливания? Всё просто. КПД светодиода не менее 60%, КПД лампы накаливания не более 12%. Отсюда соотношение – светодиодная лампа в 30 Ватт светит так же ярко, как лампа накаливания в 150 Ватт. И никакого подвоха, ведь при таком сравнении светодиодная лампа всё равно затратит почти в два раза меньше электроэнергии. Точнее, Вы заплатите за одно и тоже освещение в два раза меньше.

При выборе светодиодной лампы обращаем внимание на следующие факторы:

  • Выбираем светодиодные лампы сначала по мощности, учитывая понижающий коэффициент – лампа накаливания в 100 Ватт, это светодиодная лампа 12 Ватт. Уверяем Вас, светимость у них будет одинакова. Правда свет светодиодной лампы будет теплее, приятнее глазам.
  • Вторым моментом выбора является спектр. Мало кто задумается, прочитав на упаковке «цифру» Кельвинов, что это значит. Дело в том, что остальные лампы просто не могут иметь именно этой характеристики – той самой «температуры света». Тем не менее, стоит помнить, что чем выше цифра, тем более яркий и тёплый свет светодиодных ламп будет в Вашем доме.
  • Возможность плавной регулировки (управление диммером) также указана на упаковке, как пометка «допускается плавное регулирование яркости». Если решили потратить деньги на экономию, стоит иметь в виду, что светодиоды можно «притушить», если не нужен полный свет.
  • Соответствие стандартам. Согласитесь, дорогая лампа, которую некуда вставить это тот самый случай – деньги на ветер. Сейчас производятся лампы со всеми типами цоколя, и практически любой формой светящегося элемента:

Основные параметры выбора

Что же мы имеем в качестве основных параметров? Это не такой простой вопрос, как кажется.

  1. Производитель? Гарантии и срок службы? Применимость в сетях с нестабильным напряжением?
  2. Возможность включения в сложных условиях (в том числе для наружного использования) и при перегрузках?
  3. Примерный объём экономии, если использовать в освещении только светодиодные лампы?
  4. Сравнительная стоимость приборов освещения, если всё заменить светодиодными лампами.

1-й вопрос. Очень сложно понять, кто производитель, есть ли гарантия на изделие, и сколько оно прослужит. По характеристикам иногда сложно понять эта лампа для 220В, или для 127В? Часто у лампы спектр указан как точка на шкале, в которой никто кроме учёного оптика разобраться не сможет. Допустимые колебания напряжения вообще не пишут, разве что в паспорте лампы, как странного вида синусоиды.

2-й вопрос. Любые светодиодные лампы можно включать и выключать в условиях любых перегрузок. Это первый тип ламп, который продолжает светить после короткого замыкания в сети. Также, это первый тип ламп, светящийся элемент которых не может выйти из строя из-за сетевых перегрузок. Строго говоря, светодиодная лампа вообще может выйти из строя только при физическом разрушении. По крайней мере, пока нет данных о прекращении свечения по другим причинам. А эти лампы исследуют уже 12-ть лет. Интересны выводы о том, что мощность светодиодных ламп позволяет им являться своего рода предохранителями от нагрузок сети. Слышали слова «Диодный мостик»? Так вот светодиодная лампа, своего рода триггер, способный сбросить избыток нагрузки в виде вспышки. Вы её можете не увидеть, но Ваша электросеть будет благодарна за такую разрядку.

3-й вопрос. Лампа накаливания в 100 ватт при непрерывной работе в течение года использует 100% полученного электричества. Счётчик это электричество подсчитает и преобразует в квитанцию оплаты от энергетиков. Если заменить лампу накаливания светодиодной лампой, работавшей так же долго, то мы тоже получим счёт на оплату от энергетиков. Правда, этот счёт будет отличаться от первого. Если за лампу накаливания мы заплатили 100 рублей, то за светодиодную лампу заплатим 18,5 рублей. Конечно, Вы можете в это не поверить, поэтому возьмите калькулятор и посчитайте. А ещё лучше – устройте светодиодное освещение в квартире, а через месяц сравните счета от энергетиков.

4-й вопрос. Разница в цене составит для ламп накаливания примерно 8 раз. То есть за такое же освещение светодиодными лампами, Вы заплатите примерно в 7-8 раз больше, чем за лампы накаливания.

Реальная экономия

Сейчас стало очевидно, что в условиях резкого роста стоимости энергии окупаемость всех приборов, работающих на энергосбережение, значительно сократилась по срокам. Кроме того, стоит помнить, что все эти приборы, как правило, продукт высоких технологий, способный работать много лет подряд. Поэтому, выбирая лампы, не думайте, будет она светодиодная, или нет. Посмотрите на производителя, качество шрифта на упаковке, название компании, совместимость с электросетями. После чего вспомните, что лампочка накаливания в 100 ватт (при цене в 10 рублей) будет стоить Вам, 4 умножить на кВтч (в сутках 24 часа), то есть 4 (24 0,1) не менее 10 рублей в день, если забудете её выключить. А светодиодная лампа для дома сравнимой мощности, стоимостью в 200 рублей, при такой же забывчивости обойдётся всего в 1 рубль 15 копеек.

Не будем навязывать своего мнения, но в нашем коллективе мало кто не заменил обычные лампы на светодиодные. Не на энергосберегающие лампы, а на лампы, сберегающие деньги!

Путем соответствующего выбо­ра полупроводникового материала и присадки можно целенаправленно воздействовать на характеристики светового излучения светодиодно­го кристалла, прежде всего на спект­ральную область излучения и эффек­тивность преобразования подводимой энергии в свет:

  • GaALAs - арсенид галлия алюминия; на его базе - красные и инфракрас­ные светодиоды.
  • GaAsP - фосфид арсенида галлия; AlInGaP - фосфид алюминий-ин­дий-галлий; красные, оранжевые и желтые светодиоды.
  • GaP - фосфид галлия; зеленые све­тодиоды.
  • SiC - карбид кремния; первый, ком­мерчески доступный голубой светодиод с низкой световой эффектив­ностью.
  • InGaN - нитрид индия-галлия; GaN - нитрид галлия; УФ голубые и зеле­ные светодиоды.

Для получения белого излучения с той или иной цветовой температурой имеются три принципиальные возмож­ности:

1. Преобразование излучения голубо­го светодиода желтым люминофо­ром (рисунок 1а).

2. Преобразование излучения УФ-све-тодиода тремя люминофорами (ана­логично люминесцентным лампам с так называемым трехполосным спектром) (рисунок 1б).

3.Аддитивное смешение излучений красного, зеленого и голубого светодиодов (RGB-принцип, аналогичный технологии цветного TV). Цветовой оттенок излучения белых светодиодов может быть охарактеризо­ван значением коррелированной цвето­вой температуры.

Большинство типов современных белых светодиодов выпускается на базе голубых в комбинации с конвер­сионными люминофорами, которые позволяют получить белое излучение с широким диапазоном цветовой температуры - от 3000 К (тепло-белый свет) до 6000 К (холодный дневной свет).

Работа светодиодов в схемах питания

Кристалл светодиода начинает излучать, когда в нем протекает ток в прямом направлении. Светодиоды имеют экспоненциально возрастающую вольтамперную характеристику. Обычно они питаются постоянным стабилизированным током или постоянным напряжением с предвключенным ограничивающим сопротивлением. Это предотвращает нежелательные измене­ния номинального тока, которые влияют на стабильность светового потока, а в худшем случае могут даже привести к повреждению светодиода.
При небольших мощностях используются аналоговые линейные регуляторы, для питания мощных диодов - сетевые блоки со стабилизированным током или напряжением на выходе. Обычно светодиоды включаются последовательно, параллельно или в последовательно-параллельные цепочки (см. рисунок 2).

Плавное снижение яркости (диммирование) светодиодов осуществляется регуляторами с широтно-импульсной модуляцией (ШИМ) или уменьшени­ем прямого тока. Посредством сто­хастической ШИМ можно добиться минимизации спектра помех (проблема электромагнитной совместимости). Но в данном случае при ШИМ может наблюдаться мешающая пульсация излучения светодиода.
Величина прямого тока варьируется в зависимости от модели: например, 2 мА - у миниатюризированных светодиодов плоскостного монтажа (SMD-LED), 20 мА - у светодиодов диаметром 5 мм с двумя внешними токовводами, 1 А.- у мощных светодиодов для целей освещения. Прямое напряжение UF обычно лежит в пределах от 1,3 В (ИК-диоды) до 4 В (светодио-ды на базе нитрида индия-галлия - белые, голубые, зеленые, УФ).
Между тем уже созданы схемы питания, позволяющие подсоединять светодиоды непосредственно к сети переменного тока 230 В. Для этого две ветви светодиодов включаются антипарал-лельно и подсоединяются к стандартной сети через омическое сопротивление. В 2008 году профессор П. Маркс получил патент на схему регулирования яркости светодиодов, питаемых стабилизированным переменным током (см. рисунок 3).
Южнокорейская фирма Seoul Semiconductors интегрировала схему (рисунок 3) с двумя антипараллельными цепочками, (в каждой из которых большое количество светодиодов) непосредственно в одном чипе (Acriche-LED). Прямой ток светодиодов (20 мА) ограничивается омическим сопротивлением, подключенным последовательно к антипараллельной схеме. Прямое напряжение на каждом из светодиодов составляет 3,5 В.

Энергетический КПД

Энергетическая эффективность светодиодов (КПД) - отношение мощности излучения (в Ваттах) к электрической потребляемой мощности (в светотехнической терминологии это энергетическая отдача излучения - т|е).
В тепловых излучателях, к которым относятся классические лампы накаливания, для генерации видимого излучения (света) необходим нагрев спирали до определенной температуры. Причем основная доля подводимой энергии преобразуется в тепловую (инфракрасное излучение), а в видимое излучение трансформируется только?е = 3% у обычных, и че - 7% - у галогенных ламп накаливания.


Светодиоды для применения в прикладной светотехнике преобразуют подводимую электроэнергию в видимое излучение в очень узкой спектральной области, причем в кристалле возникают тепловые потери. Это тепло должно отводиться от светодиода специальными конструктивными методами с тем, чтобы обеспечить необходимые световые, цветовые параметры и максимальный срок службы.
У светодиодов для целей освещения и сигнализации ИК- и УФ-составляющие в спектре излучения практически отсутствуют, и такие светодиоды имеют значительно более высокую энергетическую эффективность, чем тепловые излучатели. При благоприятном тепловом режиме у светодиодов в свет преобразуется 25% подводимой энергии. Поэтому, например, у белого светодиода мощностью 1 Вт примерно 0,75 Вт приходится на тепловые потери, что требует в конструкции светильника наличия теплоотводящих элементов или даже принудительного охлаждения. Такое управление тепловым режимом светодиодов приобретает особую значимость. Желательно, чтобы производители светодиодов и светодиодных модулей приводили в перечне характеристик своих изделий значения энергетического КПД


Управление телпловым режимом
Напомним, что почти 3/4 электроэнергии, потребляемой светодиодом, преобразуется в тепло и только 1/4 - в свет. Поэтому при конструировании светодиодных светильников решающую роль в обеспечении их максимальной эффективности играет оптимизация теплового режима светодиодов, проще говоря, интенсивное охлаждение.

Как известно, передача тепла от нагретого тела осуществляется за счет трех физических процессов:

1. Излучение


Ф = W? =5,669?10-8?(Вт/м2?К4)??А?(Тs4 – Та5)
где: W? – поток теплового излучения, Вт
? – коэффициент излучения
Тs – температура поверхности нагретого тела, К
Та – температура поверхностей, ограничивающих помещение, К
А – площадь излучающей тепло поверхности, м?

2. Конвекция


Ф = ?? А?(Тs-Та)
где: Ф – тепловой поток, Вт
А – площадь поверхности нагретого тела, м?
? – коэффициент теплопередачи,
Тs – температура граничной теплоотводящей среды, К
Та – температура поверхности нагретого тела, К
[для неполированных поверхностей? = 6…8 Вт /(м?К)].

3. Теплопроводность


Ф = ?T?(А/l) (Тs-Та) =(?T/Rth)
где: Rth= (l / ?T?A) – тепловое сопротивление, K/Вт,
Ф – тепловая мощность, Вт
A – поперечноесечение
l-длина - ?T – коэффициент теплопроводности, Вт/(м?К)
для керамических элементов охлаждения?T=180 Вт/(м?К),
для алюминия – 237 Вт/(м?К),
для меди – 380 Вт/(м?К),
для алмаза – 2300 Вт/(м?К),
для углеродных волокон – 6000 Вт/(м?К)]

4. Тепловое сопротивление


Суммарное тепловое сопротивление рассчитывается как:

Rth парал.общ.=1/[(1/ Rth,1)+ (1/ Rth, 2)+ (1/ Rth,3)+ (1/ Rth,n)]

Rth последобщ. = Rth,1 + Rth, 2 + Rth,3 +....+ Rth,n

Резюме
При дизайне светодиодных светильников необходимо принять все возможные меры для облегчения теплового режима светодиодов за счет теплопроводности, конвекции и излучения. Поэтому первоочередная задача при конструировании светодиодных светильников – обеспечить отвод тепла за счет теплопроводности специальных охлаждающих элементов или конструкции корпуса. Тогда уже эти элементы будут отводить тепло излучением и конвекцией.
Материалы теплоотводящих элементов по возможности должны иметь минимальное тепловое сопротивление.
Хорошие результаты были получены с теплоотводящими узлами типа “Heatpipes”, обладающими экстремально высокими теплопроводящими свойствами.
Один из лучших вариантов теплоотвода – керамические подложки с предварительно нанесенными токоведущими трассами, непосредственно к которым подпаиваются светодиоды. Охлаждающие конструкции на базе керамики отводят примерно в 2 раза больше тепла по сравнению с обычными вариантами металлических охлаждающих элементов.
Взаимосвязь электрических и тепловых параметров светодиода проиллюстрирована на рис. 4.
На рис. 5 показана типовая конструкция мощного светодиода с алюминиевым охлаждающим элементом и цепь тепловых сопротивлений, а на рис. 6-8 – различные методы охлаждения.

Излучение

Поверхность осветительного прибора, на которой монтируется светодиод или модуль с несколькими светодиодами не должна быть металлической, поскольку металлы обладают очень низким коэффициентом излучения. Поверхности светильников, контактирующие со светодиодами, должны, по возможности, иметь высокий спектральный коэффициент излучения?.



Конвекция

Желательно иметь достаточно большую площадь поверхности корпуса светильника для беспрепятственного контакт с потоками окружающего воздуха (специальные охлаждающие ребра, шероховатая структура и т.д.). Дополнительный отвод тепла могут обеспечить принудительные меры: минивентиляторы или вибрирующие мембраны.



Теплопроводность

Из-за очень небольшой площади поверхности и объема светодиодов необходимое охлаждение за счет излучения и конвенции не достигается.

Пример расчета теплового сопротивления для белого светодиода


UF= 3,8 В
IF = 350 мА
PLED = 3,8 В? 0,35 A = 1,33 Вт
Поскольку оптический КПД светодиода равен 25%, то только 0,33 Вт преобразуется в свет, а остальные 75% (Pv=1 Вт) – в тепло. (Зачастую в литературе при расчете теплового сопротивления RthJA допускают ошибку, принимая, что Pv = UF ? IF = 1,33 Вт – это неверно!)

Максимально допустимая температура активного слоя (p-n – перехода – Junction) TJ = 125°C (398 K).

Максимальная окружающая температура ТA = 50°С (323 К).

Максимальное тепловое сопротивление между запирающим слоем и окружением:

RthJA= (TJ – TA)/ Pv = (398 K – 323K)/1 Вт = 75 К/Вт

Согласно данным производителя, тепловое сопротивление светодиода

RthJS = 15 К/Вт


Необходимое тепловое сопротивление дополнительных теплоотводящих элементов (охлаждающие ребра, теплопроводящие пасты, клеющие компаунды, плата):

RthSA= RthJA – RthJS = 75-15 = 60 К/Вт

На рис. 9 пояснены тепловые сопротивления для диода на плате.
Взаимосвязь температуры активного слоя и теплового сопротивления между запирающим (активным) слоем и точкой припоя выводов кристалла определяет формула:

TJ= UF ? IF ? ?e? RthJS + ТS

где ТS – температура, измеренная в точке припоя выводов кристалла (в данном случае она равна 105°С)

Тогда, для рассматриваемого примера с белым светодиодом мощностью 1,33 Вт температура активного слоя определится как
TJ = 1,33 Вт? 0,75 ? 15 К/Вт + 105°С = 120°С.

Деградация излучательных характеристик из-за температурной нагрузки на активный (запирающий) слой.
Зная реальную температуру в точке припоя и располагая данными, предоставленными изготовителем, можно определить тепловую нагрузку на активный слой (TJ) и ее влияние на деградацию излучения. Под деградацией понимается снижение светового потока в течение времени эксплуатации светодиодного чипа.

Влияние температуры запирающего слоя
Принципиальное требование: максимально допустимая температура запирающего слоя превышаться не должна, так как это может привести к необратимым дефектам светодиодов или к спонтанным выходам их из строя.
В связи со спецификой физических процессов, протекающих во время функционирования светодиодов, изменение температуры запирающего слоя TJ в диапазоне допустимых значений оказывает влияние на многие параметры светодиодов, в том числе на прямое напряжение, световой поток, координаты цветности и срок службы.

Со времен изобретения электрического освещения учеными создавались все более экономичные источники. Но настоящим прорывом в этой области стало изобретение светодиодов, которые не уступают по силе светового потока предшественникам, однако расходуют во много раз меньше электроэнергии. Их созданию, начиная от первого индикаторного элемента и заканчивая ярчайшим на сегодня диодом «Cree», предшествовало огромное количество работы. Сегодня мы попробуем разобрать различные характеристики светодиодов, узнаем, как эволюционировали эти элементы и как их классифицируют.

Читайте в статье:

Принцип работы и устройство световых диодов

Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.

Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.


Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.

Классификация светодиодов по их области применения

Такие элементы могут быть индикаторными и осветительными. Первые были изобретены раньше вторых, при этом они уже давно используются в радиоэлектронике. А вот с появлением первого осветительного светодиода начался настоящий прорыв в электротехнике. Спрос на осветительные приборы подобного типа неуклонно растет. Но и прогресс не стоит на месте – изобретаются и внедряются в производство все новые виды, которые становятся все ярче, не потребляя при этом больше энергии. Разберем более подробно, какими бывают светодиоды.

Индикаторные светодиоды: немного истории

Первый такой светодиод красного цвета был создан в середине ХХ века. Хотя он имел низкую энергоэффективность и излучал тусклое свечение, направление оказалось перспективным и разработки в этой обрасти продолжились. В 70-х годах появляются зеленые и желтые элементы, а работы по их усовершенствованию не прекращаются. К 90-му году сила их светового потока достигает 1 Люмена.


1993 год ознаменован появлением в Японии первого синего светодиода, который был намного ярче предшественников. Это означало, что теперь, совмещая три цвета (которые и составляют все оттенки радуги), можно получить любой. В начале 2000-х сила светового потока уже достигает 100 Люмен. В наше время светодиоды не перестают совершенствоваться, наращивая яркость без увеличения потребляемой мощности.

Использование светодиодов в бытовом и промышленном освещении

Сейчас подобные элементы используются во всех отраслях, будь то машино- или автомобилестроение, освещение производственных цехов, улиц или квартир. Если взять последние разработки, то можно сказать, что даже характеристики светодиодов для фонариков порой не уступают старым галогеновым лампам на 220 В. Попробуем привести один пример. Если взять характеристики светодиода 3 Вт, то они будут сопоставимы с данными лампы накаливания с потреблением 20-25 Вт. Получается экономия электроэнергии почти в 10 раз, что при ежедневном постоянном использовании в квартире дает весьма существенную выгоду.


Чем хороши светодиоды и есть ли в них минусы

О положительных качествах световых диодов можно сказать многое. Основными из них можно назвать:

Что же касается отрицательных сторон, то их всего две:

  • Работают только с постоянным напряжением;
  • Вытекает из первого – высокая стоимость ламп на их основе по причине необходимости использования (электронного стабилизирующего блока).

Каковы основные характеристики светодиодов?

При выборе таких элементов для той или иной цели, каждый обращает внимание на их технические данные. Основное, на что следует обратить внимание, приобретая приборы на их основе:

  • ток потребления;
  • номинальное напряжение;
  • потребляемая мощность;
  • температура цвета;
  • сила светового потока.

Это то, что мы можем увидеть на маркировке . На самом же деле, характеристик намного больше. О них сейчас и поговорим.

Ток потребления светодиода – что это такое

Ток потребления светодиода равен 0.02 А. Но это относится лишь к элементам с одним кристаллом. Существуют и более мощные световые диоды, в составе которых может быть 2, 3 и даже 4 кристалла. В этом случае ток потребления будет увеличиваться, кратно числу чипов. Именно этот параметр и диктует необходимость подбора резистора, который впаивается на вводе. В этом случае сопротивление светодиода не дает высокому току мгновенно сжечь LED элемент. Это может произойти по причине высокого тока сети.


Номинальное напряжение

Напряжение светодиода имеет прямую зависимость от его цвета. Это происходит по причине разности материалов для их изготовления. Рассмотрим эту зависимость.

Цвет светодиода Материал Прямое напряжение при 20 мА
Типовое значение (В) Диапазон (В)
ИК GaAs, GaAlAs 1,2 1,1-1,6
Красный GaAsP, GaP, AlInGaP 2,0 1,5-2,6
Оранжевый GaAsP, GaP, AlGaInP 2,0 1,7-2,8
Желтый GaAsP, AlInGaP, GaP 2,0 1,7-2,5
Зеленый GaP, InGaN 2,2 1,7-4,0
Голубой ZnSe, InGaN 3,6 3,2-4,5
Белый Синий/УФ диод с люминофором 3,6 2,7-4,3

Сопротивление световых диодов

Сам по себе один и тот же светодиод может иметь различное сопротивление. Меняется оно в зависимости от включения в цепь. В одну сторону – около 1 кОм, в другую – несколько МОм. Но здесь есть свой нюанс. Сопротивление светодиода нелинейно. Это значит, что оно может изменяться в зависимости от подаваемого на него напряжения. Чем выше напряжение, тем ниже будет сопротивление.


Светоотдача и угол свечения

Угол светового потока светодиодов может различаться, в зависимости от их формы и материала изготовления. Он не может превышать 120 0 . По этой причине, если требуется большее рассеивание, применяют специальные отражатели и линзы. Это качество «направленного света» и способствует наибольшей силе светового потока, которая может достигать 300-350 Лм у одного светодиода на 3 Вт.

Мощность светодиодных ламп

Мощность светодиода – величина сугубо индивидуальная. Она может варьироваться в диапазоне от 0.5 до 3 Вт. Определить ее можно по закону Ома P = I × U , где I – сила тока, а U – напряжение светодиода.

Мощность – довольно важный показатель. Особенно когда необходимо рассчитать какой необходим для того или иного количества элементов.

Цветовая температура

Этот параметр схож с другими лампами. Наиболее приближены то температурному спектру к светодиодным люминесцентные лампы. Измеряется цветовая температура в К (Кельвин). Свечение может быть теплым (2700-3000К), нейтральным (3500-4000К) или холодным (5700-7000К). На самом деле оттенков много больше, здесь указаны основные.


Размер чипа LED элемента

Этот параметр самостоятельно измерить при покупке не удастся и сейчас уважаемому читателю станет понятно почему. Самые распространенные размеры – это 45х45 mil и 30х30 mil (соответствуют 1 Вт), 24х40 mil (0.75 Вт) и 24х24 mil (0.5 Вт). Если перевести в более привычную систему измерений, то 30х30 mil будут равны 0.762х0.762мм.

Чипов (кристаллов) в одном светодиоде может быть много. Если элемент не имеет слоя люминофора (RGB – цветной), то количество кристаллов можно подсчитать.

Важно! Не стоит приобретать очень дешевые светодиоды китайского производства. Они могут оказаться не только низкого качества, но и характеристики их чаще всего завышены.


Что такое SMD светодиоды: их характеристики и отличие от обычных

Четкая расшифровка этой аббревиатуры выглядит как Surface Mount Devices, что в буквальном переводе означает «монтируемый на поверхности». Чтобы было понятнее, можно вспомнить, что обычные световые диоды цилиндрической формы на ножках утапливаются ими в плату и припаиваются с другой стороны. В отличие от них SMD-компоненты фиксируются лапками с той же стороны, где находятся и сами. Такой монтаж дает возможность создания двусторонних печатных плат.

Такие светодиоды намного ярче и компактнее обычных и являются элементами нового поколения. Их габариты указываются в маркировке. Но не стоит путать размер SMD светодиода и кристалла (чипа) которых в составе компонента может быть множество. Разберем несколько таких световых диодов.


Параметры LED SMD2835: размеры и характеристики

Многие начинающие мастера путают маркировку SMD2835 с SMD3528. С одной стороны они должны быть одинаковы, ведь маркировка указывает, что эти светодиоды имеют размер 2.8х3.5 мм и 3.5 на 2.8 мм, что одно и то же. Однако это заблуждение. Технические характеристики светодиода SMD2835 намного выше, при этом он имеет толщину всего 0.7 мм против 2 мм у SMD3528. Рассмотрим данные SMD2835 с различной мощностью:

Параметр Китайский 2835 2835 0,2W 2835 0,5W 2835 1W
Сила светового потока, Лм 8 20 50 100
Потребляемая мощность, Вт 0,09 0,2 0,5 1
Температура, в градусах С +60 +80 +80 +110
Ток потребления, мА 25 60 150 300
Напряжение, В 3,2

Как можно понять, технические характеристики SMD2835 могут быть довольно разнообразны. Все зависит от количества и качества кристаллов.

Характеристики светодиода 5050: более габаритный SMD-компонент

Довольно удивительно, что при больших габаритах этот светодиод имеет меньшую силу светового потока, чем предыдущий вариант – всего 18-20 Лм. Причиной этому малое количество кристаллов – обычно их всего два. Наиболее распространенное применение такие элементы нашли в светодиодных лентах. Плотность из в полосе обычно составляет 60 шт/м, что в общей сложности дает около 900 Лм/м. Достоинство их в этом случае в том, что лента дает равномерный спокойный свет. При этом угол ее освещения максимальный и равен 120 0 .


Выпускаются такие элементы с белым свечением (холодного или теплого оттенка), одноцветными (красный, синий или зеленый), трехцветными (RGB), а так же четырехцветными (RGBW).

Характеристики светодиодов SMD5730

По сравнению с этим компонентом, предыдущие уже считаются устаревшими. Их уже можно назвать даже сверх яркими светодиодами. 3 вольта, которые питают и 5050, и 2835 выдают здесь до 50 Лм при 0.5 Вт. Технические характеристики SMD5730 на порядок выше, а значит их необходимо рассмотреть.

И все-таки это не самый яркий из SMD-компонентов светодиод. Сравнительно недавно на российском рынке появились элементы, которые в прямом смысле «заткнули за пояс» все остальные. О них сейчас и пойдет речь.


Светодиоды «Cree»: характеристики и технические данные

На сегодняшний день аналогов продукции фирмы Cree не существует. Характеристики сверх ярких светодиодов их производства действительно поражают. Если предыдущие элементы могли похвастаться силой светового потока лишь в 50 Лм с одного кристалла, то, к примеру, характеристики светодиода XHP35 от «Cree» говорят о 1300-1500 Лм так же от одного чипа. Но и мощность их больше – она составляет 13 Вт.

Если обобщить характеристики различных модификаций и моделей светодиодов этой марки, то можно увидеть следующее:

Сила светового потока SMD LED «Cree» называется бином, который в обязательном порядке проставляется на упаковке. В последнее время появилось очень много подделок под эту марку, в основном китайского производства. При покупке их сложно отличить, а вот уже через месяц использования их свет тускнеет и они перестают отличаться от других. При довольно высокой стоимости такое приобретение станет довольно неприятным сюрпризом.


Предлагаем Вам небольшое видео на эту тему:

Проверка светодиода мультиметром – как ее выполнить

Самым простым и доступным способом является «прозвонка». На мультиметрах есть отдельное положение переключателя, специально для диодов. Переключив прибор в нужную позицию, прикасаемся щупами к ножкам светодиода. Если на дисплее высветилась цифра «1», следует поменять полярность. В этом положении зуммер мультиметра должен издавать звуковой сигнал, а светодиод светиться. Если подобного не произошло, значит, он вышел из строя. Если же световой диод исправен, но при впайке его в схему не работает, этому может быть две причины – неправильное его расположение или выход из строя резистора (у современных SMD-компонентов он уже встроен, что будет ясно в процессе «прозвонки»).


Цветовая маркировка световых диодов

Общепринятой мировой маркировки подобных изделий не существует, каждый производитель обозначает цвет так, как ему это удобно. В России применяют цветовую маркировку светодиодов, но ею мало кто пользуется, потому, как список элементов с буквенными обозначениями довольно внушителен и запоминать его вряд ли кому-то захочется. Наиболее распространенно буквенное обозначение, которое многие и считают общепринятым. Но такая маркировка чаще встречается не на мощных элементах, а на светодиодных лентах.


Расшифровка кода маркировки светодиодной ленты

Для того, чтобы понять, как маркируется лента, нужно обратить внимание на таблицу:

Позиция в коде Назначение Обозначения Расшифровка обозначения
1 Источник света LED Светодиод
2 Цвет свечения R Красный
G Зеленый
B Синий
RGB Любой
CW Белый
3 Способ монтажа SMD Surface Mounted Device (Устройство, монтируемое на поверхность)
4 Размер чипа 3028 3,0 х 2,8 мм
3528 3,5 х 2,8 мм
2835 2,8 х 3,5 мм
5050 5,0 х 5,0 мм
5 Количество светодиодов на метр длины 30
60
120
6 Степень защиты: IP International Protection
7 От проникновения твердых предметов 0-6 Согласно ГОСТ 14254-96 (стандарт МЭК 529-89) «Степени защиты, обеспечиваемые оболочками (код IP)»
8 От проникновения жидкости 0-6

Для примера возьмем конкретную маркировку LED CW SMD5050/60 IP68. Из нее можно понять, что перед нами светодиодная лента белого цвета для поверхностного монтажа. Элементы, установленные на ней, имеют размер 5х5мм, в количестве 60 шт/м. Степень защиты позволяет ей длительное время работать под водой.


Что можно сделать из светодиодов своими руками?

Это вопрос очень интересный. И если отвечать на него развернуто, то на это уйдет очень много времени. Наиболее частое применение световых диодов – это подсветка подвесных и натяжных потолков, рабочей зоны на кухне или даже клавиатуры компьютера.

Мнение эксперта

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО "АСП Северо-Запад"

Спросить у специалиста

“Для работы таких элементов необходим стабилизатор питания или контроллер. Его можно взять даже со старой китайской гирлянды. Многие «умельцы» пишут, что достаточно обычного понижающего трансформатора, но это не так. В этом случае диоды будут моргать.”


Стабилизатор тока – какую функцию он выполняет

Стабилизатор для светодиодов – это источник питания, который понижает напряжение и выравнивает ток. Другими словами, создает условия для нормальной работы элементов. При этом он защищает от повышения или падения напряжения на светодиодах. Существуют стабилизаторы, которые могут не только регулировать напряжение, обеспечивая плавное затухание световых элементов, но и управлять режимами цвета или мерцания. Они называются контроллерами. Подобные устройства можно увидеть на гирляндах. Так же они продаются в магазинах электротехники для коммутации с RGB-лентами. Такие контроллеры оснащаются пультами дистанционного управления.

Схема такого устройства не сложна, и при желании простейший стабилизатор можно изготовить и своими руками. Для этого понадобятся лишь небольшие знания в радиоэлектронике и умение держать в руках паяльник.


Дневные ходовые огни на автомобиль

Применение световых диодов в автомобильной промышленности довольно распространено. К примеру, ДХО изготавливаются исключительно с их помощью. Но если авто не оснащено ходовыми огнями, то их приобретение может ударить по карману. Многие автолюбители обходятся дешевой светодиодной лентой, но это не очень удачная мысль. Особенно, если сила ее светового потока невелика. Неплохим выходом может стать приобретение самоклеящейся ленты на диодах «Cree».

Вполне можно сделать ДХО и при помощи уже вышедших из строя, поместив внутрь старых корпусов новые, мощные диоды.

Важно! Дневные ходовые огни созданы именно для того, чтобы авто было заметно днем, а не ночью. Нет смысла проверять, как они будут светить, в темное время суток. ДХО должны быть заметны при свете солнца.


Мигающие светодиоды – для чего это нужно?

Неплохим вариантом использования подобных элементов станет рекламное табло. Но если оно будет статично светиться, то это не привлечет должного внимания. Основной задачей является сборка и спайка щита – для этого нужны некоторые навыки, приобрести которые несложно. После сборки можно вмонтировать контроллер от той же гирлянды. В результате получается мигающая реклама, которая явно привлечет внимание.

Цветомузыка на световых диодах – сложно ли ее сделать

Это работа уже не для новичков. Для того, чтобы собрать полноценную цветомузыку своими руками нужен не только точный расчет элементов, но и знания радиоэлектроники. Но все же простейший ее вариант вполне по силам каждому.


В магазинах радиоэлектроники всегда можно найти датчик звука, да и во многих современных выключателях он есть (свет по хлопку). Если у Вас есть светодиодная лента и стабилизатор, то пустив с блока питания «+» на полосу через подобную хлопушку можно добиться желаемого результата.

Индикатор напряжения: что делать, если он перегорел

Современные индикаторные отвертки состоят как раз из светового диода и сопротивлений с изолятором. Чаще всего это эбонитовая вставка. При перегорании элемента внутри его вполне можно заменить на новый. А цвет уже будет выбирать сам умелец.


Еще один из вариантов – это изготовление прозвонки цепи. Для этого понадобится 2 пальчиковых батарейки, провода и световой диод. Соединив элементы питания последовательно, одну их ножек элемента припаиваем к плюсу батареи. Провода будут идти от другой ножки и от минуса батареи. В итоге при замыкании диод засветится (если полярность не перепутать).

Схемы подключения светодиодов – как все правильно выполнить

Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).


Как рассчитать сопротивление светодиода

Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.

Сделать это можно по формуле:

R = (VS – VL ) / I , где

  • VS – напряжение питания;
  • VL номинальное напряжение для светодиода;
  • I – ток светодиода (обычно это 0.02 А, что равно 20 мА).

При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель. Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов. Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.

Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.

Параллельное и последовательное соединение: как они выполняются

По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.


Подключение световых диодов на 12 В как самый оптимальный вариант

Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.


В заключение

Популярность, которую набирают световые диоды, не может не радовать. Ведь это заставляет прогресс двигаться вперед. И кто знает, быть может, уже в ближайшее время появятся новые светодиоды, которые будут на порядок выше по характеристикам, чем существующие сейчас.

Надеемся, наша статья была полезна уважаемому читателю. При возникновении вопросов по теме просим задавать их в обсуждениях. Наша команда всегда готова на них ответить. Пишите, делитесь опытом, ведь он может кому-то помочь.

Видео: как правильно подключить светодиод

Похожие статьи