Скетч для светодиодной ленты ардуино. Скетч управления яркостью светодиодной ленты Arduino. Пояснения к коду

08.05.2019

Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328


Внешний вид Arduino Pro Mini
Внешний вид Arduino Uno
Внешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Принцип управления нагрузкой через Ардуино


управление Arduino

На плате есть много выходов, как цифровых, имеющих два состояния — включено и выключено, так и аналоговых, управляемых через ШИМ-controller с частотой 500 Гц.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле


Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния — включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта , найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.

Видеоинструкция

Arduino - компьютерная платформа, используемая при построении простых систем автоматики, небольшая плата со встроенным микропроцессором и оперативной памятью. Управление светодиодной лентой через Arduino - один из способов ее применения.

Процессор ATmega управляет программой-скетчем, контролируя многочисленные дискретные выводы, аналоговые и цифровые входы/выходы, ШИМ-контроллеры.

Принцип действия Arduino

«Сердце» платы Arduino - микроконтроллер, к которому подключаются датчики, управляющие элементы. Заданная программа (называется «скетч») позволяет управлять электродвигателями, светодиодами в лентах и других осветительных приборах, даже используется для контроля над другой платой Arduino через протокол SPI. Контроль осуществляется при помощи пульта ДУ, Bluetooth-модуля или сети Wi-Fi.

Для программирования используется открытый исходный код на ПК. Для загрузки программ управления можно пользоваться USB-коннектором.

Принцип управления нагрузкой через Arduino

На плате Arduino есть порты двух типов - цифровые и аналоговые. Первый имеет два состояния - «0» и «1» (логические ноль и единица). При подключении светодиода к плате в одном состоянии он будет светиться, в другом - нет.

Аналоговый вход, по сути, - ШИМ-контроллер, регистрирующий сигналы частотой около 500 Гц. Такие сигналы подаются на контроллер с настраиваемой скважностью. Аналоговый вход позволяет не просто включать или отключать управляемый элемент, но и изменять значение тока (напряжения).

При прямом подключении через порт используйте слабые светодиоды, добавляя к ним ограничительный резистор. Более мощная нагрузка выведет его из строя. Для организации управления светодиодной лентой и другим осветительным прибором примените электронный ключ (транзистор).

Подключение к Arduino

Прямое подключение светодиодной ленты к Arduino уместно только в случае применения слабых LED-диодов. Для светодиодной ленты между ней и платой необходимо установить дополнительные электротехнические элементы.

Через реле

Подключите реле к плате Arduino через цифровой выход. Управляемая полоса может иметь одно из двух состояний - включения или выключения. Если нужно организовать управление RGB-лентой, понадобятся три реле.

Значение тока, контролируемое данным устройством, ограничивается мощностью катушки. Если мощность слишком мала, элемент не сможет замыкать большие контакты. Для наиболее высоких мощностей примените релейные сборки.

С помощью биполярного транзистора

Если нужно повысить ток или напряжение на выходе, подключите биполярный транзистор. При его выборе ориентируйтесь на ток нагрузки. Ток управления не превышает 20 мА, поэтому добавьте резистор на 1 – 10 кОм для ограничения тока за счет сопротивления.

Обратите внимание! В идеале нужно пользоваться транзистором n-p-n типа на базе общего эмиттера. Если требуется большое усиление, примените транзисторную сборку.

С помощью полевого транзистора

Вместо биполярных транзисторов для управления светодиодными лентами возьмите полевые (сокращенно - МОП). Разница между ними связана с принципом управления: биполярные изменяют ток, полевые - напряжение на затворе. Благодаря этому небольшой ток затвора управляет большой нагрузкой (десятками ампер).

Обязательно добавьте к схеме резистор для ограничения тока. Из-за высокой чувствительности к помехам к выходу контроллера подключается масса резистора на 10 кОм.

С помощью плат расширения

Если нет желания использовать реле и транзисторы, можно купить целые блоки - платы расширения. К ним относятся Wi-Fi, Bluetooth, эквалайзер, драйвер и т. д., которые необходимы для управления нагрузкой разных мощностей и напряжений. Это могут быть как одноканальные элементы, которые подойдут монохромным лентам, так и многоканальные (для управления цветными RGB-лентами).

Различные программы

Библиотеки с программами для платы Arduino можно загрузить с официального сайта или найти в Интернете на других информационных ресурсах. Если есть навыки, можете даже самостоятельно написать скетч-программу (исходный код). Для сбора электрической цепи не требуется каких-то специфичных знаний.

Варианты применения системы под управлением Arduino:

  1. Освещение. Наличие датчика позволит задать программу, в соответствии с которой свет в комнате либо появляется сразу, либо плавно включается параллельно заходу солнца (с увеличением яркости). Для включения можно использовать Wi-Fi, телефон и интеграцию в систему «Умный дом».
  2. Освещение коридора и лестничных площадок. Arduino позволит организовать освещение каждой детали (к примеру, ступени) отдельно. Добавьте в плату датчик движения, чтобы адресные светодиоды загорались последовательно в зависимости от того места, где зафиксировано движение объекта. Если движения нет, диоды будут гаснуть.
  3. Светомузыка. Воспользуйтесь фильтрами и подайте на аналоговый вход звуковые сигналы, чтобы на выходе организовать светомузыку (эквалайзер).
  4. Модернизация компьютера. Некоторые датчики позволят создать зависимость цвета светодиодов от температуры процессора, его загрузки, нагрузки на оперативную память. Используется протокол DMX 512.

Микросхемы Arduino расширяют возможности применения монохромных и многоканальных (RGB) светодиодных лент. Помимо слияния различных цветов, образования сотен тысяч оттенков сможете создать неповторимые эффекты - затухание при заходе солнца, периодическое включение/выключение при фиксации движения и многое другое.

Здравствуйте Хабр-сообщество.

В данное время стали доступны светодиодные ленты с изменяемым цветом свечения. Они классно выглядят, не дорого стоят и их можно хорошо приспособить для декоративной подсветки интерьера, рекламы, и т.д.

К таким лентам можно купить источник питания, диммер, диммер с пультом управления. Это позволит вам использовать светодиодную ленту для посветки. Однако если вы захотите запи запрограммировать алгоритм изменения цвета, или сделать управление из компьютера - то тут начинается разочарование. Вы в продаже не найдете диммеров с управлением через COM-порт или Ethernet.

Добро пожаловать под кат.

Теоретическая часть

Для реализации плавного изменения свечения всех 3 каналов нам потребуется сделать собственный димер. Сделать его очень просто, для этого требуется взять силовые ключи и управлять ими с помощью ШИМ сигнала. Также наш диммер должен быть программируемым и/или управляемым из вне.

В качестве мозгов идеально подходит Arduino. В её программу можно записать любой алгоритм изменения цветов, а также её можно управлять как с помощью модулей Arduino, так и удаленно по Ethernet, Ик-порту, Bluetooth, используя соответствующие модули.

Для реализации задуманного я выбрал Arduino Leonardo. Она одна из самых дешевых плат Arduino, и она имеет много выводов с поддержкой ШИМ.

PWM: 3, 5, 6, 9, 10, 11, and 13. Provide 8-bit PWM output with the analogWrite() function.

И так, источник ШИМ у нас имеется, остаётся придумать с силовыми ключами. Если побродить по интренет магазинам, то выяснится, что не существует модуля Arduino для управления RGB лентами. Или просто универсальных модулей с силовыми транзисторами. Также можно найти огромное количество сайтов радиолюбителей, которые делают платы с силовыми ключами сами.

Однако есть способ проще! Нас выручит модуль Arduino для управления двигателями. Этот модуль имеет все необходимое для нам - на нем установлены мощные ключи на 12В.

Пример такого модуля является «L298N Module Dual H Bridge Stepper Motor Driver Board Modules for Arduino Smart Car FZ0407». Такой модуль основан на микросхеме L298N, которая представляет из себя 2 моста. Однако мостовое включение полезно для двигателя (от этого он может менять направление вращения), а в случае RGB ленты, оно бесполезное.

Мы будем использовать не весь функционал этой микросхемы, а только 3 её нижних ключа, подключив ленту как показано на рисунке.

Практическая часть часть

Для реализации потребуется Arduino Leonardo, Модуль управления двигателями L298N, Источник 12В (для запитки ленты), сама RGB лента, соединительные провода.
Для удобства подключения я еще использовал Fundruino IO Expansion, но он никакой функциональной нагрузки не несет.

Схема подключения показана на рисунке.

Хочу дополнительно описать питание системы. В данной схеме питание подается на модуль управления двигателями, в нем стоит понижающий источник питания на 5В, и эти 5В я подаю на вход Vin питания Arduino. Если разорвать эту связь (естественно земли оставив соединенными), то запитывать Arduino и силовые ключи можно от разных источников питания. Это может быть полезно когда к Arduino много всего подключено, и источник в модуле управления двигателями не справляется (выключается по перегреву).

Управляется RGB лента с помощью команд analogWrite, которая настраивает выход для формирования ШИМ сигнала.

Исходный код программы для arduino:
#define GRBLED_PIN_R 9 // пин для канала R #define GRBLED_PIN_G 10 // пин для канала G #define GRBLED_PIN_B 11 // пин для канала B int rgbled_r=0, rgbled_g=0, rgbled_b=0; void setup(){ //enable serial datada print Serial.begin(9600); Serial.println("RBG LED v 0.1"); // RGBLED pinMode(GRBLED_PIN_R, OUTPUT); pinMode(GRBLED_PIN_G, OUTPUT); pinMode(GRBLED_PIN_B, OUTPUT); } void loop(){ // change color rgbled_r = (rgbled_r+1)%1024; rgbled_g = (rgbled_g+2)%1024; rgbled_b = (rgbled_b+3)%1024; // Output Z1_output_rgbled(); delay(1); } void Z1_output_rgbled() { analogWrite(GRBLED_PIN_R, rgbled_r); analogWrite(GRBLED_PIN_G, rgbled_g); analogWrite(GRBLED_PIN_B, rgbled_b); }

На видео можно увидеть как это работает:

Экономическая часть






















L298N Module Dual H Bridge Stepper Motor Driver Board Modules for Arduino Smart Car FZ0407 $ 5.31 1
Leonardo R3 Development Board for Arduino Compatiblae + USB Cable Wire FZ0437 $ 10.00 1
5050 LED Strip RGB and single color 5M DC12V/24V 60leds/m Waterproof Flexible Car auto Strip Light saving light $ 12.38 1
Retail AC85~265V to DC 12V/6A power supply adaptor transformer switching for led light $ 9.98 1

Итого $37,65 = 1 300 руб

Вместо заключения

Для тех, кто захочет повторить описанную здесь схему - хочу заметить, что драйвер L298N рассчитан на ток 2-3А, а RGB светодиодные ленты, на светодиодах 5050 с плотностью 60 светодиодов на метр, продающиеся по 5 метров, могут потреблять до 6А. По этому если вы хотите использовать длинные и яркие ленты - возможно потребуется схему модернизировать (подключать ленту по сегментам, или взять более мощный драйвер) или использовать ленты по проще.


В преддверии Нового Года предлагаю вам собрать елочную программируемую RGB гирлянду с возможностью создавать различные узоры.

Что понадобится для гирлянды?

WS2811 RGB Full Color 12mm LED String DC 5V можно приобрести на Aliexpress за 20 долларов. Обычной конец одной такой гирлянды можно соединять с другой, чтобы увеличить длину. Эта статья рассчитана на построение световых узоров, так что, если у вас под рукой есть программируемая LED гирлянда с другим протоколом, вам надо будет, переписать программу и подключить гирлянду в соответствии с datasheet.
5 вольтовый источник тока, рассчитанный на ток, потребляемый вашей гирляндой. Обычно продавец указывает ток, потребляемый гирляндой.
Arduino любой версии. Автор использовал стандартный Arduino Uno.
Зеленая акриловая краска
Изолента
Провод.
Желательно иметь разъемы JST чтобы было легче соединять гирлянду с контроллером

Перед тем как начать собирать елочную гирлянду, убедитесь, что все светодиоды исправны. В интернете можно найти, как подключить WS2811 к Arduino.

Определите выводы +5V и GND по datasheet на вашу WS2811
Красный = + 5В
Синий = GND
Белый = Данные

Подключение получается такое, как на картинке.

Установите популярную библиотеку WS2811 Arduino от Adafruit. Скачать и прочитать инструкцию по установке можно здесь:
Измените прилагаемый код в соответствии с длиной вашей гирлянды в #define LED_COUNT . Загрузите и запустите программу на Arduino. Обратите внимание, что пиксели меняют цвет от красного к зеленому, потом к синему, потом к белому в течении 5 сек. Это гарантирует, что все 3 светодиода внутри пикселя исправны.

(скачиваний: 1085)

Оценка падения напряжения.

Каждый светодиодный пиксель и последующая подключенная LED гирлянда, вызовет какое-то падение напряжения. Так что после 50 светодиода в вашей LED гирлянде напряжение источника питания упадет на какую-то заметную величину. Например, с 5в до 4.7В. Это означает, что следующая гирлянда, которую вы подключите к первой, будет запитана не от 5в, а от 4.7в и напряжение после нее упадет еще ниже. В результате каждый светодиод будет темнее, чем предыдущий. В конечном итоге, когда напряжение упадет до 3.3в, микросхема, обслуживания протокола WS2811, просто перестанет работать.

Так как в каждом пикселе по 3 светодиода и белый цвет свечения гирлянды означает, что все 3 светодиода светятся одинаково, на ней будет падать напряжение больше, чем, если бы горели, к примеру, только красные светодиоды. При запуске программы тестирования вы заметили сильные затемнения на концах гирлянды? Можете подключить туда дополнительно питание 5в. Автор сделал это через каждые 100 пикселей

Покраска гирлянды.

Нормальные новогодние гирлянды окрашены в зеленый цвет, чтобы сливаться с елкой. У вашей светодиодной гирлянды провода разного цвета. Подвесьте гирлянду и покрасьте провода в зеленый цвет акриловой краской, это займет немного времени. Корпуса WS2811 заверните в черную изоленту, это будет быстрее, чем красить их.


Определение позиции X и Y каждого пикселя

Повесьте собранную гирлянду на елку. После этого можно рассчитать положение каждого пикселя по X и Y и вставить эти данные в код программы. Для этого используйте вот этот файл с кодом. Раскомментируйте первую функцию loop () , которая зажигает секции по 10 светодиодов. Если у вас есть больше чем 50 светодиодов, то вы можете продлить эту секцию простым копированием, не забывая указывать нужное количество в #define LED_COUNT

Постарайтесь наложить сетку так, чтобы самый нижний левый светодиод попал в ячейку 1.1. Это делается для того, чтобы программа смогла определить середину дерева в обоих X и Y направлениях. Ввод X и Y координат это ручной процесс, каждую координату вы будете получать, смотря на видео. 200 координат звучит, конечно, устрашающе, но времени это займет в пределах 20 минут.

Можно распечатать сетку и приложить ее к монитору компьютера или дисплею телефона, чтобы не возиться с видеоредакторами.

Прилагаемый файл, так же, как и предыдущий файл является примером кода, перебирающим различные узоры, как на видео.

(скачиваний: 1240)

По видео вы можете понять логику работы программы и написать свои шаблоны или поменять код под себя. Другой прикрепленный файл - это файл настройки, чтобы Arduino управлялся через последовательный интерфейс с другого устройства. Автор использовал Raspberry Pi для управления Arduino.

Вот такая новогодняя гирлянда с использованием Arduino и комплекта WS2811.

(скачиваний: 1132)

Данный проект посвящен тому, как сделать светодиодную подсветку, управляемую с соседней комнаты, чтобы не вставать с дивана. Светодиодная RGB-подсветка одинаково хорошо украшает как маленький аквариум, так и большую комнату.

Можно засветить разными цветами баню от RGB ленты на Arduino. Создать, так сказать, баню на микропроцессорном управлении от Arduino.

Всего лишь понадобятся для сборки RGB-подсветки такие компоненты:

  1. Bluetooth модуль HC-05 для беспроводной связи с Arduino.
  2. Плата Arduino nano, mini, Uno с микропроцессором ATmega 8, ATmega 168, ATmega 328.
  3. Светодиодная лента RGB, при необходимости во влагозащитном исполнении IP65 или без него.
  4. Смартфон с Android как пульт управления RGB-подсветкой.
  5. Полевые MOSFET транзисторы, такие как P3055LD, P3055LDG, PHD3355L, но лучше с выводами для закрепления в монтажных отверстиях. Биполярные транзисторы работают хуже .
  6. Резисторы 10 кОм, 0.125 Вт - 3 штуки.

Немного теории про подключение RGB ленты к Arduino

Нельзя подключить светодиодную полоску напрямую к плате Arduino. Светодиодная лента светиться от 12 В, тогда как микропроцессору нужно для работы всего 5 В.

Но, самая главная проблема в том, что выходы микропроцессора не имеют достаточной мощности для питания целой ленты светодиодов. В среднем метровой длины светодиодная полоса потребляет 600 мА. Такой ток точно выведет из строя плату Arduino.

Используемые ШИМ выходы микропроцессора не имеют достаточной мощности, чтобы засветить RGB ленту, но всё-таки их можно использовать для снятия сигнала управления.

Для развязки по питанию, в качестве ключей, рекомендуется использовать транзисторы. Лучше использовать полевые MOSFET транзисторы: им для открытия нужен мизерный ток на «затвор», к тому же они имеют большую мощность в сравнении с биполярными ключами такого же размера.

RGB ленты к Arduino

На электромонтажной схеме на управление лентой задействованы ШИМ-выхода: 9 (красный), 10 (зеленый), 11 (голубой).

Три резистора по 10 кОм, 0.125 Вт повешены на «затвор» каждого транзистора.

Плюс от блока питания 12 В (красный провод) идет напрямую на RGB ленту.

Минус от блока питания 12 В (черный провод) распределяется по «истокам» полевых транзисторов.

«Сток» каждого транзистора связан с отдельным контактом ленты: R, G, B. Рекомендуется для удобства при подключении использовать провода красного, зеленого, голубого цвета.

Контакт заземления GND платы Arduino следует посадить на минус входного питания.

Сама плата Arduino Uno запитывается от отдельного сетевого адаптера. Для Arduino nano, mini потребуется собрать простенький источник питания на интегральном стабилизаторе 7805.

Подключение Bluetooth модуля HC-05:

  • VCC - 5V (питание +5 В);
  • GND - GND (земля, общий);
  • RX - TX на Arduino nano, mini, Uno;
  • TX - RX на Arduino nano, mini, Uno;
  • LED - не используется;
  • KEY - не используется.

Приведенный ниже эскиз программы является универсальным для управления как одним светодиодом, так и светодиодной полосой. Главное оставить нужные строчки, а ненужные удалить или сделать комментариями в косых черточках.

Unsigned long x; int LED = 9; // зеленый подключен к 9 пину int LED2 = 10; // синий подключен к 10 пину int LED3 = 11; // красный подключен к 11 пину int a,b,c = 0; void setup() { Serial.begin(9600); Serial.setTimeout(4); pinMode(LED, OUTPUT); pinMode(LED2, OUTPUT); pinMode(LED3, OUTPUT); } void loop() { if (Serial.available()) { x = Serial.parseInt(); if (x>=0 && x<=255) { a = x; // для RGB ленты //a = 255-x; // для светодиода analogWrite(LED, a); } if (x>=256 && x<=511) { b = x-256; // для RGB ленты //b = 511-x; // для светодиода analogWrite(LED2, b); } if (x>=512 && x<=767) { c = x-512; // для RGB ленты //c = 767-x; // для светодиода analogWrite(LED3, c); } /* Serial.println(x); Serial.println(a); Serial.println(b); Serial.println(c); */ } }

Если понадобиться подключить один RGB светодиод, тогда есть электромонтажная схема его подключения.

Установка приложения на телефон

Скачиваем приложение с коротким названием RGB на телефон. .

После установки запускаем приложение по иконке.

Кликаем по надписи

Находим в списке установленный Bluetooth модуль HC-05.

При наличии связи вместо надписи будет отображаться адрес и название установленного модуля Bluetooth.

Ну, вот и всё, управление RGB подсветкой налажено!

Вот видео-пример работы нашего проекта:

GPS часы на Arduino Биометрический замок – Схема и сборка ЖК дисплея

Похожие статьи