Разгон памяти ddr3 подбор таймингов. Как разогнать оперативную память? Программа для разгона оперативной памяти. Оптимальное рабочее напряжение

15.04.2019

Ассортимент частот DDR3 раскрылся намного раньше, чем у DDR2, поскольку модули DDR3 с частотами 1066, 1333 и 1600 МГц (DDR) уже появились на рынке, и призваны заменить память DDR2 на 533, 667 и 800 МГц (DDR). Как и в случае DDR2, есть более высокие, "нестандартные" частоты, но они нацелены на энтузиастов, а не на массовый рынок. В нашем обзоре мы рассмотрим модули, которые работают на "массовых" скоростях DDR3, поскольку память на 1333 МГц (DDR) как раз попадает посередине между "бюджетной" (1066 МГц) и high-end (1600 МГц). Всего мы пригласили к участию 13 разных компаний, и восемь из них выслали свою память для нашего тестирования.

Как и в предыдущих тестах памяти, мы разогнали каждый набор до предела стабильности, чтобы найти порог производительности. Но перед тем как мы перейдём к рассмотрению модулей DDR3, давайте поговорим об этом рынке. Какие преимущества имеет новая память перед DDR2? Почему она была представлена? И когда новая технология выходит на рынок по немалой цене, стоит ли тратить на неё деньги?

Что в имени тебе моём?

"Официальное" название памяти DDR базируется на её пропускной способности, а не на тактовой частоте. Простой способ преобразовать её эффективную частоту в пропускную способность - умножить на восемь. Так, DDR-400 называется PC-3200, DDR2-800 - PC2-6400, а DDR3-1600 - PC2-12800.

Объяснить подобную математику очень просто: модули ПК на основе технологии SDRAM подключаются по 64-битной шине; в байте восемь битов, а 64 бита эквивалентны восьми байтам. Например, DDR2-800 передаёт 800 мегабит в секунду по одной линии; 64 линии обеспечивают одновременную передачу восьми битов, и если 800 умножить на восемь как раз и будет 6 400.

Но есть проблема округления, которая впервые появилась с DDR-266 (PC-2100). Эффективная частота передачи 266 МГц на самом деле составляет 266,(6) (шесть в периоде) МГц, поэтому на самом деле пропускная способность составляет 2 133 Мбайт/с.

Сегодня память DDR3-1333 даёт пиковую пропускную способность 10 666 Мбайт/с, которую по желанию производителя можно округлить вниз до PC3-10600, вверх до PC3-10700 или оставить как PC3-10666.

Покупатели, которые планируют выбрать память из нескольких наборов DDR3-1333, должны обращать внимание на все три названия, хотя большинство производителей маркирует свои модули DDR3-1333 как PC3-10600 или PC3-10666.

Грядущая пропускная способность... сегодня!

Часто в качестве аргумента приводят то, что память DDR2 достаточно быстра для современных процессоров, поскольку самая скоростная нынешняя системная шина Intel FSB (Front Side Bus) работает на эффективной частоте 1 333 МГц. Нужна ли при такой частоте 1 333-МГц память? Если ответить кратко, то нет.

Intel ещё со времён появления RDRAM на первых Pentium 4 использует двухканальную память, у которой ширина шины памяти удваивается, так как даже тогда невозможно было найти память, которая работала не медленнее FSB. Самые первые Pentium 4 использовали 64-битную шину FSB с эффективной частотой 400 МГц ещё до появления DDR-400, но два 64-битных модуля DDR-200 (PC-1600) были для такой FSB достаточны, если удвоить ширину шины памяти до 128 битов... Если бы тогда был чипсет DDR SDRAM для Pentium 4. Двухканальная технология с тех пор сохранилась, и FSB1333 как раз соответствует по пропускной способности двум модулям DDR2-667 (PC2-5300) в двухканальном режиме.

Ещё один аргумент заключается в "синхронной" работе памяти по отношению FSB CPU: многим кажется, что память DDR3-1333 синхронно работает с FSB-1333. Однако это не так. Intel использует технологию учетверённой передачи за такт QDR (Quad Data Rate) для FSB, а память - технологию удвоенной передачи DDR (Double Data Rate). FSB-1333 работает на физической тактовой частоте 333 МГц, что соответствует памяти DDR2-667.

Да, некоторые пользователи замечают небольшой прирост производительности от работы памяти с множителем до 1,5x по отношению к частоте FSB CPU, нарушая принцип синхронной работы. Собственно, именно поэтому память DDR2-667 стала популярной ещё до появления Intel FSB-1333, и именно поэтому память DDR2-800 хорошо покупают даже те, кто не планирует заниматься разгоном.

Пусть многим сборщикам уже некоторое время ничего не нужно, кроме недорогих модулей DDR2, но память DDR3 имеет два ключевых преимущества. Во-первых, максимальная плотность памяти у чипов была расширена до 8 Гбит, что даёт для 16-чипового модуля ёмкость 16 Гбайт. Во-вторых, напряжение питания по умолчанию было снижено до 1,50 В по сравнению с 1,80 В у DDR2, что даёт 30% снижение энергопотребления при равных тактовых частотах.

Покупать или нет?

Одним из важных аргументов в пользу памяти DDR3 является постепенное движение чипсетов Intel в этом направлении. Компания впервые добавила поддержку DDR3 в качестве опции у северного моста чипсета P35 Express, да и рынок DDR3 затем был и далее расширен с появлением новых чипсетов DDR3. Производители материнских плат попытаются собрать все сливки с энтузиастов, первыми внедряющих новые технологии, поэтому большинство плат на очень дорогом чипсете X48 наверняка будет поддерживать последний стандарт памяти. Между тем DDR3 будет постепенно спускаться и до "бюджетного" рынка.

Последние технологии всегда достаются недёшево, а памяти DDR2 хватает для большинства систем, так зачем беспокоиться? Intel, скорее всего, будет готовить рынок настольных ПК к следующему крупному шагу, в частности, перенеся контроллер памяти с чипсета на сам процессор. Как и у текущих процессоров AMD, этот шаг убирает ограничения по пропускной способности FSB и позволяет будущим процессорам получать данные с такой же скоростью, с которой они будут передаваться из памяти.

Покупатель сам вправе решать, нести ли ему бремя продвижения новых технологий в массы. Многие всё ещё помнят, как память RDRAM совершенно зря насаждалась для чипсетов Pentium III, тех же i820 и i840, по мере того, как Intel готовила чипсет i850 для Pentium 4 с такой же памятью. План Intel заключался в расширении доступности памяти RDRAM к моменту, когда она действительно потребуется, но рынок среагировал негативно. Впрочем, сходства с продвижением DDR3 на этом заканчиваются, поскольку Intel не продвигает насильно память на рынок, а предоставляет подобную опцию для прироста производительности.

Впрочем, не нужно думать, что память DDR3 на текущих частотах FSB у Intel так уж бесполезна, ведь существенно выросшие частоты позволяют хорошо разгонять FSB. FSB-1600 (физическая частота 400 МГц) появится в ближайшее время, и если требуется разогнать 2,80-ГГц процессор с FSB1600 (400 МГц FSB x7) до 4,20 ГГц (600 МГц FSB x7), то потребуется память, способная работать на эффективной частоте 1 200 МГц (физическая частота 600 МГц). DDR2-1200 встречается редко, так как эта память требует чрезмерного подъёма напряжения, хорошего охлаждения и молитв пользователя, что она не "умрёт", поскольку это просто разогнанные модули DDR2-800.

Поэтому, пока большинство сборщиков систем на Core 2 сравнивают цены DDR2-800 с разными моделями DDR3, оверклокеры рассматривают DDR3-1333 как более скоростную, дешёвую и надёжную альтернативу DDR2-1200. Более того, по мере продвижения DDR3 на массовый рынок, оверклокеры с более ограниченным бюджетом тоже к ним присоединятся.

Частота против задержек: мифы и факты

Существует миф, что каждый новый формат увеличивает время отклика. Этот миф основан на методе, которым измеряются задержки (тайминги): по времени такта.

Рассмотрим задержки трёх последних форматов памяти: память DDR-333 для верхнего сегмента массового рынка работала с задержками CAS 2; схожая по позиционированию память DDR2-667 - с CAS 4, и современная память DDR3-1333 - с CAS 8. Большинство пользователей будут удивлены, узнав, что столь различающиеся задержки CAS на самом деле дают одинаковое время отклика, а именно, 12 наносекунд.

Дело в том, что время такта (период) обратно пропорционально тактовой частоте (1/2 от эффективной частоты DDR). У DDR-333 время такта составляет шесть наносекунд, у DDR2-667 - три наносекунды, а у DDR3-1333 - 1,5 нс. Задержка измеряется в тактах, и два 6-нс такта по времени длятся столько же, сколько четыре 3-нс или восемь 1,5-нс. Если у вас ещё остались сомнения, посчитайте сами!

Многие, не очень вдумчивые покупатели считают, что более скоростная память реагирует медленнее, но из приведённых примеров очевидно, что это не так. Проблема заключается не в том, что время отклика становится меньше, а в том, что оно не становится быстрее! Когда мы смотрим на астрономические частоты, то надеемся, что в результате система станет более отзывчивой. Однако за последние годы задержки памяти, увы, ощутимо не изменились.

Мы всё же надеемся найти действительно быстрые модули, поэтому наши тесты включают как проверку максимальных частот, так и минимального времени отклика. Всё это - при сохранении стабильности системы.

Но что значат эти числа?

Итак, задержки измеряются в тактах, а не в секундах, но что они означают? Большинству покупателей мы рекомендуем смотреть только на первые четыре значения, которые приведены в порядке значимости, например, 9-9-9-24 в случае высокоскоростных модулей DDR3. Обычно задержки называются CAS Latency (tCL), RAS to CAS Delay (tRCD), RAS Precharge Time (tRP) и Active Precharge Delay (tRAS).

10 комплектов для выбора

Большинство из 13 производителей памяти, с которыми мы связались, пожелали участвовать в наших сводных тестах, но несколько компаний пока не производят память DDR3 с эффективной частотой 1 333 МГц. Некоторые полностью игнорируют массовый рынок, фокусируясь на "бюджетных" моделях DDR3-1066 и экстремальных DDR3-1600. Единственная компания, которая производит модули, но не успела к установленному сроку, - Team Group. Из восьми компаний, которые участвуют в наших тестах, OCZ и Kingston выслали по паре комплектов, что говорит о широком ассортименте этих компаний.

Aeneon X-Tune DDR3-1333

Если вы никогда не слышали о компании Aeneon, вы не одиноки. Это новая розничная торговая марка Qimonda. Если же и последнее название вам ничего не говорит, то, вероятно, по причине того, что так называется бывшее подразделение по производству памяти Infineon. Опытные сборщики должны быть наверняка знакомы с памятью Infineon и её репутацией качества и надёжности.

В то время как другие производители пытаются выбрать, называть свою память PC3-10600 или PC3-10666, Aeneon решила оставить этот спор и назвать свою память по эффективной частоте, а не по пропускной способности. Ведь многие сборщики обращают внимание, прежде всего, на частоту, а не на пропускную способность.

Модули продаются под модельным номером AXH760UD00-13G. В комплект поставки входят два 1-Гбайт модуля DDR3-1333 с заявленной физической частотой 667 МГц и задержками 8-8-8-15 при напряжении по умолчанию 1,50 В. Самое близкое значение в таблице SPD - 8-8-8-24. Если вы хотите, чтобы модули X-Tune работали с заявленными задержками, то следует войти в BIOS и вручную снизить задержку tRAS с 24 до 15 тактов.

Значения SPD с низкой частотой 416 МГц (DDR3-833) гарантируют, что системы с низкой частотой FSB загрузятся на автоматической конфигурации, и Aeneon решила подняться на одну ступень выше, предоставив профиль на 750 МГц. Для процессоров с FSB1066 будет полезен режим 500 МГц с множителем памяти 3:2 DRAM:FSB, однако профиль на 533 МГц (DDR3-1066) был бы полезнее для автоматической настройки большего числа конфигураций.

G.Skill PC3-10600

Компания G.Skill заслужила весьма достойную репутацию среди энтузиастов с ограниченным бюджетом, потому что она предлагает высокоскоростную память по стандартным розничным ценам. В случае DDR3-1333 мы обнаружили, что память продаётся по ценам топовых модулей DDR3-1066.

Но принадлежность к "недорогим производительным" модулям вовсе не говорит о том, что придётся идти на компромиссы. G-Skill неплохо поработала, модули оснащены распределителями тепла, а по качеству упаковка может потягаться с более дорогими моделями. Под номером F3-10600CL9D-2GBNQ скрывается набор из двух 1-Гбайт модулей DDR3-1333 со стандартными задержками 9-9-9-24 при напряжении по умолчанию 1,50 В. Память, как указывается, может работать на любом напряжении от 1,50 до 1,60 В, что позволит её разогнать.

Значение SPD для физической частоты 667 МГц (DDR3-1333) оказалось вполне ожидаемым, но режимы на 592 и 444 МГц показались нам несколько странными. Но мы протестировали модули на разных материнских платах и можем подтвердить, что режим на 592 МГц (DDR3-1184) работает при необходимости и как DDR3-1066.

Если вам требуется заставить работать модули G.Skill PC3-10600 выше штатных значений, то придётся использовать ручную настройку.

Kingston ValueRAM PC3-10600

Kingston, вероятно, наиболее ориентированный на массовый рынок производитель из нашего обзора, он предлагает полную линейку модулей, от ничем не примечательных до весьма любопытных. Компания предоставила нам два комплекта с одинаковыми частотами, при этом ValueRAM PC3-10600 относится к классу "стандартной производительности".

Модули выглядят весьма скромно, но Kingston указала для модулей KVR1333D3N8/1G весьма производительные задержки 8-8-8-24 на штатном напряжении материнской платы 1,50 В. Два 1-Гбайт модуля обеспечивают двухканальный набор, именно поэтому компания выслала нам пару DIMM.

Значения SPD для частот 667, 583, 500 и 416 МГц обеспечивают автоматическую настройку для памяти DDR3-1333, DDR3-1066, DDR3-1000 и DDR3-800, с небольшим потенциалом разгона в режимах на 416 и 583 МГц.

Поскольку для всех режимов памяти есть настройки SPD, то вручную выполнять конфигурацию не требуется.

Kingston HyperX PC3-11000

В линейку Kingston HyperX входят модули, которые превосходят возможности стандартных компонентов. Так, набор PC3-11000 заявлен для работы на частоте 1 375 МГц. Однако это значение очень близко к стандартной 1 333 МГц, что позволило нам считать их просто улучшенными DIMM DDR3-1333.

В набор KHX11000D3LLK2/2G входят два 1-Гбайт модуля с синими распределителями тепла, с заявленными задержками при напряжении 1,70 В. Нестандартное напряжение требует ручной настройки в BIOS, и по умолчанию модули работают в медленном режиме 533 МГц (DDR3-1066), чтобы обеспечить загрузку на штатных 1,50 В.

На самом деле значение SPD для DDR3-1333 не присутствует в таблице HyperX, самой высокой 1,50-В настройкой является 609 МГц на CAS 8. Поскольку штатно модули работают с заявленными задержками на меньшей тактовой частоте, придётся вручную поменять частоту и напряжение в BIOS материнской платы.

Режим SPD 457 МГц будет полезен для автоматической конфигурации DDR3-800 при использовании процессоров FSB800, а 533-МГц значение DDR3-1066 работает для процессоров FSB1066, FSB1333 и FSB1600.

Mushkin Enhanced EM3-10666

За последние годы Mushkin сместила акцент с "экстремальной производительности" на "абсолютную стабильность". Хотя компания продолжает свои усилия по выпуску высокоскоростных модулей. А что ещё нужно энтузиасту, кроме стабильности и скорости?

В отличие от многих предыдущих продуктов Mushkin, набор 996583 из двух 1-Гбайт модулей заявлен на частоте DDR3-1333 с весьма скромными задержками 9-9-9-24 при напряжении по умолчанию 1,50 В. Такой режим DDR3-1333 задан в SPD, поэтому память автоматически заработает с процессором FSB1333.

Другие значения SPD включают 444 и 518 МГц, которые в BIOS распознаются как DDR3-800 и DDR3-1000. Опять же, большинству пользователей нормальный режим DDR3-1066 подошёл бы лучше, чем странный DDR3-1036, поскольку система с DDR3-1066 по умолчанию будет использовать медленные задержки SPD для DDR3-1333.

OCZ PC3-10666 Platinum Edition

Подобно Kingston, OCZ желает охватить как можно больший рынок DDR3-1333, предлагая несколько модулей. Но, в отличие от Kingston, "младший" набор от OCZ относится к среднему уровню, обеспечивая те же самые задержки CAS 7, что и high-end модули конкурента.

Да, на рынке можно найти комплект Gold от OCZ ещё дешевле, но линейка Platinum Edition для массового рынка даёт задержки 7-7-7-20. Это не просто заявленные задержки, для активации которых необходимо вручную копаться в BIOS, они прописаны в SPD комплекта OCZ3P13332GK из двух 1-Гбайт модулей.

Но вот здесь есть некоторая странность: модули OCZ Platinum должны работать на полной производительности при напряжении 1,70 В, а в таблице SPD упомянутые задержки приведены для 1,50 В. OCZ - одна из тех компаний, кто поставлял модули, с которыми некоторые системы не загружались, поскольку значения SPD были слишком жёсткими для работы на штатном напряжении материнской платы (1,50 В для DDR3).

Хорошая новость в том, что наши модули работали стабильно при указанных задержках, нам не пришлось вручную поднимать напряжение со штатных 1,50 В до рекомендованных OCZ 1,70 В. Это верно для обеих материнских плат Gigabyte и Asus.

Значение SPD 761 МГц (DDR3-1522) с задержками 8-8-8-23 обеспечивает потенциал разгона для тех оверклокеров, кто не знаком с ручным выставлением режимов памяти, а значения SPD 571 и 476 МГц переходят в DDR3-1066 и DDR3-800 для процессоров с меньшей частотой FSB.

OCZ PC3-10666 ReaperX HPC Enhanced Bandwidth

Если вас впечатлили модули OCZ Platinum Edition для среднего рыночного сегмента, работающие с теми же задержками, что high-end версии некоторых конкурентов, то вы наверняка будете ещё больше заворожены заявленными задержками для линейки ReaperX. Оснащённые радиатором на двух тепловых трубках, модули ReaperX заявлены на эффективную частоту 1 333 МГц с задержками CAS 6.

Задержки CAS 6 звучат впечатляюще, но память ими не ограничивается. Поддерживается режим 6-5-5-18, который быстрее 6-6-6-x, обычно понимаемого под названием "CAS 6". Немалую роль играет сложная система охлаждения, поскольку для работы DDR3-1333 с задержками 6-5-5-18 напряжение нужно увеличить до 1,85 В.

Однако для работы модулей ReaperX на заявленном уровне нужно войти в BIOS и вручную установить частоту, задержки и напряжение. Но это можно простить модулям с экстремальной производительностью, поскольку целевая аудитория явно знакома с настройкой BIOS. Но у начинающих оверклокеров могут возникнуть проблемы.

Даже в 533-МГц режиме SPD (DDR3-1066) модули ReaperX OCZ3RPX1333EB2GK используют задержки 6-5-5-20 вместо 6-5-5-18, но, по крайней мере, автоматическая конфигурация DDR3-1066 гарантирует стабильную первую загрузку до ручных правок настроек BIOS.

В SPD отсутствуют значения для DDR3-1333, вместо них используется непривычный режим DDR3-1244 на физической частоте 622 МГц, есть и DDR3-1422 на 711 МГц. Но ни одна из наших материнских плат не стала использовать задержки DDR3-1422 для режима DDR3-1333 по умолчанию на процессоре FSB1333, а снизила частоту модулей ReaperX до DDR2-1066 автоматической конфигурации. CPU-Z указывает, что, вероятно, причиной такого поведения можно считать электронную маркировку модулей PC3-8500 вместо PC3-10700.

PDP Patriot Extreme Performance PC3-10666 Low Latency

PDP Patriot выслала нам комплект PDC34G1333LLK, у которого LLK в конце модельного номера обозначает двухканальный набор с низкими задержками. Он обеспечивает те же задержки CAS 7, что high-end модули Kingston HyperX и память OCZ Platinum Edition среднего уровня, однако здесь мы встретили то, чего не было в других комплектах: 4 Гбайт ёмкости. Хотя сегодня многие компании предлагают 4-Гбайт наборы своим клиентам, только Patriot решилась выслать нам такой комплект для тестов разгона и минимальных задержек.

Решение компании Patriot предоставить нам модули с высокой ёмкостью для тестов разгона говорит о немалой степени уверенности в их характеристиках, поскольку добиться стабильной работы модулей с большей ёмкостью труднее. Подобно Kingston и OCZ, компания указала, что сборщикам системы нужно войти в BIOS и поднять напряжение DIMM с 1,50 до 1,70 В, после чего можно вручную выставлять заявленные настройки DDR3-1333 7-7-7-20.

На самом деле значений для DDR3-1333 в SPD нет, но задержки 7-7-7-20 указаны для работы в режиме DDR3-1066 (физическая частота 533 МГц) на штатном напряжении 1,50 В. Впрочем, для пользователей, знакомых с BIOS, указать нужный режим не составит труда.

В SPD есть режим на 457 МГц (DDR3-914), который позволяет владельцам процессоров с FSB800 автоматически выставить память в DDR3-800 до каких-либо ручных изменений в BIOS.

Поскольку больше значений для DDR3 в SPD не предусмотрено, наша память на обеих материнских платах Gigabyte и Asus штатно заработала в режиме DDR3-1066 с процессорами FSB-1333 и FSB-1600.

Super Talent PC3-10600 CL8

Эта компания известна модулями с экстремальными возможностями, поэтому от комплекта двух 1-Гбайт DIMM Super Talent W1333UX2G8 мы ждали многого.

Ранее Super Talent выпустила модули DDR3-1600, способные разгоняться выше отметки 2 ГГц ещё до того, как большинство конкурентов представили DDR3-1333. С другой стороны, средние задержки 8-8-8-18 и весьма высокое напряжение 1,80 внушают не очень много энтузиазма по поводу моделей среднего уровня. Только тесты покажут, соответствуют или нет DIMM репутации Super Talent по высокой степени разгона.

В таблице SPD у Super Talent нет режимов DDR3-1333 (физическая частота 667 МГц), электронная маркировка модулей составляет DDR3-1066. То есть в большинстве конфигураций память будет настроена на режим DDR3-1066.

Super Talent - единственная компания в нашем тестировании, которая добавила расширения Intel XMP SPD, которые работают подобно профилям EPP (Enhanced Performance Profiles), знакомым энтузиастам материнских плат на DDR2, когда память автоматически настраивалась в режим с повышенным напряжением и увеличенной частотой. В данном случае Super Talent позволяет автоматически разгонять модули DDR3-1333 до DDR3-1600 при очень высоком напряжении 2,00 В.

Wintec AMPX PC3-10600

Компания Wintec Industries известна, по большей части, OEM-производителям. Однако она уже несколько продуктовых циклов производит высокоскоростную линейку AMPX и надеется, что сможет завоевать доверие энтузиастов и оверклокеров с ограниченным бюджетом. Компания выслала нам пару последних 1-Гбайт модулей AMPX PC3-10600.

Заявленные задержки составляют 9-9-9-24 при штатном напряжении 1,50 В, то есть пара гигабайтных модулей 3AHX1333C9-2048K подразумевает самостоятельные усилия по разгону, но, в отличие от более дорогих DIMM, память не валидирована под какие-либо скоростные режимы.

На самом деле у Wintec AMPX PC3-10600 даже нет в SPD режимов выше DDR3-1066, а сами модули электрически заявлены как менее скоростные. Поэтому после сборки системы нужно вручную настроить частоту и задержки, пусть даже модули заявлены на работу в режиме DDR3-1333 на штатном напряжении.

Вообще, странно, что заявленного режима нет в таблице SPD. Возможно, это будет сделано позднее, у более новых партий DIMM.

Сравнение задержек SPD

Хотя ниже в тесте "минимально стабильных задержек" мы приведём минимальные тайминги при повышенном напряжении, мы решили дать таблицу значений SPD, которая ясно показывает, на какой рынок ориентированы те или иные модули.

Aeneon и OCZ указали профили SPD, превышающие заявленные спецификации, а профили Intel XMP у памяти Super Talent обеспечивают автоматический разгон памяти. Kingston и PDP Patriot нацелились на аудиторию, предпочитающую низкие задержки, а OCZ "выстрелила" по обоим рынкам со своими двумя наборами.

Тестовая конфигурация: разгон памяти

Цена на DDR3 по-прежнему не опустилась до уровня массового рынка, и сегодня одной из основных причин покупки относительно дорогой памяти DDR3 является разгон, который не упирался бы в частоту памяти. Конечно, можно заплатить астрономические суммы за DDR3-1800 или даже более скоростную память для оверклокеров, но мы всё же хотели посмотреть, на что способны менее дорогие комплекты.

Сегодня появляются новые комплектующие, но лучшими платами для разгона являются модели на основе чипсета Intel P35, в то же время, процессоры Core 2 Duo выдерживают ощутимо более высокую частоту шины, чем Core 2 Quad. Поэтому мы собрали систему таким образом, чтобы сделать её максимально нацеленной на разгон, независимо от возраста комплектующих.

Наш тестовый образец Core 2 Duo оказался весьма удачным, поскольку он смог достичь 520-МГц FSB при множителе 8x по умолчанию и 540-МГц FSB при множителе 6x на топовых материнских платах. Используя самый высокий множитель памяти у чипсета P35, при множителе 6x CPU мы можем получить эффективную частоту памяти 2 160 МГц!

Конечно, нам требовалась материнская плата, которая работает с памятью очень стабильно, и лучше всего на эту роль подошла Gigabyte GA-P35T-DQ6.

Чтобы получить разные частоты памяти при фиксированном множителе 6x, нам потребовалось в каждом тесте менять частоту CPU. Изменение частоты CPU заметно влияет на результаты обычных тестов, поэтому мы ограничились только тестами пропускной способности памяти в разделе разгона.

Результаты тестов разгона

Разгон памяти часто требует увеличения питания, но некоторые модули менее терпимы к повышению напряжения, чем другие. Точно так же, есть более агрессивные оверклокеры, а есть и более умеренные. Поэтому мы выбрали три уровня напряжения, чтобы удовлетворить большей части аудитории: штатное (1,50 В), разумное повышенное напряжение (1,80 В) и сумасшедшее для агрессивных оверклокеров - 2,10 В. Обратите внимание, что даже наш "разумно безопасный" уровень является повышением штатного напряжения на 20%, хотя мы вполне уверены, что большинство модулей выдержат подобный режим на протяжении нескольких лет работы.

Чтобы поставить все модули в одинаковые рамки, мы ослабили в тестах разгона задержки до уровня 9-9-9-24. Каковы же будут результаты?

Память OCZ Platinum DDR3-1333 легко обогнала конкурентов на 2,10 В, даже опередив линейку ReaperX, нацеленную на экстремальный разгон, от того же производителя. Память Wintec AMPX вышла на второе место, показав самую высокую частоту при напряжении 1,80 В, но не смогла обеспечить какое-либо преимущество от повышения напряжения до 2,10 В.

Мы были весьма удивлены тому, что модули OCZ ReaperX не смогли разогнаться на 2,10 В лучше, чем на 1,80 В, поскольку они используют мощную систему охлаждения. Впрочем, OCZ - не единственная компания, чьи high-end модули уступили менее скоростным моделям, поскольку DIMM Kingston PC3-10600 обеспечили большую производительность, чем HyperX PC3-11000.

Теперь позвольте сравнить производительность каждого набора, куда мы добавили заявленные задержки (rated) в дополнение к максимальному разгону на CAS 9. Начнём мы с теста памяти PC Mark 2005.

Нужен ли ещё какой-нибудь тест, чтобы доказать, что самые скоростные модули дают лучшую производительность? Наверное, нет, но приведём результаты. Да, 928-МГц память OCZ ReaperX несколько обошла 930-МГц Wintec AMPX, но это может быть связано с другими задержками, помимо четырёх, которые мы выставили вручную.

В тесте PC Mark 2005 результаты совпадают с частотами модулей памяти. Давайте посмотрим на тест памяти SiSoftware Sandra.

Результаты Sandra вновь отражают прирост частоты памяти, хотя 920-МГц память Super Talent несколько обошла 930-МГц Wintec, что может быть, опять же, связано с задержками помимо тех четырёх, которые мы выставили вручную.

Конечно, основной причиной, почему при разгоне следует выбирать память DDR3, является обход ограничений по частоте памяти, которые могут возникнуть при увеличении частоты CPU. Учитывая небольшое различие в производительности памяти на такт, для разгона следует выбирать самую скоростную память, которая уместится в доступном бюджете.

Проблема с режимами "Boot Strap"

Следующий шаг в нашем тестировании заключается в нахождении наиболее производительных настроек памяти при данной тактовой частоте, то есть минимальных задержек. Звучит относительно просто, но на самом деле этот тест требует многих часов тестирования для проверки стабильности каждой пары модулей на каждой частоте.

Большинство протестированных модулей могут добраться до эффективной тактовой частоты 1 600 МГц. Идеальным решением для тестов подобных модулей будет процессор FSB1600 с частотами памяти 1 600, 1 333 и 1 066 МГц. Эти частоты соответствуют часто используемым множителям DRAM к FSB 2:1, 5:3 и 4:3. Достаточно просто, не так ли?

К сожалению, Intel не публикует каждый доступный делитель при каждой доступной скорости шины. Компания выбирает скорости памяти, исходя из собственных соображений по поводу того, что требуется потребителям, и поддерживает при каждом режиме FSB только их.

Чтобы выбрать делитель, который Intel не "благословила" для данной частоты, придётся выбрать другую частоту FSB и разогнать её.

Но здесь возникает проблема, о которой знают опытные оверклокеры, - режимы "Boot Strap". Северный мост чипсета работает на собственной тактовой частоте, которая зависит от частоты FSB. И каждый уровень частоты северного моста зависит от "Boot Strap". Например, для частоты FSB800 северный мост будет работать на 200 МГц ("200 MHz Boot Strap"), а для FSB1600 - на 400 МГц ("400 MHz Boot Strap"). Ручная установка 400-МГц частоты FSB (FSB1600) при использовании режима "Boot Strap"для 200-МГц FSB (FSB-800) приведёт к разгону северного моста на 100%.

Обратите внимание, например, что Intel больше не поддерживает DDR2-533 (физическая тактовая частота 266 МГц), то есть компания больше не предоставляет множитель 1:1 для 266-МГц FSB1066. Кроме того, чипсет X38 поддерживает "Boot Strap" FSB1600, но в этом режиме нет множителя 5:3, который необходим для памяти DDR3-1333. Чтобы получить множитель 5:3 DRAM к FSB, необходимо использовать 200-МГц "Boot Strap"вместо 400-МГц, "родного" для FSB1600.

Эффект выбора неверного "Boot Strap"не следует преуменьшать, поскольку ни чипсет P35, ни X38 нельзя разогнать на 100%, но даже если было бы и можно, то получилось бы заметное падение общей системной производительности.

Это не позволило нам использовать некоторые "родные" DDR3-1333 модули с процессором FSB1600 на материнской плате Gigabyte X38T-DQ6, поскольку она автоматически выставляла 400-МГц FSB с множителем памяти 5:3 DRAM:FSM, что, в свою очередь, приводило к низкочастотному 200-МГц режиму "Boot Strap"при высокой 400-МГц частоте FSB. В результате после 100% разгона северный мост отказывался загружаться.

Поэтому мы не рекомендуем использовать память DDR3-1333 для процессоров с FSB1600 на чипсете P35, но как насчёт X38? Наша плата Asus Maximus Extreme выставила 400-МГц режим "Boot Strap", который лишил её требуемого множителя 5:3 DRAM:FSB, поэтому модули заработали на частоте DDR3-1066.

Тестовая конфигурация: минимально возможные задержки

Из-за упомянутых выше ограничений режимов "Boot Strap", нам пришлось выбрать разные частоты FSB для тестов DDR3-1333 и DDR3-1600. Но как сделать правильное сравнение?

Поскольку с процессором FSB1600 множитель 5:3 DRAM:FSB недоступен, то и DDR3-1333 протестировать не получится. Поэтому нам пришлось сравнивать DDR3-1333 и DDR3-1066 на FSB1333, а DDR3-1600 и DDR3-1066 на FSB-1600.

Только две частоты CPU соответствуют одновременно FSB1333 и FSB-1600: 2,0 и 4,0 ГГц. Множители CPU для получения 4,0 ГГц на FSB1333 и FSB1600 составляют 12 x 333 МГц и 10 x 400 МГц, соответственно.

Поскольку плата Asus Maximus Extreme оказалась более грамотной в преодолении проблемы "Boot Strap", мы выбрали именно её для теста минимальных задержек.

Четырёхъядерные процессоры используют память чуть более эффективно, чем двуядерные, и наш тест задержек при максимальной частоте DDR3-1600 соответствует максимальному множителю памяти, который доступен процессорам FSB1600. Мы использовали единственный процессор с "родной" шиной FSB1600, который есть сегодня, а именно, Intel Core 2 Extreme QX9700 на ядре Yorkfield.

Игровые тесты существенно зависят от графической производительности, поэтому мы использовали мощную видеокарту GeForce 8800GTX от Foxconn.

Хотя производительность жёсткого диска не особо влияет на результаты выбранных тестов, использование модели на 10 000 об/мин явно не повредит. В этом отношении "древний" 150-Гбайт винчестер Western Digital Raptor по-прежнему остаётся в лидерах.

Полученные минимальные задержки

Мы использовали относительно безопасное напряжение 1,80 В, при котором определяли у тестовых модулей DDR3-1333 наилучшие задержки при сохранении стабильной работы на эффективных частотах памяти 1600, 1333 и 1066 МГц.

Модули памяти OCZ обеспечили впечатляющие задержки 4-4-3-9 на эффективной частоте памяти 1066 МГц, а потенциально недорогие DIMM Wintec AMPX оказались в тройке с двумя комплектами OCZ на DDR3-1333. Оверклокерам, которым требуются минимальные задержки на 1600 МГц, можно порекомендовать Super Talent 7-6-6-13.

Модули Patriot DDR3-1333 смогли достичь стабильной работы на эффективной частоте 1 652 МГц на топовой материнской плате P35 от Gigabyte, но Asus Maximus Extreme на чипсете X38, похоже, более требовательна. На новой платформе модули не смогли достичь даже частоты 1 600 МГц, но по задержкам они оказались на втором месте в категории DDR3-1333.

Снижение задержек позволяет увеличить производительность системы. Но на какой уровень? Об этом мы узнаем из следующих результатов тестов.

Результаты тестов с минимальными задержками

Кодирование видео

В DivX результаты оказались весьма странными, поскольку минимальные задержки не всегда приводили к победе. Похоже, есть небольшой прирост производительности от увеличения частоты, но результаты слишком непостоянны, чтобы их глубже анализировать.

XviD демонстрирует возможный прирост производительности от более скоростной шины FSB, а также и прирост от сочетания высокоскоростной FSB с высокими частотами памяти. Задержки на этот тест влияют незначительно.

Кодирование звука

Кодирование звука в Lame не демонстрирует ощутимого прироста производительности от разных частот памяти и задержек.

На результаты OGG частота памяти и задержки влияют слабо. С учётом полученных результатов можно отметить, что единственным ограничивающим фактором по производительности в обеих программах кодирования звука является процессор.

Игры

Производительность F.E.A.R. ограничивается другими факторами, а не производительностью памяти - скорее всего, видеокартой. Впрочем, вряд ли кто-то будет сетовать на это, поскольку частота кадров очень высока.

Quake 4 даёт крошечный прирост производительности при установке скоростных модулей, но задержки, похоже, влияют слабо.

Приложения

3D Studio Max не показывает ощутимого прироста производительности от более скоростной памяти или более жёстких задержек. Опять же, результаты, похоже, зависят от чистой производительности процессора.

Синтетические тесты

Тесты только памяти, возможно, являются единственными, где можно обнаружить заметный прирост производительности при незначительных изменениях задержек. И в PC Mark 2005 модули Super Talent с великолепными задержками в режиме DDR3-1600 оказались на вершине. С другой стороны, второе место Mushkin слабо связано с шестой позицией по задержкам в DDR3-1600.

Модули Super Talent с удивительно низкими задержками в режиме DDR3-1600 вновь вышли в лидеры в первом тесте памяти Sandra, но Kingston ValueRAM взяли второе место, несмотря на пятую позицию по минимальным задержкам.

Super Talent вновь занимают первое место во втором тесте памяти Sandra благодаря низким задержкам. Mushkin весьма странно второй раз приходят вторыми.

Заключение

Мы хотели, чтобы наше сравнительное тестирование памяти DDR3-1333 оказалось как можно более ценным, поэтому ждали несколько месяцев, пока на рынке не появится достаточное число модулей памяти, чтобы мы могли собрать подборку по соответствующим ценам. К сожалению, несколько из протестированных модулей так и не появились по привлекательным ценам. Впрочем, перед тем, как сделать заключение по ценам, давайте взглянем на производительность.

Как мы уже упоминали выше, сегодня основной причиной покупки памяти DDR3 является снятие барьеров при разгоне CPU, связанных с медленной памятью. Если вы посмотрите, сколько стоят модули DDR2-1200 или более скоростные, то наверняка предпочтёте модели DDR3-1333.

Поскольку нашей основной целью был разгон памяти, то здесь в лидеры вышли модули OCZ Platinum Edition PC3-10666, победившие даже собственную линейку компании ReaperX с улучшенной системой охлаждения, как и конкурентов. Фанаты OCZ воспримут сей факт как должное, но на памяти автора модули OCZ впервые выигрывают состязание по разгону. Приятно видеть, что компания действительно подтверждает свою хорошую репутацию, которая раньше завоёвывалась, в основном, маркетингом.

Покупателям, которые планируют разогнать память до уровня примерно 1 600 МГц, следует обратить внимание на модули Super Talent PC3-10600. Или на скромно выглядящие модули Kingston ValueRAM.

Мы впервые включили модули памяти от Aeneon в широкие тесты, и приятно видеть, что бывшее подразделение Infineon по производству памяти чувствует себя вполне уверенно. Пока эти модули не получили каких-либо наград, но компания может выгодно конкурировать с другими комплектами среднего сегмента рынка по цене.

Набор Wintec AMPX PC3-10600 занял второе место в наших тестах разгона, и хотя мы не смогли обнаружить эти модули на рынке, мы знаем, что эта компания будет конкурировать по цене с OCZ. Опять же, покупателям следует взвешивать любое снижение потенциала для разгона с соответствующим уменьшением цены.

Многие ошибочно считают, что для увеличения производительности компьютера надо гнать в первую очередь процессор и чем выше разгон, тем лучший прирост в FPS. Хотя отчасти это правда и частота очень сильно влияет на производительность вашего компьютера, многое зависит также от скорости оперативной памяти, а также от частоты видеоядра и его памяти. О том, как разогнать видеокарту, мы уже рассказывали в отдельной статье. Теперь пришло время уделить внимание частоте оперативной памяти. Грамотный разгон вашей RAM позволит существенно повысить производительность. Прелесть разгона RAM также в том, что, в отличие от или процессора, более высокие частоты и вольтаж памяти не приводят к выделению очень большого количества тепла. Да, память все равно греется, но это тепловыделение не идет ни в какое сравнение с тепловыделением разогнанного процессора или видеокарты.

Даже если в вашем компьютере установлена очень быстрая память (к примеру, вы купили плашки DDR4-3200), но вы не увеличивали ее частоту, она все равно будет работать на стоковой частоте в районе 2133 МГц. Это значит, что даже самая крутая память по умолчанию работает на минимальной для DDR4-стандарта частоте (для DDR3 этот показатель равен 1333 МГц, а более старые варианты мы уже не рассматриваем). Именно поэтому важно гнать память. Попросту говоря, ваши деньги зря простаивают, если крутая память работает чуть ли не в половину своих способностей. Если же у вас более скромная память и ее стоковые частоты не впечатляют своими характеристиками, ее все равно можно и нужно гнать, поскольку подавляющее большинство плашек способно работать на частотах выше заявленных, а это равно бесплатному увеличению производительности.

Также надо понимать, что производительность отдельных процессоров напрямую зависит от скорости оперативной памяти. К примеру, первое поколение семейства AMD Ryzen демонстрировало существенный прирост вычислительной мощности, когда используется разогнанная память. Если ваш CPU не столь чувствителен к частотам памяти, более высокая частота все равно никогда не будет лишней.

Разгон оперативной памяти компьютера

Прежде чем переходить непосредственно к пыткам вашей памяти и материнской платы, надо обратить внимание на несколько нюансов. От них зависит, сможете ли вы в принципе разогнать свою оперативную память и какой от этого будет прирост.

  • Чипсет материнской платы должен поддерживать разгон. Если внутри вашего компьютера трудится процессор Intel, материнская плата должна быть на чипсете Z. Чипсеты H и B не поддерживают разгон ни памяти, ни процессора. В теории вы можете увеличить частоту памяти до максимально поддерживаемой процессором на заблокированном чипсете, но она зачастую не выше стоковой частоты подавляющего большинства плашек. Это же правило касается и процессоров AMD. Разгон памяти будет возможен лишь на чипсетах B и X (процессоры Ryzen). Если у вас компьютер на старых процессорах AMD и Intel, сверьтесь со спецификациями материнской платы. Для начала вам надо знать, а затем поискать ее характеристики в Интернете. Если материнская плата не поддерживает разгон, чтение инструкции на этом можете заканчивать. При проверке возможностей разгона также проверьте максимально поддерживаемую частоту. На ноутбуках разгон памяти тоже возможен, но он будет зависеть от того, есть ли в BIOS нужные вам параметры.
  • Учтите, что в спецификациях вашего процессора может быть указана очень низкая поддерживаемая частота. Это значение не является «потолком». Производитель лишь гарантирует, что на этой частоте процессор точно будет работать. Вы можете легко поднимать эту частоту значительно выше указанной и не переживать за совместимость с процессором.
  • Если материнская плата поддерживает разгон памяти (в случае с процессорами Intel для разгона памяти не обязательно иметь процессор с суффиксом K. Если чипсет позволяет, гнать память можно вне зависимости от того, разблокированный у процессора множитель или нет), проверьте, в каком режиме работает память. Для максимальной выгоды от разгона надо использовать двухканальный режим, когда объем памяти разделен двумя плашками. Гнать можно и одноканальную память, но в таком случае вы не получите практически никакого профита от этой затеи. Кстати, двухранговые плашки памяти (когда чипы памяти распаяны с обеих сторон платы) демонстрируют лучшую производительность при разгоне.
  • При разгоне памяти вам надо приготовиться к тому, что компьютер будет зависать и крашится, а в некоторых случаях даже не проходить POST и зависать при старте. Это норма. Фризы и падения являются неотъемлемой частью разгона любого компонента компьютера. Они помогают определить лимит вашего железа и точно выловить желанную частоту при разгоне. Учтите, что вам надо также знать, потому что при неправильном разгоне система может перестать стартовать вообще и вернуть ее в чувство можно будет только сбросом BIOS. Если вы не уверены в своих силах, лучше даже не начинайте.
  • При разгоне всегда есть вероятность навредить компьютеру, поэтому мы не несем ответственности за результаты ваших действий. Все же шансы что-то спалить очень низкие, если вы неспеша и без фанатизма подходите к разгону. Не стоит сразу задирать частоты до максимумов или повышать до предела вольтаж. Все делается постепенно и небольшими шагами.
  • Не стоит разочаровываться, если память не погналась выше двух шагов (к примеру, 1333 МГц – 1600 МГц – 1866 МГц). Даже разгона в один-два шага будет достаточно для существенного «буста» вашей системы.

Проверить, в каком режиме сейчас работает ваша память, можно в BIOS или при помощи небольшой утилиты CPU-Z. Скачайте ее на официальном сайте и запустите. Перейдите на вкладку Memory . Здесь будет отображаться стандарт, объем памяти, канал (одноканальный / двухканальный / четырехканальный), частота северного моста, частота памяти и тайминги. CPU-Z удобна тем, что позволяет сразу узнать все характеристики памяти и не блуждать по разделам BIOS.

Когда все готово, и вы морально настроили себя на разгон, начинайте процедуру с перезагрузки компьютера и входа в BIOS (если вы не знаете, как зайти в BIOS, лучше прекратить чтение этой статьи прямо сейчас ).

Разгон памяти – весьма капризный процесс, поскольку вам надо не только поднимать частоту и при необходимости вольтаж, но и «ослаблять» тайминги в особых случаях. Тайминги напрямую влияют на производительность памяти и чем они ниже, тем лучше. При разгоне тайминги надо повышать, если не помогает увеличение вольтажа. При этом минус производительности от этого действия компенсируется увеличенной частотой.

Для начала найдите раздел с настройками частоты памяти в вашем BIOS. У каждой материнской платы он может быть подписан по-разному. Эта статья написана на примере платы Gigabyte с UEFI. На остальных платах интерфейсы будут отличаться, но принцип все тот же.

Первым делом включите профиль AMP (он также называется XMP ). На современных платах включение XMP-профиля позволяет выбрать частоту и тайминги из предустановленного списка, что существенно упрощает процесс разгона.

Если у вашей платы есть предустановленные списки частот и таймингов, выбирайте из него тот, что на шаг выше вашей стоковой частоты, затем перезагрузитесь в систему и протестируйте стабильность работы памяти. Для проверки стабильности достаточно открыть браузер или запустить игру, чтобы понять, насколько хорошо работает память. Конечно, можно использовать приложения-бенчмарки, но мы здесь практикуем не научный лабораторный подход, а более доступный для обычного юзера способ. Если тест пройден и система не падает под нагрузкой, пробуйте поднять частоту еще и до тех пор, пока не наткнетесь за сбой в работе.

Совет : каждый раз, когда вы находите рабочие частоты и параметры, записывайте их и затем пытайтесь улучшить (понизить вольтаж или понизить тайминги). В этом вам будет полезна та же CPU-Z.

Если предустановленных списков частот и таймингов нет, придется гнать вручную (профиль все равно надо включать). Да и ручной разгон зачастую дает лучшие результаты. Пробуйте поднять частоту памяти без изменения таймингов и вольтажа. Просто поднимите частоту на один шаг. К примеру, 1333-1600. На скриншоте вы можете увидеть, что за параметр частоты оперативной памяти отвечает System Memory Multiplier (множитель системной памяти). Сохраните изменения и перезагрузитесь. Проверьте стабильность работы памяти.

Если компьютер не хочет загружаться с этими параметрами или во время нагрузки на память падает в синий экран смерти или зависает, вам надо попытаться увеличить вольтаж. Не стоит поднимать вольтаж очень высоко, особенно на плашках без радиаторов охлаждения. Безопасным пределом будет +0.1-0.15 В (да, слишком высокий вольтаж может запросто сжечь вашу память). Настройки вольтажа на нашей плате можно найти в разделе M . I . T Advanced Voltage Settings DRAM Voltage . Для DDR3 стандартный вольтаж находится на уровне 1.5 В, а для DDR4 1.2 В.

Если повышение вольтажа не дало результатов, пробуйте ослабить тайминги. Для этого зайдите в BIOS, выставьте желаемую частоту, а затем перейдите в раздел с настройки таймингов. На нашей плате он расположен в M.I.T - Advanced Memory Settings – Channel A / B Timing Settings . Тайминги надо настраивать для каждого канала отдельно, и они должны быть одинаковыми для обеих плашек. Поднимите основные значения (CAS / tRCD / tRP / tRAS) на +1 или +2, а затем попытайтесь снова загрузиться. Если же и тайминги не смогли дать желанного результата, измените в параметрах таймингов Command Rate на 2 . Снова сохраните параметры, перезагрузите компьютер и попытайтесь добраться до операционной системы и приложений.

Тайминги очень капризны и рабочие параметры будут зависеть от каждой индивидуальной модели. Если у вас популярная модель памяти, попытайтесь погуглить параметры разгона. Возможно, кто-то из других пользователей смог разогнать вашу память и опубликовал в Интернете значения частоты, вольтажа и таймингов. Это существенно упростит вам процедуру разгона.

При разгоне памяти надо понимать, что есть вероятность нулевого разгона, когда память не захочет разгоняться в принципе. Это может случиться в том случае, если вы пытаетесь разогнать очень старую память, выпущенную во времена, когда ее техпроцесс и стандарт еще не были хорошо освоены. С другой стороны, свежая память, выпущенная спустя много ревизий и доработок техпроцесса, обеспечит вас более высокими шансами на разгон. Каждый чип уникален, а потому и разгонный потенциал разный. Если не получилось разогнать память вообще, смиритесь с тем, что вам надо либо купить новую память, поддерживающую более высокие частоты, либо сидеть со стоковой.

Когда вы определились с частотами, вольтажом и таймингами, стоит также разогнать контроллер памяти, он же северный мост. Это очень важно сделать, чтобы добиться максимальной отдачи от разгона. Благо, гнать контроллер гораздо проще и все сводится зачастую до указания частоты моста и его вольтажа.

Для справки : не на всех процессорах поддерживается разгон моста. К примеру, на Ryzen такой опции нет в принципе. Также не на всех материнских платах есть параметры для разгона частоты и вольтажа северного моста. Если вы не нашли этих параметров, придется удовлетвориться разгоном лишь одной оперативной памяти.

В разделе M . I . T . Advanced Frequency Settings за разгон северного моста отвечает параметр NB Clock (Mhz ) . На моем компьютере стандартная частота составляет 1 800 МГц. Увеличивайте ее на 100-200 МГц. Начинайте гнать без изменения вольтажа. Только частоты. Каждый раз, когда устанавливаете новое значение, перезагружайтесь и проходите тесты на стабильность.

Когда удалось найти частоту, при которой стандартного вольтажа уже недостаточно (система может зависнуть или упасть на экране загрузки Windows, к примеру), попытайтесь либо увеличить вольтаж, либо удовлетвориться последней стабильной частотой. Увеличивается вольтаж моста в разделе M . I . T . Advanced Voltage Settings NB Core . Как и в случае с памятью, увеличивайте значения на десятые доли вольта.

Желаем всем частот как можно выше, вольтажа как можно ниже и производительности как можно больше!

Теперь же поговорим о мифах, связанных с ОЗУ.

1. Двухканальный режим работы не нужен, главное - объем.

Неудивительно, что одна плашка на 8 ГБ стоит дешевле, чем две по 4 ГБ, так что желание сэкономить выглядит очевидным. Но не стоит этого делать, если вы используете ПК не только для серфинга в интернете и просмотра фильмов - двухканальный режим ускоряет работу с ОЗУ на 70-90%, что и снизит нагрузку на процессор (он будет меньше времени простаивать - а значит больше времени сможет работать), и ускорит производительность в любых вычислительных и игровых задачах, причем зачастую разница будет не в единицы процентов, а в десятки, то есть переплата за две плашки порядка 5-7% стоит того.

2. Для получения двухканального режима нужны две идентичные плашки ОЗУ.

Если мы не берем времена DDR и DDR2, когда установка больше одной плашки памяти могла вызвать многочисленные танцы с бубном, даже если модули были одинаковыми, то сейчас с этим все проще: у плашек DDR3 и DDR4 может быть любой объем, частота и тайминги - в большинстве случаев (увы - из-за кривых BIOS исключения бывают) двухканальный режим будет работать, объем модулей, разумеется, суммироваться, а частоты будут браться по самой медленной плашке и (или) спецификациям JEDEC: это комитет, который занимается разработкой ОЗУ. По их предписаниям, в любой плашке памяти должна быть зашита определенная частота и тайминги для каждого стандарта памяти - это как раз создано для того, чтобы любые плашки одного стандарта (например, DDR4) всегда могли найти «общий язык».

3. Разгон ОЗУ - баловство, нужное только для получения высоких циферек в бенчмарках

Еще лет 7-10 назад это действительно было так - более того, тогда и двухканальный режим особо производительность не увеличивал. Но, увы, сейчас времена меняются: так, например, у процессоров Ryzen частота ОЗУ связана с частотой внутренней шины, которой соединяются два блока ядер, так что разгон ОЗУ в их случае напрямую влияет на производительность CPU. Но даже в случае процессоров от Intel более высокая частота памяти дает свои результаты:


Так, при обработке фотографий увеличение скорости ОЗУ с 2400 до 2933 МГц - такой разгон способны взять практически любые модули DDR4 - время обработки уменьшается на 15-20%, что очень и очень существенно.

4. Встроенные профили авторазгона XMP/D.O.C.P сразу же предлагают лучшие частоты и тайминги

Разгон становится все проще и доступнее рядовому пользователю: так, сейчас на рынке выпускается огромное количество модулей ОЗУ со вшитыми профилями авторазгона - стоит выбрать их в BIOS, как ваша память сразу же стабильно заработает на частотах, зачастую в полтора раза выше стандартных для DDR4 2133 МГц. Однако следует понимать, что прежде чем выставить такую частоту и тайминги в своем профиле, производитель тщательно протестировал большое количество плашек, так что такие профили - это как Turbo Boost в процессоре: вроде и разгон, но в щадящем режиме.

Поэтому есть смысл еще «покрутить» настройки самому - зачастую получится «выжать» еще пару сотен мегагерц, что даст вам лишние 5-10% производительности. С учетом того, что производитель зачастую выпускает целую линейку памяти, например 3066/3200/3333 МГц, то зачастую можно взять самую дешевую, на 3066 МГц, и поставить параметры от 3333 МГц, получив такую же производительность и несколько сэкономив.

5. Быстрая ОЗУ увеличит производительность в любом случае

Не стоит забывать, что далеко не всегда можно разогнать память: так, у Intel это можно сделать только на чипсетах Z-серии. Поэтому абсолютно нет смысла брать какой-нибудь i5-8400, плату на B360 чипсете и ОЗУ DDR4-3200 МГц - контроллер памяти в процессоре не даст вам поднять частоту выше 2666 МГц, так что смысла в переплате за быструю ОЗУ тут нет.

Это же касается и ноутбуков - редкие дорогие модели с процессорами HK имеют возможность разогнать память, и если у вас не такой CPU - нет смысла брать ОЗУ с частотами выше 2400-2666 МГц.

6. Радиаторы на ОЗУ - нужная вещь, спасают плашки от перегрева

Миф, активно продвигаемый различными маркетологами, чтобы продать вам те же самые плашки, но уже с радиаторами и несколько дороже. Во-первых, если у вас случаи как в пункте 5, то есть память работает на частотах и напряжениях, близких к спецификациям JEDEC (2133-2400 МГц и 1.2 В для DDR4), то радиаторы не нужны абсолютно: нагрев едва ли превысит 35-40 градусов даже под серьезной нагрузкой - именно поэтому ноутбучная память идет без радиаторов.

Более того, даже если вы берете высокочастотную память, которая способна взять 4000+ МГц при 1.35-1.4 или даже 1.5 В (последнее значение уже считается экстремальным), то нагрев может стать ощутимым - вплоть до 50-60 градусов. Однако если посмотреть, при каких температурах могут работать чипы памяти, то всплывает интересная картина - зачастую цифры от различных производителей колеблются от 80 до 90 градусов, что банально недостижимо ни при каком мыслимом разгоне. Поэтому радиаторы в данном случае - просто украшение.

7. От разгона оперативная память сгорает

Да, и именно поэтому ОЗУ некоторые производители продают уже разогнанной, причем не только частоту памяти повышают, но еще и напряжение. Разумеется, при желании сломать можно любую вещь, так что лучше не выходить за определенные рамки: так, безопасными напряжениями для DDR4 считаются 1.2-1.35 В, частоты - любые, достижимые в этом диапазоне напряжений (так как частота - параметр, который никак к «железу» не относится, а значит и сжечь его не может).

8. Если на плате есть слоты и DDR3, и DDR4, то можно ставить любые сочетания плашек - они заработают вместе


Достаточно опасный миф: во-первых, разумеется DDR3 и DDR4 вместе работать не смогут, как минимум из-за того, что у них нет общих по JEDEC частот и таймингов. Во-вторых, установка вместе DDR3 и DDR4 может повредить плату или память - например, на DDR4 плата может подать напряжение в 1.5 В, которое для DDR3 является вполне рабочим, а вот для DDR4 - экстремальным. Так что следите за тем, чтобы на плату были установлены плашки только одного типа.

9. Последние поколения процессоров от Intel (Coffee Lake) не умеют работать с DDR3

Действительно, если зайти на официальный сайт Intel, то в спецификациях будет поддержка только DDR4:

Однако на деле в Intel особо не меняли контроллер ОЗУ со времен Skylake, и учитывая то, что многие производители материнских плат гонятся за прибылью, а не за выполнением условий, поставленных Intel, в продажу попадают вот такие платы:

Маркировка платы - Biostar H310MHD3, то есть это H310 чипсет, который поддерживает даже Core i9-9900K, а на плате есть только два слота DDR3. Так что если вы решили обновить процессор - абсолютно не обязательно менять при этом еще и ОЗУ.

10. При разгоне ОЗУ главное добиться максимальной частоты

В общем и целом - нет, важен баланс между частотой и таймингами (то есть задержками при работе с памятью). В противном случае может оказаться так, что память при меньшей частоте и с меньшими задержками окажется лучше, чем при высокой частоте и с большими задержками:


Поэтому при разгоне пробуйте разные сочетания частот и таймингов (или возьмите лучшие из обзоров, только не забудьте их проверить memtest-ом).

11. Нельзя ставить вместе DDR3L и DDR3

Уже не самый актуальный миф, но все же DDR3 с арены до сих пор не ушла, так что имеет смысл про него рассказать. Так как выход DDR4 оказался достаточно затянутым, была придумана промежуточная память - DDR3L, основное нововведение в которой - возможность работы при более низких напряжениях, 1.35 В против 1.5 у обычной DDR3. И именно отсюда и идет миф - дескать если поставить их вместе, то DDR3L сгорит от 1.5 В.

Как я уже писал выше, у ОЗУ каждого стандарта есть свой диапазон безопасных напряжений, и 1.5 В - это нормальное значение для низковольтной памяти. Более того - раз JEDEC не стала менять сам слот, это еще раз говорит о том, что эти два подтипа памяти совместимы.

12. 64-битные версии Windows поддерживают любой объем ОЗУ

Разумеется, это не так: про то, что у Windows x86 есть ограничение в ~3.5 ГБ ОЗУ (если не говорить о PAE), знают многие, и если вычислить объем памяти, который можно адресовать в 64-битной системе, то цифра действительно кажется бесконечной - 16 миллионов терабайт. Но на практике все банальнее: так, Windows XP x64 поддерживает «лишь» 128 ГБ ОЗУ, Windows 7 - до 192, а Windows 8 и 10 - до 512 ГБ. Да, для пользовательского ПК это цифры крайне большие, но вот для серверов - уже давно нет, ну и уж тем более тут и близко нет миллионов терабайт.

Если вы знаете еще какие-либо мифы про ОЗУ - пишите про них в комментариях.

Я попал. Не стрелой в яблоко. Я попал тем чем в троллейбусе сидят приличные люди.
И прямо на рабочее место проктолога. Я почему с вами так откровенно? У вас тоже этот Интел? На котором сколько память не разгоняй, все одно АМД сзади? И в играх FPS хороший? Только немного слева или справа? Ну вы в курсе? И тут то мне досталась (вру, сам выпросил) на тест память.

Я почему так с вами (второй раз спрашиваю, не?). Их было два комплекта для обзора. Клянусь своим деревянным глазом! Я то думал как: разгонит, оторвет радиаторы, напишет все, не скрывая интимного, и мне останется только вот так немного пошутить. А он то не дурак.. У него тоже интел. И написал он хорошо. Ну а вы знаете как на этом разгонять память? Нет? У, тогда моя статья - вам)
Ладно, завязываю я с лирикой и начинаю писать исключительно суръезно.

Упаковка и комплектация.
Тут мне и писать то нечего. съел весь мой хлеб и масло в придачу. Да. Комплект памяти Kingston HyperX Predator 1866MHz KHX18C9T2K2/8X поставляется в скромном пластиковом блистере.


_
На упаковке надписи с названием товара и стилизованная голова какого-то мужика (основатель фирмы что-ли?).
Внутри лежат, прочно закрепленные силой трения, 2 модуля памяти и бумажка. Так, кто спер бумажку? Ну что за варвары? Туалетную бумагу придумали в Китае в 6 веке нашей эры!
А, прошу прощения, вот она!
_________________________________________________________

_________________________________________________________
На бумажке простыми и незамысловатыми рисунками объяснено куда что вставить и откуда перед этим вытащить, чтобы у вас все сложилось хорошо с памятью Kingston.
Достаем сами модули. Ого! Это алюминиевые радиаторы? А не чугун?
__________________________________________________________







__________________________________________________________

Вес модулей весьма солидный и сразу заставляет вас проникнуться мыслью, что держите вы не какие-нибудь безделушки, а настоящие модули для энтузиастов. И пусть вас не смущает голубой цвет радиаторов - это модули для настоящих мужчин!
Технические характеристики
Про характеристики я тоже не все писать буду. Кому интересно, можете прочитать у . Или сходить на официальный сайт. Что повторяться то?
Добавлю только что в серии HyperX Predator у Kingston несколько комплектов модулей памяти с частотами до 2666МГц. Мне на тестирование достался младший комплект из двух модулей памяти по 4 Гб: Kingston HyperX Predator KHX18C9T2K2/8X с частотой 1866 МГц.
Модули могут работать на частотах:
800 МГц с таймингах 6-6-6-15
1066 МГц с таймингах 7-7-7-20
1333 МГц с таймингами 9-9-9-24

Так же имеются 2 профиля Intel XMP версии 1.2
1600 МГц с таймингами 9-9-9-27 при напряжении питания модулей 1.65 В.
1866 МГц с таймингами 9-11-9-27 при напряжении питания модулей 1.65 В.

_________________________________________________________

_________________________________________________________

Разгон

Разгон памяти производился на 2 матплатах:
Очень бюджетная Gigabyte GA-PA65-UD3-B3
На Intel® H61 чипсете.
И среднебюджетная ASUS P8 Z77-V-LX
На чипсете Intel® Z77 Express.
* Процессор: Intel® Core i5-3550;
* Кулер: Thermaltake Big Typhoon;
* Видеокарта: Asus GeForce GTX 650 Ti;
* SSD Plextor M5S 128Гб;
* БП: Thermaltake Tough Power W0104 650Вт
и Corsair CX600.

Немного о методике разгона памяти на платформе Intel®.
Частоту памяти можно изменить только множителем. Множитель задает соотношение частоты BCLK (базовой частоты тактового генератора на материнской плате) и частоты памяти. Частоту BCLK на платформе Intel® можно менять в очень небольших пределах- пару мегагерц вверх и вниз. Стандартное напряжение для памяти (Vdimm) DDR3 составляет 1.5 В (существуют еще энегроэффективные DDR3L с 1.35В и DDR3U с 1.25 В, но у нас речь не о них). Обычное напряжение для оверклокерских модулей - 1.65 В. Intel не рекомендует превышать отметку в 1.65 В, так как это может привести к повреждению процессора. Дело в том что контроллер памяти питается от Vdimm, и завышение этого напряжения может привести к локальному перегреву процессора с фатальными последствиями. То есть весь разгон сводится к установке множителя памяти, подбора таймингов и напряжения при которых память будет работать стабильно.

Часть первая. Матплата Gigabyte GA-PA65-UD3-B3

С установкой, благодаря конструкции кулера Big Typhoon, у меня проблем не возникло. У него радиатор вынесен достаточно далеко от матплаты и не перекрывает слоты памяти. С башенными кулерами могут быть проблемы при установке таких крупногабаритных модулей.
К сожалению, фото настроек BIOS и установки погибли вместе с первым вариантом статьи, а на второй раз меня не хватило. Впрочем, интересного там и нет ничего. Хотя вот фото модулей, установленных в плату Gigabyte с размерами.
__________________________________________________________


__________________________________________________________
Если Вы хотите приобрести подобную память и Вас габаритный кулер, по данному рисунку можно прикинуть, будет ли он мешать установке модулей.

Настройки памяти у Gigabyte достаточно скромные. Можно выставить частоту (множитель), настроить тайминги и менять напряжение с шагом 0.02В (то есть даже рекомендованные 1.65В для XMP профилей не выставишь - либо 1.64 В, либо 1.66 В). О существовании профилей Intel XMP плата не подозревает.
В общем, долго я рассказывать не буду. Один раз каким-то чудом мне удалось запустить память на 1600 МГц. Потом полез в BIOS что-то менять и все. Как ни бился, на частоте выше 1333 МГц палата не стартовала. Вывод: покупать оверклокерскую память для установки в такие бюджетные платы не стоит.

Часть вторая. Разгон на ASUS P8 Z77-V-LX.

Матплата поддерживает ХМР профили.
Установка модулей так-же прошла без проблем - свободного места достаточно.
__________________________________________________________


__________________________________________________________
Настройки памяти на этой плате гораздо интереснее.
Напряжение можно менять от 1.185В до 2.135В с шагом 0.005В.
__________________________________________________________


__________________________________________________________

Эффективную частоту можно установить от 800 до 3200 МГц.
__________________________________________________________


__________________________________________________________
Ну и, естественно, задавать все тайминги вручную.
__________________________________________________________


__________________________________________________________

Лирика: Так меня утомила плата Gigabyte, что я стал настройки BIOS на асусе врукопашную фотоаппаратом фотографировать. Потом вспомнил, что есть волшебная кнопочка "сделать скриншот" :)
По дефолту память заводится на частоте 1333 МГц. Чтобы она заработала на заявленной частоте, нужно в BIOS активировать ХМР профили и выставить частоту.
Вот в картинках для неопытных пользователей, а то очень часто задают вопросы, почему я купил память 1866 МГц, а она работает на 1333 МГц. Это, конечно для ASUS P8 Z77-V-LX, но и на других материнских платах настройки сильно отличаться не будут.
Выбираем параметр Ai Overclock Tuner и ставим значение Х.М.Р. для использования ХМР профилей или Manual для ручного разгона.
__________________________________________________________


__________________________________________________________
Теперь, если мы выставили ХМР профили, можно выбрать, какой профиль использовать.
__________________________________________________________


__________________________________________________________

Матплата корректно выставила напряжение и тайминги, прописанные в профиле.
Максимальная частота, на которой память работала без проблем составила 2400 МГц с таймингами 11-12-11-30-1 и напряжением 1.75 В. Радиаторы при таком напряжении нагревались максимум до 35 градусов Цельсия. Такой нагрев ставит под сомнение целесообразность их применения на такой памяти. Это скорее дань "статусности".
Уменьшение таймингов или напряжения приводило к нестабильности. Что характерно, проблемы в первую очередь возникали с браузером Firefox, при малейшей нестабильности он вываливался с ошибкой, багрепортами я заспамил сайт Мозиллы:) Видимо, работа браузера очень зависит от стабильности оперативной памяти.
Ну а теперь немного негатива о платах Asus: как меня задолбала эта плата! Ну почему нельзя сделать нормальный продукт? При переразгоне памяти плата делала что хотела:
1)стартовала с черным экраном и не пускала в биос;
2)тупо несколько раз подряд пыталась завестись, не реагируя никак на мои действия;
3)зависала в BIOS.
Несколько раз пришлось сбрасывать джампером биос в дефолт. Почему дешевенькая Gigabyte при нестабильных настройках памяти просто сбрасывала все в дефолт и предлагала зайти в биос и самому все исправить?
Еще из косяков этой платы: ни в какую не захотела работать с моим БП Thermaltake Tough Power W0104 650Вт. Клянусь, все с блоком нормально. Паранойя какая-то. Причем, выглядело это так: загружается система, все работает, потом бац - выключение, перезагрузка, опять все хорошо и опять через пару минут - бац! Никаких синих экранов. Я голову сломал, пока додумался БП заменить. С другими платами он абсолютно нормально работает. Asus Anti-Surge выключил сразу в BIOS, но что-то у меня подозрение что она все равно работает.
После установки комплектных драйверов с диска, в диспетчере остается нераспознанное устройство. Это не мешает работе, но неприятно. Лечится.

Тестирование
Для тестирования использовалось следующее ПО:
7-Zip (встроенный тест упаковки-распаковки архивов);
3DMark 2013 Тест Fire Strike;
S.T.A.L.K.E.R. Call of Pripyat Benchmark;
AIDA64 тесты пропускной способности.
Память тестировалась в 3 режимах:
частота 1333 МГц, тайминги 9-9-9-24-1, напряжение 1.5В;
частота 2200 МГЦ, тайминги 9-11-10-27-1, напряжение 1.72В;
частота 2400 МГц, тайминги 11-12-11-30-1, напряжение 1.75В.
В 7-Zip и AIDA64 очень наглядно наблюдается зависимость скорости от частоты памяти:
__________________________________________________________








__________________________________________________________

3DMark 2013 никак не реагирует на изменение частоты работы памяти.
__________________________________________________________


__________________________________________________________
Результаты 3DMark подтверждает бенчмарк Call of Pripyat.
__________________________________________________________


__________________________________________________________
Максимальная производительность изменяется в пределах погрешности. Хотя минимальный FPS растет с ростом частоты. Кроме тестовой сцены "Дождь", где почему-то наоборот минимальный FPS падает с ростом частоты.

Выводы : Очень неплохой комплект памяти с актуальным объемом 8Гб, которого сейчас достаточно для основного круга задач выполняемых компьютером. Неплохой разгонный потенциал, который впрочем, зависит от возможностей вашей материнской платы. Красивые радиаторы, именно придание красоты и статусности и есть их основная функция, ибо реально они при штатных частотах работы памяти не нужны.
Из минусов можно назвать только увеличенные габариты модулей, которые ограничивают вас в выборе кулера. Ну и более скоростной комплект 2400MHz Kingston HyperX Intel XMP Predator стоит всего примерно на 250 руб. дороже. Впрочем, с разгоном эта память прекрасно работает на таких частотах.

Мы уже рассказывали о том, как разгонять процессоры и видеокарты. Еще один компонент, достаточно ощутимо влияющий на производительность отдельно взятого компьютера, - оперативная память. Форсирование и тонкая настройка режима работы ОЗУ позволяют повысить быстродействие ПК в среднем на 5-10%. Если подобный прирост достигается без каких-либо денежных вложений и не влечет риски для стабильности системы - почему бы не попробовать? Однако начав готовить данный материал, мы пришли к выводам о том, что описания собственно процесса разгона будет недостаточно. Понять, почему и для чего надо изменять определенные настройки работы модулей, можно, лишь вникнув в суть работы подсистемы памяти компьютера. Потому в первой части материала мы кратко рассмотрим общие принципы функционирования ОЗУ. Во второй приведены основные советы, которых следует придерживаться начинающим оверклокерам при разгоне подсистемы памяти.

Основные принципы функционирования оперативной памяти одинаковы для модулей разных типов. Ведущий разработчик стандартов полупроводниковой индустрии JEDEC предоставляет возможность каждому желающему ознакомиться с открытыми документами, посвященными этой тематике. Мы же постараемся кратко объяснить базовые понятия.

Итак, оперативная память - это матрица, состоящая из массивов, именуемых банками памяти. Они формируют так называемые информационные страницы. Банк памяти напоминает таблицу, каждая ячейка которой имеет координаты по вертикали (Column) и горизонтали (Row). Ячейки памяти представляют собой конденсаторы, способные накапливать электрический заряд. С помощью специальных усилителей аналоговые сигналы переводятся в цифровые, которые в свою очередь образуют данные. Сигнальные цепи модулей обеспечивают подзарядку конденсаторов и запись/считывание информации.

Алгоритм работы динамической памяти можно описать такой последовательностью:

  1. Выбирается чип, с которым будет осуществляться работа (команда Chip Select, CS). Электрическим сигналом проводится активация выбранной строки (Row Activate Selection). Данные попадают на усилители и могут быть считаны определенное время. Эта операция в англоязычной литературе называется Activate.
  2. Данные считываются из соответствующей колонки/записываются в нее (операции Read/Write). Выбор колонок проводится командой CAS (Column Activate Selection).
  3. Пока строка, на которую подан сигнал, остается активной, возможно считывание/запись соответствующих ей ячеек памяти.
  4. При чтении данных - зарядов конденсаторов - их емкость теряется, поэтому требуется подзарядка или закрытие строки с записью информации в массив памяти (Precharge).
  5. Конденсаторы-ячейки со временем теряют свою емкость и требуют постоянной подзарядки. Эта операция - Refresh - выполняется регулярно через отдельные промежутки (64 мс) для каждой строки массива памяти.

На выполнение операций, происходящих внутри оперативной памяти, уходит некоторое время. Именно его и принято называть таким знакомым словом «тайминги» (от англ. time). Следовательно, тайминги - временные промежутки, необходимые для выполнения тех или иных операций, осуществляющихся в работе ОЗУ.

Схема таймингов, указываемых на стикерах модулей памяти, включает в себя лишь основные задержки CL-tRCD-tRP-tRAS (CAS Latency, RAS to CAS Delay, RAS Precharge и Cycle Time (или Active to Precharge)). Все остальные, в меньшей мере оказывающие влияние на скорость работы ОЗУ, принято называть субтаймингами, дополнительными или второстепенными таймингами.

Приводим расшифровку основных задержек, возникающих при функционировании модулей памяти:

CAS Latency (CL) - пожалуй, самый важный параметр. Определяет минимальное время между подачей команды на чтение (CAS) и началом передачи данных (задержка чтения).

RAS to CAS Delay (tRCD) определяет интервал времени между подачей команд RAS и CAS. Обозначает число тактов, необходимых для поступления данных в усилитель.

RAS Precharge (tRP) - время, уходящее на перезарядку ячеек памяти после закрытия банка.

Row Active Time (tRAS) - временной промежуток, на протяжении которого банк остается открытым и не требует перезарядки.

Command Rate 1/2T (CR) - время, необходимое для декодирования контроллером команд и адресов. При значении 1T команда распознается за один такт, при 2T - за два.

Bank Cycle Time (tRC, tRAS/tRC) - время полного такта доступа к банку памяти, начиная с открытия и заканчивая закрытием. Изменяется вместе с tRAS.

DRAM Idle Timer - время простоя открытой информационной страницы для чтения данных с нее.

Row to Column (Read/Write) (tRCD, tRCDWr, tRCDRd) напрямую связан с параметром RAS to CAS Delay (tRCD). Вычисляется по формуле tRCD(Wr/Rd) = RAS to CAS Delay + Rd/Wr Command Delay. Второе слагаемое - величина нерегулируемая, определяет задержку на выполнение записи/чтения данных.

Пожалуй, это базовый набор таймингов, зачастую доступный для изменения в BIOS материнских плат. Расшифровку остальных задержек, как и детальное описание принципов работы и определение влияния тех или иных параметров на функционирование ОЗУ можно найти в спецификациях уже упомянутой нами JEDEC, а также в открытых datasheet производителей наборов системной логики.

Таблица соответствия реальной, эффективной частоты работы и рейтинга разных типов ОЗУ
Тип памяти Рейтинг Реальная частота
работы памяти, МГц
Эффективная частота
работы памяти
(DDR, Double Data Rate), МГц
DDR PC 2100 133 266
PC 2700 167 333
PC 3200 200 400
ЗС 3500 217 434
PC 4000 250 500
PC 4300 266 533
DDR2 PC2 4300 266 533
PC2 5400 333 667
PC2 6400 400 800
PC2 8000 500 1000
PC2 8500 533 1066
PC2 9600 600 1200
PC2 10 400 650 1300
DDR3 PC3 8500 533 1066
PC3 10 600 617,5 1333
PC3 11 000 687,5 1375
PC3 12 800 800 1600
PC3 13 000 812,5 1625
PC3 14 400 900 1800
PC3 15 000 933 1866
Отметим, что числовое обозначение рейтинга в данном случае согласно спецификациям JEDEC указывает на скорость в миллионах передач в секунду через один вывод данных.
Что касается быстродействия и условных обозначений, то вместо эффективной частоты работы правильнее говорить, что скорость передачи данных в два раза больше тактовой частоты модуля (данные передаются по двум фронтам сигналов тактового генератора).

Основные тайминги памяти

Объяснение одного из таймингов tRP (Read to Precharge, RAS Precharge) с помощью типичной схемы в datasheet от JEDEC. Расшифровка подписей: CK и CK - тактовые сигналы передачи данных, инвертированные один относительно другого (Differential Clock); COMMAND - команды, поступающие на ячейки памяти; READ - операция чтения; NOP - команды отсутствуют; PRE - подзарядка конденсаторов - ячеек памяти; ACT - операция активации строки; ADDRESS - адресация данных к банкам памяти; DQS - шина данных (Data Strobe); DQ - шина ввода-вывода данных (Data Bus: Input/Output); CL - CAS Latency в данном случае равен двум тактам; DO n - считывание данных со строки n. Один такт - временной промежуток, необходимый для возврата сигналов передачи данных CK и CK в начальное положение, зафиксированное в определенный момент.


Упрощенная блок-схема, объясняющая основы работы памяти стандарта DDR2. Она создана с целью демонстрации возможных состояний транзисторов и команд, которые их контролируют. Как видите, чтобы разобраться в столь «простой» схеме, потребуется не один час изучения основ работы ОЗУ (мы уже не говорим о понимании всех процессов, происходящих внутри чипов памяти).

Основы разгона оперативной памяти

Быстродействие ОЗУ в первую очередь определяют два показателя: частота работы и тайминги. Какой из них окажет большее влияние на производительность ПК, следует выяснять индивидуально, однако для разгона подсистемы памяти нужно использовать оба пути. На что же способны ваши модули? С достаточно высокой долей вероятности поведение плашек можно спрогнозировать, определив названия используемых в них чипов. Наиболее удачные оверклокерские микросхемы стандарта DDR - Samsung TCCD, UCCC, Winbond BH-5, CH-5; DDR2 - Micron D9xxx; DDR3 - Micron D9GTR. Впрочем, итоговые результаты будут зависеть и от типа РСВ, системы, в которой установлены модули, умения владельца разгонять память и просто от удачи при выборе экземпляров.

Пожалуй, первый шаг, который делают новички, - повышение рабочей частоты ОЗУ. Она всегда привязана к FSB процессора и выставляется с помощью так называемых делителей в BIOS платы. Последние могут выражаться в дробном виде (1:1, 1:1,5), в процентном выражении (50%, 75%, 120%), в режимах работы (DDR-333, DDR2-667). При разгоне процессора путем увеличения FSB автоматически возрастает частота работы памяти. К примеру, если мы использовали повышающий делитель 1:1,5, то при изменении частоты шины с 333 до 400 МГц (типично для форсирования Core 2 Duo) частота памяти поднимется с 500 МГц (333×1,5) до 600 МГц (400×1,5). Поэтому, форсируя ПК, следите, не является ли камнем преткновения предел стабильной работы оперативной памяти.

Следующий шаг - подбор основных, а затем дополнительных таймингов. Их можно выставлять в BIOS материнской платы или же изменять специализированными утилитами на лету в ОС. Пожалуй, самая универсальная программа - MemSet, однако владельцам систем на базе процессоров AMD Athlon 64 (K8) очень пригодится A64Tweaker. Прирост производительности можно получить лишь путем понижения задержек: в первую очередь CAS Latency (CL), а затем RAS to CAS Delay (tRCD), RAS Precharge (tRP) и Active to Precharge (tRAS). Именно их в сокращенном виде CL4-5-4-12 указывают изготовители модулей памяти на стикерах продуктов. Уже после настройки основных таймингов можно переходить к понижению дополнительных.

Компоновка модулей памяти

Модули стандартов: a) DDR2; b) DDR; c) SD-RAM.

  1. Чипы (микросхемы) памяти. Комбинация «чипы + РСВ» определяет объем, количество банков, тип модулей (с коррекцией ошибок или без).
  2. SPD (Serial Presence Detect) - микросхема энергонезависимой памяти, в которую записаны базовые настройки любого модуля. Во время старта системы BIOS материнской платы считывает информацию, отображенную в SPD, и выставляет соответствующие тайминги и частоту работы ОЗУ.
  3. «Ключ» — специальная прорезь платы, по которой можно определить тип модуля. Механически препятствует неверной установке плашек в слоты, предназначенные для оперативной памяти.
  4. smd-компоненты модулей (резисторы, конденсаторы). Обеспечивают электрическую развязку сигнальных цепей и управление питанием чипов.
  5. На стикерах производители обязательно указывают стандарт памяти, штатную частоту работы и базовые тайминги.
  6. РСВ - печатная плата. На ней распаиваются остальные компоненты модуля. От качества РСВ зачастую зависит результат разгона: на разных платах одинаковые чипы могут вести себя по-разному.

На результаты разгона оперативной памяти значительное влияние оказывает увеличение напряжения питания плашек. Безопасный для длительной эксплуатации предел зачастую превышает заявленные производителями значения на 10-20%, однако в каждом случае подбирается индивидуально с учетом специфики чипов. Для наиболее распространенной DDR2 рабочее напряжение зачастую равно 1,8 В. Его без особого риска можно поднять до 2-2,1 В при условии, что это влечет за собой улучшение результатов разгона. Впрочем, для оверклокерских модулей, использующих чипы Micron D9, производители заявляют штатное напряжение питания на уровне 2,3-2,4 В. Превышать эти значения рекомендуется только для кратковременных бенчинг-сессий, когда важен каждый дополнительный мегагерц частоты. Отметим, что при длительной эксплуатации памяти при напряжениях питания, отличающихся от безопасных для используемых чипов значений, возможна так называемая деградация модулей ОЗУ. Под этим термином понимают снижение разгонного потенциала модулей со временем (вплоть до неспособности работать в штатных режимах) и полного выхода плашек из строя. На деградационные процессы особо не влияет качество охлаждения модулей - даже холодные чипы могут быть им подвержены. Конечно, есть и примеры длительного успешного использования ОЗУ при высоких напряжениях, но помните: все операции при форсировании системы вы проводите на свой страх и риск. Не переусердствуйте.

Прирост производительности современных ПК можно получить, используя преимущества двухканального режима (Dual Channel). Это достигается за счет увеличения ширины канала обмена данными и роста теоретической пропускной способности подсистемы памяти. Такой вариант не требует специальных знаний, навыков и тонкой настройки режимов работы ОЗУ. Для активации Dual Channel достаточно иметь два или четыре модуля одинакового объема (при этом необязательно использовать полностью идентичные плашки). Двухканальный режим включается автоматически после установки ОЗУ в соответствующие слоты материнской платы.

Все описанные манипуляции приводят к увеличению быстродействия подсистемы памяти, однако заметить прирост невооруженным глазом зачастую сложно. При хорошей настройке и ощутимом повышении частоты работы модулей можно рассчитывать на прибавку производительности порядка 10-15%. Среднестатистические показатели более низкие. Стоит ли овчинка выделки и нужно ли тратить время на игры с настройками? Если хотите детально изучить повадки ПК - почему бы и нет?

ЕРР и XMP - разгон ОЗУ для ленивых

Далеко не все пользователи изучают особенности настройки ПК на максимальное быстродействие. Именно для новичков оверклокинга ведущие компании предполагают простые способы повышения производительности компьютера.

В отношении ОЗУ все началось с технологии Enhanced Performance Profiles (EPP), представленной NVIDIA и Corsair. Материнские платы на базе nForce 680i SLI первыми предоставили максимальную функциональность в плане настройки подсистемы памяти. Суть ЕРР довольно проста: производители ОЗУ подбирают гарантированные нестандартные скоростные режимы функционирования собственных продуктов, а разработчики системных плат предоставляют возможность их активировать через BIOS. EPP - расширенный перечень настроек модулей, дополняющий базовый набор. Существует две версии ЕРР - сокращенная и полная (два и одиннадцать резервных пунктов соответственно).

Параметр Возможные значения для ЕРР Поддерживается
JEDEC SPD Сокращенный профиль ЕРР Полный профиль ЕРР
CAS Latency 2, 3, 4, 5, 6 Да Да Да
Minimum Cycle time at Supported CAS JEDEC + 1,875 нс (DDR2-1066) Да Да Да
Minimum RAS to CAS Delay (tRCD) JEDEC* Да Да Да
Minimum Row Precharge Time (tRP) JEDEC* Да Да Да
Minimum Active to Precharge Time (tRAS) JEDEC* Да Да Да
Write Recovery Time (tWR) JEDEC* Да Да Да
Minimum Active to Active/Refresh Time (tRC) JEDEC* Да Да Да
Voltage Level 1,8-2,5 В - Да Да
Address Command Rate 1Т, 2Т - Да Да
Address Drive Strenght 1.0х, 1.25х, 1.5х, 2.0х - - Да
Chip Select Drive Strenght 1.0х, 1.25х, 1.5х, 2.0х - - Да
Clock Drive Strenght 0.75х, 1.0х, 1.25х, 1.5х - - Да
Data Drive Strenght 0.75х, 1.0х, 1.25х, 1.5х - - Да
DQS Drive Strenght 0.75х, 1.0х, 1.25х, 1.5х - - Да
Address/ Command Fine Delay 0, 1/64, 2/64, 3/64 MEMCLK - - Да
Address/ Command Setup Time 1/2, 1 MEMCLK - - Да
Chip Select Delay 0, 1/64, 2/64, 3/64 MEMCLK - - Да
Chip Select Setup Time 1/2, 1 MEMCLK - - Да
* Диапазон значений соответствует требованиям, определенным JEDEC для модулей DDR2
Расширенные профили ЕРР позволяют автоматически управлять ощутимо большим количеством задержек модулей стандарта DDR2, чем базовый набор, сертифицированный JEDEC.

Дальнейшее развитие данной темы - концепция Xtreme Memory Profiles (ХМР), представленная компанией Intel. По своей сути данное новшество не отличается от ЕРР: расширенный набор настроек для ОЗУ, гарантированные производителями скоростные режимы записаны в SPD планок и при необходимости активируются в BIOS платы. Поскольку Xtreme Memory Profiles и Enhanced Performance Profiles предоставлены разными разработчиками, модули сертифицируются под их собственные наборы системной логики (на чипсетах NVIDIA или Intel). XMP, как более поздний стандарт, относится только к DDR3.

Безусловно, несложные в активации резервов ОЗУ технологии EPP и XMP пригодятся новичкам. Однако позволят ли производители модулей просто так выжать максимум из своих продуктов? Хотите еще больше? Тогда нам по пути - будем глубже вникать в суть повышения быстродействия подсистемы памяти.

Итоги

В небольшом материале сложно раскрыть все аспекты работы модулей, принципы функционирования динамической памяти вообще, показать, насколько повлияет изменение одной из настроек ОЗУ на общую производительность системы. Однако надеемся, что начало положено: тем, кто заинтересовался теоретическими вопросами, настоятельно рекомендуем изучить материалы JEDEC. Они доступны каждому желающему. На практике же опыт традиционно приходит со временем. Одна из главных целей материала - объяснение новичкам основ разгона подсистемы памяти.

Тонкая настройка работы модулей - дело довольно хлопотное, и если вам не нужна максимальная производительность, если каждый балл в тестовом приложении не решает судьбу рекорда, можно ограничиться привязкой к частоте и основным таймингам. Существенное влияние на быстродействие оказывает параметр CAS Latency (CL). Выделим также RAS to CAS Delay (tRCD), RAS Precharge (tRP) и Cycle Time (или Active to Precharge) (tRAS) - это базовый набор, основные тайминги, всегда указываемые производителями. Обратите внимание и на опцию Command Rate (наиболее актуально для владельцев современных плат на чипсетах NVIDIA). Впрочем, не стоит забывать о балансе характеристик. Системы, использующие неодинаковые контроллеры памяти, по-разному могут реагировать на изменения параметров. Разгоняя ОЗУ, следует придерживаться общей схемы: максимальный разгон процессора при пониженной частоте модулей → предельный разгон памяти по частоте с наихудшими задержками (изменением делителей) → снижение таймингов при сохранении достигнутых частотных показателей.

Дальше - тестирование производительности (не ограничивайтесь лишь синтетическими приложениями!), затем новая процедура разгона модулей. Установите значения основных таймингов меньше на порядок (скажем, 4-4-4-12 вместо 5-5-5-15), с помощью делителей подберите максимальную частоту в таких условиях и протестируйте ПК заново. Таким образом возможно определить, что больше всего «по душе» вашему компьютеру - высокая частота работы или низкие задержки модулей. После чего переходите к тонкой настройке подсистемы памяти, поиску минимальных значений для субтаймингов, доступных для корректировки. Желаем удачи в этом нелегком деле!

Похожие статьи