Операционный усилитель инвертирующий. Схемы на операционных усилителях с обратной связью. Коррекция частотных характеристик

25.04.2019

Усилители на ОУ используют отрицательную обратную связь (ООС), поэтому есть несколько простых правил, которые определяют поведение такого усилителя. Следует воспользоваться тремя упрощающими предположениями о свойствах ОУ: коэффициент усиления ОУ без обратной связи и входное сопротивления бесконечно велики, выходное сопротивление равно нулю.

При анализе следует помнить, что большой коэффициент усиления по напряжению ОУ приводит к тому, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона. Из этого следует первое правило: ОУ усиливает разность напряжения между входами и за счет внешней схемы ООС передает напряжение с выхода на вход таким образом, что разность напряжений между входами практически равна нулю.

Входное сопротивление различных типов ОУ находится в пределах от мегаом до тысяч мегаом, входные токи - от долей наноампер до пикоампер. Это дает основание сформулировать второе правило: входы операционного усилителя токов не потребляют. Эти правила дают достаточную основу для анализа схем на ОУ. Схема инвертирующего усилителя на ОУ приведена на рис.

Рис. Инвертирующий усилитель на ОУ

Анализируя эту схему с учетом сформулированных выше правил, можно показать, что при заземленном неинвертирующем входе ОУ напряжение на инвертирующем входе также равно нулю. Это означает, что падение напряжения на резисторе RОС равно UВЫХ, а падение напряжения на резисторе R1 равно UВХ. Если входные токи ОУ равны нулю, то UВЫХ / RОС = -UВХ / R1, коэффициент усиления по напряжению КU = UВЫХ / UВХ = -RОС / R1. Знак «минус» показывает, что выходной сигнал инвертирован относительно входного (сдвинут на 180º).

Данная схема является усилителем постоянного тока В этой схеме реализована параллельная ООС по напряжению, поскольку сигнал ООС оказывается включенным не последовательно с входным сигналом, а подается параллельно с ним на один и тот же вход.

Как известно, параллельная ООС уменьшает входное сопротивление усилителя. В схеме потенциал точки соединения R1 и RОС всегда равен нулю, а эта точка называется «виртуальный ноль» (мнимая земля). Следовательно, входное сопротивление схемы RВХ = R1. Выходное сопротивление схемы мало и равно долям ома. Таким образом, недостатком схемы является малое входное сопротивление, особенно для усилителей с большим коэффициентом усиления по напряжению, в которых резистор R1, как правило, бывает небольшим. Достоинством схемы является малое значение синфазного напряжения, практически равного нулю. Тот факт, что коэффициент усиления определяется всего лишь соотношением двух сопротивлений, делает применение инвертирующего усилителя очень гибким.

Практическое использование усилителей на ОУ имеет ряд особенностей. ОУ должен находиться в активном режиме, его входы и выходы не должны быть перегружены. Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал станет равным напряжению насыщения (обычно его величина меньше напряжения питания на 2 В).

В схеме ОУ обязательно должны быть предусмотрена цепь обратной связи по постоянному току, в противном случае ОУ обязательно попадет в режим насыщения. Многие ОУ имеют довольно малое предельно допустимое дифференциальное входное напряжение. Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения. Если пренебречь этим условием, то возникнут большие входные токи.

Из-за наличия входного напряжения смещения, при нулевом напряжении на входе напряжение на выходе равно UВЫХ=KUUСМ. Для усилителя, имеющего коэффициент усиления, равный 100 и входное напряжение смещения 2 мВ, выходное напряжение смещения может достигать значения ±0,2 В. Для решения этой проблемы нужно использовать цепи внешней коррекции нуля (используя ОУ с такими возможностями), выбирать ОУ с малым значением смещения. Если усиление постоянного тока не нужно, то можно использовать разделительные емкости в последовательной цепи передачи входного и выходного сигнала.

Если в инвертирующем усилителе один из входов заземлен, то даже при условии идеальной настройки (UСМ = 0), на выходе усилителя будет присутствовать отличное от нуля выходное напряжение. Это связано с тем, что входной ток смещения IВХсоздает падение напряжения на резисторах, которое затем усиливается схемой усилителя. В этой схеме сопротивление со стороны инвертирующего входа определяется резисторами R1║RОС, но ток смещения воспринимается как входной сигнал, подобный току, текущему через R1, а поэтому он порождает смещение выхода UСМ = IСМRОС.Для уменьшения ошибок, вызванных входным током смещения, используют включение дополнительного резистора между неинвертирующим входом и общим проводом. Величина этого резистора должна быть равна R2 = R1║RОС. Для приведенного примера R1 = 10кОм, RОС= 100кОм, R2 = 9,1 кОм.

Рис. Усилитель на ОУ с компенсационным резистором

С целью уменьшения токов смещения и их температурных дрейфов в практических схемах входные сопротивления имеют типичное значение от 1 до 100 кОм.

Следовательно, .

Так как U вых = U д · К и U д =U вых / К, при К → ∞ и U д ≈ 0, можно написать, что
. Решая уравнение, получим выражение для коэффициента усиления с замкнутой обратной связьюK ос
,(15.3)

которое справедливо при условии К » K ос.

В схеме повторителя напряжения на ОУ ( рис.15.4) U вых обратная связь поступает с выхода усилителя на инвертирующий вход. Так как усиливается разность напряжения на входах ОУ - U д, то можно увидеть, что напряжение на выходе усилителя U вых = U д · К.

Рис.15.4. Повторитель напряжения на ОУ

Выходное напряжение ОУ U вых = U вх + U д. Так как U вых =U д ·К, получим, что U д =U вых /К. Следовательно,
. Так как К велико (К → ∞), тоU вых /К стремится к нулю, и в результате получаем равенство U вх =U вых.

Входное напряжение связано с землей только через входное сопротивление усилителя, которое очень велико, поэтому повторитель может служить хорошим согласующим каскадом.

Усилитель с дифференциальным входом имеет два входа, причем инвертирующий и неинвертирующий входы находятся под одинаковым напряжением, в данном случае равным U ос, так как разность напряжений между инвертирующим и неинвертирующим входами очень мала (обычно меньше 1мВ),.

Рис. 15.5. Усилитель с дифференциальным входом

Если задать U 1 равным нулю и подать входной сигнал по входу U 2 , то усилитель будет действовать как неинвертирующий усилитель, у которого входное напряжение снимается с делителя, образованного резисторами R 2 и R΄ ос. Если оба напряжения U 1 и U 2 подаются на соответствующие входы одновременно, то сигнал на инвертирующем входе вызовет такое изменение выходного напряжения, что напряжение в точке соединения резисторов R 1 и R ос станет равным U ос, где
.

Вследствие того, что усилитель имеет очень высокое входное сопротивление,

имеем

.

Решая полученное уравнение относительно U вых, имеем:

Подставляя выражение для U ос, получим:

Если положить R 1 = R 2 и R oc = R´ oc (ситуация, которая наиболее часто встречается), получим
. Полярность выходного напряжения определяется большим из напряженийU 1 и U 2 .

Очевидно, что если U 2 на рис.15.5 равно нулю, то усилитель будет действовать по отношению к U 1 как инвертирующий усилитель.

Входное сопротивление схемы ОУ можно определить следующим образом. К дифференциальному входному сопротивлению ОУ r д приложено напряжение. U д. Благодаря наличию обратной связи это напряжение имеет малую величину.

U д = U вых /K U = U 1 /(1+K U b), (15.6)

где b = R 1 /(R 1 +R 2) - коэффициент передачи делителя в цепи обратной связи. Таким образом, через это сопротивление протекает только ток, равный U 1 /r д (1+K U b). Поэтому дифференциальное входное сопротивление, благодаря действию обратной связи, умножается на коэффициент 1+K U b. Согласно рис. 12, для результирующего входного сопротивления схемы имеем:

R вх = r д (1+K U b)||r вх

Эта величина даже для операционных усилителей с биполярными транзисторами на входах превышает 10 9 Ом. Следует однако помнить, что речь идет исключительно о дифференциальной величине ; это значит, что изменения входного тока малы, тогда как среднее значение входного тока может принимать несравненно бoльшие значения.

Рис. 15.6. Схема неинвертирующего усилителя с учетом собственных сопротивлений ОУ.

Выходное сопротивление ОУ операционного усилителя, не охваченного обратной связью, определяется выражением:

(15.7)

При подключении нагрузки происходит некоторое снижение выходного напряжения схемы, вызванное падением напряжения на rвых, которое передается на вход усилителя через делитель напряжения R 1 , R 2 . Возникающее при этом увеличение дифференциального напряжения компенсирует изменение выходного напряжения.

В общем случае выходное сопротивление может иметь достаточно высокое значение (в некоторых случаях от 100 до 1000 Ом. Подключение цепи ОС поволяет уменьшить выходное сопротивление

Для усилителя, охваченного обратной связью, эта формула принимает вид:

(15.8)

При этом величина U д не остается постоянной, а изменяется на величину

dU д = - dU n = -bdU вых

Для усилителя с линейной передаточной характеристикой изменение выходного напряжения составляет

dU вых =K U dU д - r вых dI вых

Величиной тока, ответвляющегося в делитель напряжения обратной связи в данном случае можно пренебречь. Подставив в последнее выражение величину dU д, получим искомый результат:

(15.9)

Если, например, b =0,1, что соответствует усилению входного сигнала в 10 раз, а K U =10 5 , то выходное сопротивление усилителя снизится с 1 кОм до 0,1 Ом. Вышеизложенное, вообще говоря, справедливо в пределах полосы пропускания усилителя f п, Гц. На более высоких частотах выходное сопротивление ОУ с обратной связью будет увеличиваться, т.к. величина |K U | с ростом частоты будет уменьшаться со скоростью 20дБ на декаду (см. рис. 3). При этом оно приобретает индуктивный характер и на частотах более f т становится равным величине выходного сопротивления усилителя без обратной связи.

Динамические параметры ОУ, характеризующие быстродействие ОУ, можно разделить на параметры для малого и большого сигналов. К первой группе динамических параметров относятся полоса пропускания f п, частота единичного усиления f т и время установления t у. Эти параметры называются малосигнальными, т.к. они измеряются в линейном режиме работы каскадов ОУ (DU вых <1В). Ко второй группе относятся скорость нарастания выходного напряжения r и мощностная полоса пропускания f р. Эти параметры измеряются при большом дифференциальном входном сигнале ОУ (более 50 мВ). Некоторые из этих парамеров рассмотрены выше. Время установления отсчитывается от момента подачи на вход ОУ ступеньки входного напряжения до момента, когда в последний раз станет справедливым равенство |U вых.уст - U вых(t) | = d, где U вых.уст - установившееся значение выходного напряжения, d - допустимая ошибка.

Рабочая полоса частот или полоса пропускания ОУ определяется по виду амплитудно-частотной характеристики, снятой при максимально возможной амплитуде неискаженного выходного сигнала. Вначале на низких частотах устанавливают такую амплитуду сигнала от генератора гармонических колебаний, чтобы амплитуда выходного сигнала U вых.макс немного не доходила до границ насыщения усилителя. Затем увеличивают частоту входного сигнала. Мощностная полоса пропускания f р соответствует значению U вых.макс равному 0,707 от первоначального значения. Величина мощностной полосы пропускания снижается при увеличении емкости корректирующего конденсатора.

Эксплуатационные параметры ОУ определяют допустимые режимы работы его входных и выходных цепей и требования к источникам питания, а также температурный диапазон работы усилителя. Ограничения эксплуатационных параметров обусловлены конечными значениями пробивных напряжений и допустимыми токами через транзисторы ОУ. К основным эксплуатационным параметрам относятся: номинальное значение питающего напряжения U п; допустимый диапазон питающих напряжений; ток, потребляемый от источника I пот; максимальный выходной ток I вых.макс; максимальные значения выходного напряжения при номинальном питании; максимально-допустимые значения синфазных и дифференциальных входных напряжений

Амплитудно-частотная характеристика операционного усилителя является важным фактором, от которого зависит устойчивость работы реальных схем с таким усилителем. В большинстве операционных усилителей отдельные каскады соединены между собой по постоянному току гальваническими связями, поэтому эти усилители не имеют спада усиления в области низких частот и у них необходимо анализировать спад коэффициента усиления с возрастанием частоты.

Рис.15.7. АЧХ операционного усилителя

На рис.15.7. показана типичная частотная характеристика операционного усилителя.

Рис. 15.8. Упрощенная эквивалентная схема ОУ

При возрастании частоты емкостное сопротивление падает, что приводит к уменьшению постоянной времени τ = R н* С. Очевидно, должна существовать частота, при превышении которой напряжение на выходе U вых окажется меньше, чем КU д.

Выражение для коэффициента усиления К на любойчастоте

имеет вид
, где К – коэффициент усиления без обратной связи на низких частотах;f – рабочая частота; f 1 – граничная частота или частота при 3 дБ, т.е. частота, на которой К(f) на 3 дБ ниже К, или равен 0,707·А.

Если, как это обычно бывает, R н » R вых, то
.

Обычно амплитудно-частотная характеристика дается в общем виде. как:

. (15.10)

где f - интересующая нас частота, в то время как f 1 – фиксированная частота, которая называется граничной частотой и является характеристикой конкретного усилителя. С ростом частоты коэффициент усиления по напряжению падает. Кроме того, из выражения для θ видно, что при изменении частоты, фаза выходного сигнала сдвигается относительно фазы входного; - выходной сигнал отстает по фазе от входного.

Добавление отрицательной обратной связи так, например, как это сделано в инвертирующем или неинвертирующем усилителях, увеличивает эффективную полосу пропускания операционного усилителя.

Чтобы убедиться в этом, рассмотрим выражение для коэффициента усиления без обратной связи усилителя со спадом 6дБ / октава (при двукратном увеличении частоты):

, где К(f) – коэффициент усиления без обратной связи на частоте f; А – коэффициент усиления без обратной связи на низких частотах; f 1 – сопрягающая частота. Подставляя это соотношение в выражение для коэффициента усиления при наличии обратной связи
, получим

. (15.11)

Это выражение можно переписать в виде
, гдеf 1 oc = f 1 (1+Аβ); K 1 – коэффициент усиления с замкнутой обратной связью на низких частотах; f 1oc – граничная частота при наличии обратной связи.

Граничная частота при наличии обратной связи равна граничной частоте без обратной связи, умноженной на (1+Кβ)>1, так что эффективная ширина полосы пропускания действительно увеличивается при использовании обратной связи. Это явление показано на рис.8, где f 1oc > f 1 для усилителя с коэффициентом усиления равным 40 дБ.

Если скорость спада усилителя составляет 6дБ/октава, произведение коэффициента усиления на полосу пропускания постоянно: Kf 1 = const. Чтобы убедиться в этом, умножим идеальный коэффициент усиления на низких частотах на верхнюю частоту среза того же усилителя при наличии обратной связи.

Тогда получим произведение усиления на полосу пропускания:

, где К – коэффициент усиления без обратной связи на низких частотах.

Если раньше было показано, что для увеличения полосы пропускания с помощью обратной связи следует уменьшить коэффициент усиления, то теперь выведенное соотношение дает возможность узнать, какой частью коэффициента усиления необходимо пожертвовать для получения желаемой полосы пропускания.

Схема замещения операционного усилителя позволяет учитывать влияние неидеальности усилителя на характеристики схемы. Для этого удобно представить усилитель полной схемой замещения, содержащей существенные элементы неидеальности. Полная схема замещения ОУ для малых медленных изменений сигналов представлена на рис. 15.9.

Рис. 15.9.. Схема замещения операционного усилителя для малых сигналов

У операционных усилителей с биполярными транзисторами на входе входное сопротивление для дифференциального сигнала r д составляет несколько мегаом, а входное сопротивление для синфазного сигнала r вх несколько гигаом. Входные токи, определяемые этими сопротивлениями, имеют величину порядка нескольких наноампер. Существенно бoльшие значения имеют постоянные токи, протекающие через входы операционного усилителя и определяемые смещением транзисторов дифференциального каскада. Для универсальных ОУ входные токи находятся в пределах от 10 нА до 2 мкА, а для усилителей со входными каскадами, выполненными на полевых транзисторах, они составляют доли наноампер.

Усилители мощности. Линейные схемы на ОУ.

ОУ широко применяется в аналоговых устройствах электроники. Функции, реализуемые ОУ с ООС, удобно рассматривать, если представить ОУ в виде идеальной модели, у которой:

  1. Входное сопротивление операционного усилителя равно бесконечности, токи входных электродов равны нулю (Rвх > ∞, i+ = i- = 0).
  2. Выходное сопротивление операционного усилителя равно нулю, т.е. операционный усилитель со стороны входа является идеальным источником напряжения (Rвых = 0).
  3. Коэффициент усиления по напряжению (коэффициент напряжения дифференциального сигнала) равен бесконечности, а дифференциальный сигнал в режиме усиления равен нулю (при этом не допускается закорачивания выводов операционного усилителя).
  4. В режиме насыщения напряжение на выходе равно по модулю напряжению питания, а знак определяется полярностью входного напряжения. Полезно обратить внимание на тот факт, что в режиме насыщения дифференциальный сигнал нельзя всегда считать равным нулю.
  5. Синфазный сигнал не действует на операционный усилитель.
  6. Напряжение смещения нуля равно нулю.

Инвертирующий усилитель на ОУ

Схема инвертирующего усилителя, охваченного параллельной ООС по напряжению показана на рисунках:

ООС реализуется за счет соединения выхода усилителя со входом резистором R2.

На инвертирующем входе ОУ происходит суммирование токов. Поскольку входной ток ОУ i- = 0, то i1 = i2 . Так как i1 = Uвх /R1, а i2 = -Uвых /R2, то . Ku = = -R2/R1. Знак "-" говорит о том, что происходит инверсия знака входного напряжения.

На рисунке (б) в цепь неинвертирующего входа включен резистор R3 для уменьшения влияния входных токов ОУ, сопротивление которого определяется из выражения:

Входное сопротивление усилителя на низких частотах приблизительно равно Rвх.ос = ≈ R1

Выходное сопротивление Rвых.ос = существенно меньше Rвых собственно ОУ.

Неинвертирующий усилитель на ОУ

Схема неинвертирующего усилителя, охваченного последовательной ООС по напряжению, показана на рисунке:

ООС реализуется при помощи резисторов R1, R2.

Используя принятые ранее допущения для идеальной модели получим

Входное сопротивление: Rвх.ос → ∞

Выходное сопротивление: Rвых.ос = → 0

Недостатком усиления является наличие на входах синфазного сигнала, равного Uвх .

Повторитель напряжения на ОУ

Схема повторителя, полученная из схемы неивертирующего усилителя, при R1 → ∞, R2 → 0, показана на рисунке:

Коэффициент β = 1, Ku.ос = K/1+K ≈ 1, т.е. напряжение на входе и выходе ОУ равны: Uвх = Uвых .

Сумматор напряжений на ОУ (инвертирующий сумматор)

Схема инвертирующего усилителя с дополнительными входными цепями показана на рисунке:

Учитывая, что i+ = i- = 0, ioc = - Uвых /Rос = Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn, получим: Uвых = -Rос (Uвх1 /R1 + Uвх2 /R2 + ... + Uвхn /Rn)

Если Rос = R1 = R2 = ... = Rn, то Uвых = - (Uвх1 + Uвх2 + ... + Uвхn ).

ОУ работает в линейном режиме.

Для уменьшения влияния входных токов ОУ в цепь неинвертирующего входа включают резистор Rэ (на рисунке показан пунктиром) с сопротивлением: Rэ = R1//R2//…//Rn//Roc .

Вычитающий усилитель на ОУ

Схема усилителя с дифференциальным входом показана на рисунке:

Усилитель является сочетанием инвертирующего и неинвертирующего усилителей. В рассматриваемом случае напряжение на выходе определяется из выражения:

Uвых = Uвх2 · R3/(R3+R4) · (1+R2/R1) - Uвх1 · R2/R1

При R1 = R2 = R3 = R4: Uвых = Uвх2 - Uвх1 – т.е. зависит от разности входных сигналов.

Интегрирующий усилитель на ОУ

Схема интегратора, в которой в цепи ООС установлен конденсатор, показана на рисунке:

Пусть на вход подается прямоугольный импульс Uвх . На интервале t1...t2 амплитуда Uвх равна U. Так как входной ток ОУ равен нулю, то |iвх | = |-ic |, iвх = Uвх /R1, ic = C · dUвых /dt.

Uвх /R1 = C · dUвых /dt или

где Uвых (0) – напряжение на выходе (конденсаторе С) к моменту начала интегрирования (к моменту t1).

τ = R1 · C – постоянная времени интегрирования, т.е. время, в течение которого Uвых изменится на величину ΔUвых = U.

Таким образом выходное напряжение на интервале t1...t2 изменяется по линейному закону и представляет интеграл от входного напряжения. Постоянная времени должна быть такой, чтобы до конца интегрирования Uвых < Eпит .

Дифференцирующий усилитель

Поменяв местами R1 и C1 в интеграле, получим схему дифференцирующего усилителя:

По аналогии с интегрирующим усилителем запишем:

Ic = C·dUвх /dt, IR2 = -Uвых /R

Т.к. |Ic | = |-IR2 |, то Uвых = - CR · dUвх /dt

τ = CR – постоянная дифференцирования.

Применение ОУ далеко не исчерпывается приведенными выше схемами.

Активные фильтры

В электронике широко применяются устройство для выделения полезного сигнала из ряда входных сигналов с одного одновремённым ослаблением мешающих сигналов за счёт использования фильтров.

Фильтры подразделяются не пассивные, выполненные на основе конденсаторов, индуктивностей и резисторов, и активные на базе транзисторов и операционных усилителей.

В информационной электронике обычно используются активные фильтры. Термин "активный" объясняется включением в схему RLC - фильтра активного элемента (с транзистора или ОУ) для компенсации потерь на пассивных элементах.

Фильтром называют устройство, которое пропускает сигналы в полосе пропускания и задерживает их в остальном диапазоне частот.

По виду АЧХ фильтры подразделяются на фильтры нижних частот (ФНЧ), и на фильтры верхних частот (ФВЧ), полосовые фильтры и режекторные фильтры.

Схема простейшего ФНЧ и его АЧХ приведены на рисунке:

В полосе пропускания 0 - fc полезный сигнал проходит через ФНЧ без искажений.

Fс – fз – переходная полоса,
fз - ∞ – полоса задерживания,
fс – частота среза,
fз – частота задерживания.

ФВЧ пропускает сигналы верхних частот и задерживает сигналы нижних частот.

Полосовой фильтр пропускает сигналы одной полосы частот, расположенной в некоторой внутренней части оси частот.

Схема фильтра получила название моста Вина. На частоте f0 =

Мост Вина имеет коэффициент передачи β = 1/3. При R1 = R2 = R и C1 = C2 = C

Режекторный фильтр не пропускает сигналы, лежащие в некоторой полосе частот, и пропускает сигналы с другими частотами.

Схема фильтра называется несимметричным двойным Т-образным мостом.

Где R1 = R2 = R3 = R, C1 = C2 = C3 = C.

В качестве примера рассмотрим двухполюсный (по числу конденсаторов) активный ФНЧ.

ОУ работает в линейном режиме. При расчёте задаются fс . Коэффициент усиления в полосе пропускания должен удовлетворять условию: К0 ≤ 3.

Если принять С1 = С2 = С, R1 = R2 = R, то C = 10/fc , где fс – в Гц, С – в мкФ,

Для получения более быстрого изменения коэффициента усиления на удаление от полосы пропускания последовательно включают подобные схемы.

Поменяв местами резисторы R1, R2 и конденсаторы С1, С2, получим ФВЧ.

Избирательные усилители

Избирательные усилители позволяют усиливать сигналы в ограниченном диапазоне частот, выделяя полезные сигналы и ослабляя все остальные. Это достигается применением специальных фильтров в цепи обратной связи усилителя. Схема избирательного усилителя с двойным Т-образным мостом в цепи отрицательной обратной связи показана на рисунке:

Коэффициент передачи фильтра (кривая 3) уменьшается от 0 до 1. АЧХ усилителя иллюстрируется кривой 1. На квазирезонансной частоте коэффициент передачи фильтра в цепи отрицательной обратной связи равен нулю, Uвых максимально. При частотах слева и справа от f0 коэффициент передачи фильтра стремится единице и Uвых = Uвх . Таким образом фильтр выделяет полосу пропускания Δf, а усилитель осуществляет операцию аналогового усиления.

Генераторы гармонических колебаний

В системах управления используются генераторы сигналов различного вида. Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение.

Структурная схема такого генератора показана на рисунке:

Входной сигнал отсутствует. Uвых = К · Uос .

Для возникновения синусоидальных колебаний должно выполняться условие самовозбуждения только для одной частоты:
К · γ = 1 – баланс амплитуд,
φ + ψ = 2πn – баланс фаз,
где К – коэффициент усиления усилителя,
γ – коэффициент передачи звена положительной обратной связи,
φ – сдвиг по фазе для усилителя,
ψ – сдвиг по фазе для цепи обратной связи,
n = 0, 1, ...

Основной генераторов синусоидальных сигналов являются фильтры, например мост Вина. Генератор на основе ОУ, содержащий мост Вина, представлен на рисунке:

Генератор вырабатывает синусоидальный сигнал частотой .

На частоте f0 коэффициент передачи фильтра β = 1/3. Усилитель должен иметь коэффициент усиления К ≥ 3, который задаётся резисторами R1 и R2. Важной проблемой является стабилизация амплитуды Uвых , которая обеспечивается в ведением резистора R3 и стабилитронов VD1 и VD2. При малых Uвых напряжение на VD1 и VD2 меньше напряжения стабилизации и R3 не зашунтировано стабилитронами. При этом К > 3 и Uвых возрастает. При достижении напряжения на стабилитронах, равного напряжения стабилизации, тот или иной стабилитрон открывается и пара стабилитронов шунтирует сопротивление R3. Коэффициент усиления становится равным и напряжение Uвых начинает уменьшатся, коэффициент усиления снова становится больше 3 и Uвых снова будет уменьшатся, но уже и в противоположном направлении. Таким образом стабилитроны предотвращают насыщение.

При использовании данного генератора нагрузку желательно подключать через буферный каскад.

Материал для подготовеки к аттестации
  • 7. Стабилизация рабочей точки бт в схеме с коллекторной стабилизацией. Основные расчетные соотношения.
  • 8. Стабилизация рабочей точки бт в схеме с эмиттерной стабилизацией. Основные расчетные соотношения.
  • 10.Ук на бт с оэ в области средних частот: эквивалентная схема, вх и вых сопротивление, ку по току и апряжению.
  • 11. Ук на бт с об в области средних частот: эквивалентная схема, вх и вых сопротивление, ку по току и напряжению.
  • 12 Ук на бт с ок (эмиттерный повторитель) в области средних частот. Эквивалентная схема, входное и выходное сопротивление, коэффициент усиления по току и напряжению.
  • 13. Обратные связи в усилительных устройствах: основные понятия, классификация.
  • 14. Коэффициент передачи усилителя охваченного ос. Влияние обратных связей на параметры и характеристики усилителя.
  • 15. Сравнительная характеристика параметров ук на бт с оэ, ок и об: коэффициенты усиления по току и напряжению, входное и выходное сопротивление, полоса пропускания.
  • 16. Усилительные каскады на пт с общим истоком.
  • 17. Усилители постоянного тока (упт) на бт: способы устранения дрейфа нуля, согласование уровней постоянного напряжения между каскадами.
  • 18. Двухтактный бестрансформаторный оконечный каскад в режиме класса в. Переходные искажения.
  • 19. Двухтактный бестрансформаторный оконечный каскад в режиме класса ав.
  • 20.Дифференциальные усилительный каскад: принцип действия.
  • 21.Дифференциальный усилительный каскад: вх и вых сопротивление, коэффициенты усиления синф. И диф. Сигналов, Косс.
  • 22. Способы улучшения параметров дифференциальных усилительных каскадов.
  • 23. Классификация и параметры операционных усилителей(оу).
  • 24. Инвертирующий усилитель на оу.
  • 25. Неинвертирующий усилитель на оу.
  • 26. Схема сумматора на оу.
  • 27. Дифференцирующий усилитель на оу.
  • 28. Интегрирующий усилитель на оу.
  • 29. Логарифмирующий усилитель на оу.
  • 30. Антилогарифмирующий усилитель на оу.
  • 31 . Ключ на бт: принципиальная схема, передаточная характеристика, статический режим работы.
  • 32 . Ключ на бт: принципиальная схема, динамический режим работы.
  • 33. Способы повышения быстродействия ключей на бт
  • 34. Ключи на мдп-транзисторах
  • 35. Ключ на комплементарных мдп-транзисторах
  • 36.Логические элементы, логические функции, основные законы алгебры логики
  • 37.Принцип построения лог. Элементов на основе полупроводниковых диодов.
  • 37.Принцип построения лог. Элементов на основе полупроводниковых диодов.
  • 38.Базовый логический элемент транзистрно-транзисторной логики (ттл).
  • 39. Базовый логический элемент эммитерно-связанной логики (эсл).
  • 40.Интегрально-инжекционная логика.
  • 41. Основные параметры являются общими для всех существующих и возможных логических имс и позволяют сравнивать между собой микросхемы различных типов. Основными параметрами являются:
  • 42.Rs–триггер
  • 43. Синхронный rs-триггер.
  • 44. D-триггер
  • 45. Т-триггер
  • 46.Jk-триггер
  • 47.Мультивибратор на логических элементах
  • 48.Особенности диапазона свч. Деление свч диапазона на поддиапазоны.
  • 49. Особенности эп свч с динамическим управлением электронным потоком. Общий принцип действия и характеристики эп свч.
  • 50. Конструкция, принцип действия и параметры двухрезонаторного пролетного клистрона.
  • 51. Устройство и принцип действия лампа бегущей волны о-типа (лбво)
  • 52.Конструкция, принцип действия и условия самовозбуждения лампа обратной волны о-типа
  • 53.Движение электронов в скрещенных постоянных электрическом и магнитном полях.
  • 54.Конструкция,принцип действия, амплитудное и фазовое условия самовозбуждения многорезонаторного магнетрона. Парабола критического режима.
  • 55. Диоды Ганна. Эффект Ганна. Особенности многодолинных полупроводников.
  • 56. Автогенераторы на диодах Ганна. Конструкции, эквивалентная схема. Режимы работы. Параметры генераторов, области применения.
  • 58. Оптические квантовые генераторы (лазеры) на твердом теле: конструкция, принцип действия, параметры, области применения.
  • 24. Инвертирующий усилитель на оу.




    25. Неинвертирующий усилитель на оу.

    Схема неинвертирующего усилителя показана на рис. 9.6. Выражение для коэффициента усиления по напряжению для этой схемы получим, так же, как и для предыдущей, из уравнений, составленных по закону Кирхгофа

    С учетом (9.13) выражение для коэф- фициента усиления будет иметь вид

    Из следует, что коэффициент усиления по напряжению в схеме неин- вертирующего усилителя всегда больше 1. В отличие от схемы инвертирующего усилителя в данной схеме ОУ охвачен цепью ООС по напряжению, последовательной по входу. Поэтому входное сопро- тивление этой схемы значительно больше входного сопротивления ОУ без ОС:

    Выходное сопротивление определяется, как и для инвертирующего усилителя, согласно (9.16).

    26. Схема сумматора на оу.

    К суммирующим схемам относятся сумматоры и схемы вычитания. Эти схемы используются для решения алгебраических уравнений и в устройствах аналоговой обработки сигналов. Сумматором называется устройство, на выходе которого сигналы, подаваемые на его входы, суммируются. Сумматоры строятся с использованием инвертирующих и неинвертирующих усилителей.

    Инвертирующий сумматор

    Схема инвертирующего сумматора с тремя входными сигналами приведена на рис. 11.10. Для простоты рассуждений принимаем, что R1=R2=R3=Roc.

    Поскольку у идеального ОУ K U →∞, Rвx →∞, а ток смещения очень мал по сравнению с током обратной связи, то согласно закона Кирхгофа I1+I2+I3=Iос. (11.19) Вследствие того, что инвертирующий вход имеет практически нулевой потенциал, то в нем отсутствует взаимное влияние входных сигналов. Выражение (11.19) может быть представлено в виде Следовательно на выходе получается инвертированная сумма входных напряжений. Если R1≠R2≠R3, то на выходе получается инвертированная сумма входных напряжений (11.20) с различными масштабными коэффициентами. Инвертирующий сумматор объединяет в себе функции сумматора и усилителя при сохранении простоты схемы. Резистор R служит для компенсации сдвига нуля на выходе ОУ, вызванного временными и температурными колебаниями входного тока. Сопротивление R выбирают токай величины, чтобы эквивалентные сопротивления, подключенные ко входам ОУ были одинаковы: R=Roc ||R1||R2||R3 .

    Неинвертирующий сумматор

    Схема неинвертирующего сумматора, который строится на базе неинвертирующего усилителя, приведена на рис. 11.11. Так как при U0=0 напряжения на инвертирующем и неинвертиющем входах равны, то

    Учитывая, что RвxОУ по неинвертирующему входу очень велико, то входной ток равен 0. Согласно закона Кирхгофа можно записать

    Если же в схеме (рис. 11.11) еще подаются сигналы на инвертирующие входы, то схема выполняет операцию сложения- вычитания. Для правильной работы сумматора необходимо сбалансировать инвертирующий и неинвертирующий коэффициент усиления, т.е. обеспечить равенство сумм коэффициентов усиления инвертирующей и неинвертирующей частей схемы.

    27. Дифференцирующий усилитель на оу.

    Дифференцирующий усилитель (дифференциатор) предназначен для получения выходного сигнала пропорционального скорости изменения входного. При дифференцировании сигнала ОУ должен пропускать только переменную составляющую входного напряжения, а коэффициент усиления дифференцирующего звена должен возрастать при увеличении скорости изменения входного напряжения. Схема дифференциатора, на входе которого включен конденсатор С, а в цепи ОС – резистор, представлена на рис. 11.13. Полагая, что ОУ идеальный, ток через резистор обратной связи можно считать равным току через конденсатор Iс+Ir=0,

    , тогда

    Рассмотренный дифференциатор используется редко из-за следующих недостатков:

    1. Низкого входного сопротивления на высоких частотах, определяемого емкостью С;

    2. Относительно высокого уровня шумов на выходе обусловленного большим усилением на высоких частотах;

    3. Склонности к самовозбуждению. (данная схема может быть неустойчивой в области частот, где частотная характеристика дифференциатора (кривая 1 на рис.11.14), имеющая подъем 20 дБ/дек, пересекается с АЧХ скорректированного ОУ, имеющего спад −20дБ/ дек (кривая 2 на рис. 11.14). Амплитудно-частотная характеристика разомкнутой системы в некоторой части частотного диапазона имеет

    спад –40 дБ/дек, который определяется разностью наклона кривых 1 и 2, а фазовый сдвиг ϕ = –180°, что и указывает на возможность самовозбуждения.)

    Чтобы избежать проявления этих недостатков дифференциатора принимаются следующие схемотехнические решения:

    1. Резистор обратной связи шунтируется конденсатором, ёмкость которого выбирается такой, чтобы участок АЧХ ОУ со спадом -20 дБ/дек начинался на частоте более высокой, чем максимальная частота полезного дифференциального сигнала. Это приводит к уменьшению высокочастотных составляющих шума в выходном сигнале. Такой участок начинается на частоте f=1/(2πRocCoc).

    2. Последовательно со входным конденсатором С включается резистор, который ограничивает коэффициент усиления на высоких частотах дифференциатора. Это обеспечивает динамическую устойчивость и снижает входной ёмкостной ток от источника сигнала.

    3. Использование ОУ с низким напряжением смещения и малыми входными токами, а также конденсаторов с малыми токами утечек и малошумящих резисторов.

    Практическая схема дифференциатора и его АЧХ приведены на

    рис. 11.15. Введение резистора R приводит к появлению на частотной характеристике (кривая 1 на рис. 11.15,б) горизонтального участка, где не происходит дифференцирования на частотах, превышающих частоту

    Операционные усилители часто используются для выполнения различных операций: суммирования сигналов, дифференцирования, интегрирования, инвертирования и т. д. А также операционные усилители были разработаны как усовершенствованные
    балансные схемы усиления.

    Операционный усилитель – универсальный функциональный элемент, широко используемый в современных схемах формирования и преобразования информационных сигналов различного назначения как в аналоговой, так и в цифровой технике. Давайте далее рассмотрим виды усилителей.

    Инвертирующий усилитель

    Рассмотрим схему простого инвертирующего усилителя:

    а) падение напряжения на резисторе R2 равно Uвых,

    б) падение напряжения на резисторе R1 равно Uвх.

    Uвых/R2 = -Uвх/R1, или коэффициент усиления по напряжению = Uвых/Uвх = R2/R1.

    Для того чтобы понять, как работает обратная связь, представим себе, что на вход подан некоторый уровень напряжения, скажем 1 В. Для конкретизации допустим, что резистор R1 имеет сопротивление 10 кОм, а резистор R2 — 100 кОм. Теперь представим себе, что напряжение на выходе решило выйти из повиновения и стало равно 0 В. Что произойдет? Резисторы R1 и R2 образуют делитель напряжения, с помощью которого потенциал инвертирующего входа поддерживается равным 0,91 В. Операционный усилитель фиксирует рассогласование по входам, и напряжение на его выходе начинает уменьшаться. Изменение продолжается до тех пор, пока выходное напряжение не достигнет значения -10 В, в этот момент потенциалы входов ОУ станут одинаковыми и равными потенциалу земли. Аналогично, если напряжение на выходе начнет уменьшаться и дальше и станет более отрицательным, чем -10 В, то потенциал на инвертирующем входе станет ниже потенциала земли, в результате выходное напряжение начнет расти.

    Недостаток этой схемы состоит в том, что она обладает малым входным импедансом, особенно для усилителей с большим коэффициентом усиления по напряжению (при замкнутой цепи ОС), в которых резистор R1, как правило, бывает небольшим. Этот недостаток устраняет схема, представленная ниже, на рис. 4.

    Неинвертирующий усилитель. Усилитель постоянного тока.

    Рассмотрим схему на рис. 4. Анализ ее крайне прост: UA = Uвх. Напряжение UA снимается с делителя напряжения: UA = Uвых R1 / (R1 + R2). Если UA = Uвх, то коэффициент усиления = Uвых / Uвх = 1 + R2 / R1. Это неинвертирующий усилитель. В приближении, которым мы воспользуемся, входной импеданс этого усилителя бесконечен (для ОУ типа 411 он составляет 1012 Ом и больше, для ОУ на биполярных транзисторах обычно превышает 108 Ом). Выходной импеданс, как и в предыдущем случае, равен долям ома. Если, как в случае с инвертирующим усилителем, мы внимательно рассмотрим поведение схемы при изменении напряжения на входах, то увидим, что она работает, как обещано.

    Усилитель переменного тока

    Схема выше также представляет собой усилитель постоянного тока. Если источник сигнала и усилитель связаны между собой по переменному току, то для входного тока (очень небольшого по величине) нужно предусмотреть заземление, как показано на рис. 5. Для представленных на схеме величин компонентов коэффициент усиления по напряжению равен 10, а точке -3 дБ соответствует частота 16 Гц.

    Усилитель переменного тока. Если усиливаются только сигналы переменного тока, то можно уменьшить коэффициент усиления для сигналов постоянного тока до единицы, особенно если усилитель обладает большим коэффициентом усиления по напряжению. Это позволяет уменьшить влияние всегда существующего конечного «приведенного ко входу напряжения сдвига».

    Для схемы, представленной на рис. 6, точке -3 дБ соответствует частота 17 Гц; на этой частоте импеданс конденсатора равен 2,0 кОм. Обратите внимание, что конденсатор должен быть большим. Если для построения усилителя переменного тока использовать неинвертирующий усилитель с большим усилением, то конденсатор может оказаться чрезмерно большим. В этом случае лучше обойтись без конденсатора и настроить напряжение сдвига так, чтобы оно было равно нулю. Можно воспользоваться другим методом — увеличить сопротивления резисторов R1 и R2 и использовать T-образную схему делителя.

    Несмотря на высокий входной импеданс, к которому всегда стремятся разработчики, схеме неинвертирующего усилителя не всегда отдают предпочтение перед схемой инвертирующего усилителя. Как мы увидим в дальнейшем, инвертирующий усилитель не предъявляет столь высоких требований к ОУ и, следовательно, обладает несколько лучшими характеристиками. Кроме того, благодаря мнимому заземлению удобно комбинировать сигналы без их взаимного влияния друг на друга. И наконец, если рассматриваемая схема подключена к выходу (стабильному) другого ОУ, то величина входного импеданса для вас безразлична — это может быть 10 кОм или бесконечность, так как в любом случае предыдущий каскад будет выполнять свои функции по отношению к последующему.

    Повторитель

    На рис. 7 представлен повторитель, подобный эммитерному, на основе операционного усилителя.

    Он представляет собой не что иное, как неинвертирующий усилитель, в котором сопротивление резистора R1 равно бесконечности, а сопротивление резистора R2 — нулю (коэффициент усиления = 1). Существуют специальные операционные усилители, предназначенные для использования только в качестве повторителей, они обладают улучшенными характеристиками (в основном более высоким быстродействием), примером такого операционного усилителя является схема типа LM310 или OPA633, а также схемы упрощенного типа, например схема типа TL068 (она выпускается в транзисторном корпусе с тремя выводами).

    Усилитель с единичным коэффициентом усиления называют иногда буфером, так как он обладает изолирующими свойствами (большим входным импедансом и малым выходным).

    Основные предостережения при работе с ОУ

    1. Правила справедливы для любого операционного усилителя при условии, что он находится в активном режиме, т.е. его входы и выходы не перегружены.

    Например, если подать на вход усилителя чересчур большой сигнал, то это приведет к тому, что выходной сигнал будет срезаться вблизи уровня UКК или UЭЭ. В то время когда напряжение на выходе оказывается фиксированным на уровне напряжения среза, напряжение на входах не может не изменяться. Размах напряжения на выходе операционного усилителя не может быть больше диапазона напряжения питания (обычно размах меньше диапазона питания на 2 В, хотя в некоторых ОУ размах выходного напряжения ограничен одним или другим напряжением питания). Аналогичное ограничение накладывается на выходной диапазон устойчивости источника тока на основе операционного усилителя. Например, в источнике тока с плавающей нагрузкой максимальное падение напряжения на нагрузке при «нормальном» направлении тока (направление тока совпадает с направлением приложенного напряжения) составляет UКК — Uвх, а при обратном направлении тока (нагрузка в таком случае может быть довольно странной, например, она может содержать переполюсованные батареи для получения прямого тока заряда или может быть индуктивной и работать с токами, меняющими направление) -Uвх — UЭЭ.

    2. Обратная связь должна быть отрицательной. Это означает (помимо всего прочего), что нельзя путать инвертирующий и неинвертирующий входы.

    3. В схеме операционного усилителя обязательно должна быть предусмотрена цепь обратной связи по постоянному току, в противном случае операционный усилитель обязательно попадет в режим насыщения.

    4. Многие операционные усилители имеют довольно малое предельно допустимое дифференциальное входное напряжение. Максимальная разность напряжений между инвертирующим и неинвертирующим входами может быть ограничена величиной 5 В для любой полярности напряжения. Если пренебречь этим условием, то возникнут большие входные токи, которые приведут к ухудшению характеристик или даже к разрушению операционного усилителя.

    Понятие «обратная связь» (ОС) относится к числу распространенных, оно давно вышло за рамки узкой области техники и употребляется сейчас в широком смысле. В системах управления обратная связь используется для сравнения выходного сигнала с заданным значением и выполнения соответствующей коррекции. В качестве «системы» может выступать что угодно, например процесс управления движущимся по дороге автомобилем — за выходными данными (положением машиты и ее скоростью) следит водитель, который сравнивает их с ожидаемыми значениями и соответственно корректирует входные данные (с помощью руля, переключателя скоростей, тормоза). В усилительной схеме выходной сигнал должен быть кратен входному, поэтому в усилителе с обратной связью входной сигнал сравнивается с определенной частью выходного сигнала.

    Всё об обратной связи

    Отрицательная обратная связь — это процесс передачи выходного сигнала обратно на вход, при котором погашается часть входного сигнала. Может показаться, что это глупая затея, которая приведет лишь к уменьшению коэффициента усиления. Именно такой отзыв получил Гарольд С. Блэк, который в 1928 г. попытался запатентовать отрицательную обратную связь. «К нашему изопрелению отнеслись так же, как к вечному двигателю» (журнал IEEE Spectrum за декабрь 1977 г.). Действительно, отрицательная обратная связь уменьшает коэффициент усиления, но при этом она улучшает другие параметры схемы, например устраняет искажения и нелинейность, сглаживает частотную характеристику (приводит ее в соответствие с нужной характеристикой), делает поведение схемы предсказуемым. Чем глубже отрицательная обратная связь, тем меньше внешние характеристики усилителя зависят от характеристик усилителя с разомкнутой обратной связью (без ОС), и в конечном счете оказывается, что они зависят только от свойств самой схемы ОС. Операционные усилители обычно используют в режиме глубокой обратной связи, а коэффициент усиления по напряжению в разомкнутой петле ОС (без ОС) достигает в этих схемах миллиона.

    Цепь ОС может быть частотно-зависимой, тогда коэффициент усиления будет определенным образом зависеть от частоты (примером может служить предусилитель звуковых частот в проигрывателе со стандартом RIAA); если же цепь ОС является амплитудно-зависимой, то усилитель обладает нелинейной характеристикой (распространенным примером такой схемы служит логарифмический усилитель, в котором в цепи ОС используется логарифмическая зависимость напряжения UБЭ от тока IК в диоде или транзисторе). Обратную связь можно использовать для формирования источника тока (выходной импеданс близок к бесконечности) или источника напряжения (выходной импеданс близок к нулю), с ее помощью можно получить очень большое или очень малое входное сопротивление. Вообще говоря, тот параметр, по которому вводится обратная связь, с ее помощью улучшается. Например, если для обратной связи использовать сигнал, пропорциональный выходному току, то получим хороший источник тока.

    Обратная связь может быть и положительной; ее используют, например в генераторах. Как ни странно, она не столь полезна, как отрицательная ОС. Скорее она связана с неприятностями, так как в схеме с отрицательной ОС на высокой частоте могут возникать достаточно большие сдвиги по фазе, приводящие к возникновению положительной ОС и нежелательным автоколебаниям. Для того чтобы эти явления возникли, не нужно прикладывать большие усилия, а вот для предотвращения нежелательных автоколебаний прибегают к методам коррекции.

    Операционные усилители

    В большинстве случаев, рассматривая схемы с обратной связью, мы будем иметь дело с операционными усилителями. Операционный усилитель (ОУ) — это дифференциальный усилитель постоянного тока с очень большим коэффициентом усиления и несимметричным входом. Прообразом ОУ может служить классический дифференциальный усилитель с двумя входами и несимметричным выходом; правда, следует отметить, что реальные операционные усилители обладают значительно более высокими коэффициентами усиления (обычно порядка 105 — 106) и меньшими выходными импедансами, а также допускают изменение выходного сигнала почти в полном диапазоне питающего напряжения (обычно используют расщепленные источники питания ±15 В).

    Символы «+» и «-» не означают, что на одном входе потенциал всегда должен быть более положительным, чем на другом; эти символы просто указывают относительную фазу выходного сигнала (это важно, если в схеме используется отрицательная ОС). Во избежание путаницы лучше называть входы «инвертирующий» и «неинвертирующий», а не вход «плюс» и вход «минус». На схемах часто не показывают подключение источников питания к ОУ и вывод, предназначенный для заземления. Операционные усилители обладают колоссальным коэффициентом усиления по напряжению и никогда (за редким исключением) не используются без обратной связи. Можно сказать, что операционные усилители созданы для работы с обратной связью. Коэффициент усиления схемы без обратной связи так велик, что при наличии замкнутой петли ОС характеристики усилителя зависят только от схемы обратной связи. Конечно, при более подробном изучении должно оказаться, что такое обобщенное заключение справедливо не всегда. Начнем мы с того, что просто рассмотрим, как работает операционный усилитель, а затем по мере необходимости будем изучать его более тщательно.

    Промышленность выпускает буквально сотни типов операционных усилителей, которые обладают различными преимуществами друг перед другом. Повсеместное распространение получила очень хорошая схема типа LF411 (или просто «411»), представленная на рынок фирмой National Semiconductor. Как и все операционные усилители, она представляет собой крошечный элемент, размещенный в миниатюрном корпусе с двухрядным расположением выводов мини-DIP. Эта схема недорога и удобна в обращении; промышленность выпускает улучшенный вариант этой схемы (LF411A), а также элемент, размещенный в миниатюрном корпусе и содержащий два независимых операционных усилителя (схема типа LF412, которую называют также «сдвоенный» операционный усилитель). Рекомендуем вам схему LF411 в качестве хорошей начальной ступени в разработке электронных схем.

    Схема типа 411 — это кристалл кремния, содержащий 24 транзистора (21 биполярный транзистор, 3 полевых транзистора, 11 резисторов и 1 конденсатор). На рис. 2 показано соединение с выводами корпуса.

    Точка на крышке корпуса и выемка на его торце служат для обозначения точки отсчета при нумерации выводов. В большинстве корпусов электронных схем нумерация выводов осуществляется в направлении против часовой стрелки со стороны крышки корпуса. Выводы «установка нуля» (или «баланс», «регулировка») служат для устранения небольшой асимметрии, возможной в операционном усилителе.

    Важные правила

    Сейчас мы познакомимся с важнейшими правилами, которые определяют поведение операционного усилителя, охваченного петлей обратной связи. Они справедливы почти для всех случаев жизни.

    Во-первых, операционный усилитель обладает таким большим коэффициентом усиления по напряжению, что изменение напряжения между входами на несколько долей милливольта вызывает изменение выходного напряжения в пределах его полного диапазона, поэтому не будем рассматривать это небольшое напряжение, а сформулируем правило I:

    I. Выход операционного усилителя стремится к тому, чтобы разность напряжений между его входами была равна нулю.

    Во-вторых, операционный усилитель потребляет очень небольшой входной ток (ОУ типа LF411 потребляет 0,2 нА; ОУ со входами на полевых транзисторах — порядка пикоампер); не вдаваясь в более глубокие подробности, сформулируем правило II:

    II. Входы операционного усилителя ток не потребляют.

    Здесь необходимо дать пояснение: правило I не означает, что операционный усилитель действительно изменяет напряжение на своих входах. Это невозможно. (Это было бы не совместимо с правилом II.) Операционный усилитель «оценивает» состояние входов и с помощью внешней схемы ОС передает напряжение с выхода на вход, так что в результате разность напряжений между входами становится равной нулю (если это возможно).

    Эти правила создают достаточную основу для рассмотрения схем на операционных усилителях.

    Похожие статьи