Как обезопасить компьютер от сбоев электропитания: подробное руководство. Устойчивость к сбоям питания

17.05.2019

Как устроена электрическая сеть

Электростанции России объединены в федеральную энергосистему, являющуюся источником электрической энергии для всех ее потребителей. Передача и распределение электроэнергии осуществляется с помощью воздушных линий электропередачи, пересекающих всю страну. Для уменьшения потерь при передаче электроэнергии в линиях электропередач применяется очень высокое напряжение - десятки и (чаще) сотни киловольт.

В силу своей экономичности при передаче энергии применяется изобретенная русским инженером М.О. Доливо-Добровольским трехфазная система переменного тока, при которой электроэнергия передается с помощью четырех проводов. Три из этих проводов называются линейными или фазными, а четвертый - нейтральным проводом или просто нейтралью.

Потребители электроэнергии рассчитаны на более низкие напряжения, чем напряжение в энергосистеме. Понижение напряжения производится в два этапа. Сначала на понижающей подстанции, являющейся частью энергосистемы, напряжение понижается до 6-10 кВ (киловольт). Дальнейшее понижение напряжение производится на трансформаторных подстанциях. Их знакомые всем стандартные "трансформаторные будки" во множестве разбросаны по предприятиям и жилым массивам. После трансформаторной подстанции напряжение понижается до 220-380 В.

Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Номинальное действующее значение линейного напряжения в России равно 380 В (вольт). Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Его номинальное значение в России равно 220 В .

Источником тока для энергосистемы являются трехфазные генераторы переменного тока, установленные на электростанциях. Каждая из обмоток генератора индуцирует линейное напряжение. Обмотки симметрично расположены по окружности генератора. Соответственно и линейные напряжения сдвинуты друг относительно друга по фазе. Этот фазовый сдвиг постоянен и равен 120 градусам.

Рис. 1. Трехфазная система переменного тока

После трансформаторной подстанции напряжение через распределительные щитки или (на предприятиях) распределительные пункты поступает к потребителям.

Некоторые потребители (электродвигатели, промышленное оборудование, большие ЭВМ и мощное коммуникационное оборудование) рассчитаны на непосредственное подключение к трехфазной электрической сети. К ним подводятся четыре провода (не считая защитного заземления).

Маломощные потребители (персональные компьютеры, бытовые приборы, офисная техника и т.д.) рассчитаны на однофазную электрическую сеть. К ним подводят два провода (не считая защитного заземления). В подавляющем числе случаев один из этих проводов - линейный, а другой - нейтральный. Напряжение между ними по стандарту равно 220 В.

Приведенные выше действующие значения напряжения не исчерпывают полностью параметры электрической сети. Переменный электрический ток характеризуется также частотой. Номинальное стандартное значение частоты в России равно 50 Гц (Герц).

Реальные значения напряжения и частоты электрической сети конечно могут отличаться от номинальных значений.

К сети постоянно подключаются новые потребители электроэнергии (ток или нагрузка в сети увеличивается) или отключаются какие-либо потребители (в результате ток или нагрузка сети уменьшается). При увеличении нагрузки напряжение в сети падает, а при уменьшении нагрузки напряжение в сети возрастает.

Для уменьшения влияния изменения нагрузки на напряжение, на понижающих подстанциях существует автоматическая система регулирования напряжения. Она предназначена для поддержания постоянного (в определенных пределах и с определенной точностью) напряжения при изменении нагрузки в сети. Регулирование осуществляется за счет перекоммутации обмоток мощных понижающих трансформаторов.

Частота переменного тока задается частотой вращения генераторов на электростанциях. При увеличении нагрузки частота стремится слегка уменьшиться, система регулирования электростанции увеличивает расход рабочего тела через турбину, и частота вращения генератора восстанавливается.

Разумеется ни одна система регулирования (напряжения или частоты) не может работать идеально, и в любом случае пользователю электрической сети нужно смириться с некоторыми отклонениями характеристик сети от номинальных значений.

В России требования к качеству электрической энергии стандартизованы. ГОСТ 23875-88 дает определения показателям качества электроэнергии, а ГОСТ 13109-87 устанавливает значения этих показателей. Этим стандартом установлены значения показателей в точках подключения потребителей электроэнергии. Для пользователя это означает, что он может требовать от энергоснабжающей организации, чтобы установленные нормы соблюдались не где-то в энергосистеме, а непосредственно в его розетке.

Наиболее важные показатели качества электроэнергии - это отклонение напряжения от номинального значения, коэффициент несинусоидальности напряжения, отклонение частоты от 50 Гц.

Согласно стандарту в течение не менее 95 % времени каждых суток фазное напряжение должно находиться в диапазоне 209-231 В (отклонение 5 %), частота в пределах 49.8-50.2 Гц , а коэффициент несинусоидальности не должен превышать 5 %.

Остальные 5 или менее процентов времени каждых суток напряжение может изменяться от 198 до 242 В (отклонение 10 %), частота от 49.6 до 50.4 Гц, а коэффициент несинусоидальности должен быть не более 10 %. Допускаются также более сильные изменения частоты: от 49.5 Гц до 51 Гц, но общая длительность таких изменений не должна превышать 90 часов за год.

Авариями электроснабжения называются ситуации, когда показатели качества электроэнергии кратковременно выходят за установленные пределы. Частота может отклоняться на 5 Гц от номинального значения. Напряжение может снижаться до нуля. В дальнейшем показатели качества должны восстанавливаться.

а рисунке 8 представлена блок-схема реального (или, по крайней мере, более похожего на реальный) ИБП с переключением. В ней появились новые элементы, по сравнению со схемой, придуманной нами во второй главе.

Входной фильтр импульсов и фильтр шумов улучшают форму кривой напряжения при работе от электрической сети. Схема анализа сети и управления определяет моменты переключения режимов работы ИБП , следит за разрядом батареи и выполняет другие полезные функции.

Группы потребителей

Согласно Правилам Устройства Электроустановок (ПУЭ) все потребители электроэнергии делятся на три категории.

К первой категории относятся отвественные потребители. Их снабжение электроэнергией производится от двух независмых источников питания. При исчезновении напряжения на одном из источников производится автоматическое переключение на питание нагрузки от второго источника. Независимыми источниками могут быть распределительные устройства двух электростанций или не связанных друг с другом подстанций. Переключение производится автоматическими выключателями резерва (АВР). При срабатывании этих механических (а иногда и тиристорных) переключателей, время отсутствия напряжения (период, в течение которого нагрузка остается без электропитания) составляет 10-3000 мс.

Из первой категории выделяется группа особо ответственных потребителей. Их электропитание производится от трех независимых источников. В качестве третьего источника допускается использовать дизельный генератор или аккумуляторные батареи.

Ко второй категории относятся менее отвественные потребители. Их электроснабжение должно производится от двух независимых источников питания. Но для этой категории потребителей допустим более длительный разрыв электропитания, достаточный для переключения вручную оперативным персоналом или выездной аварийной бригадой.

Все остальные потребители относятся к третьей категории. Их электроснабжение может осуществляться от одного источника питания, при условии, что перерывы электроснабжения не превышают одних суток. В это время включается и ремонт или замена вышедшего из строя оборудования.

К потребителям первой категории относятся федеральные и региональные органы власти, большие старые банки, больницы, начиная с областных, некоторые предприятия с непрерывным циклом производства, крупные узлы связи и т.д.

Заземление

При установке промышленного оборудования для предотвращения поражения электрическим током, применяется защитное заземление.

Защитным заземлением называется преднамеренное соединение с землей металлических частей оборудования (обычно рамы, корпуса или защитного кожуха), нормально не находящихся под напряжением. Даже если произойдет повреждение электрической изоляции (и даже, если при этом не сработают защитные предохранители), то напряжение на заземленных частях оборудования будет безопасным, так как сопротивление заземления по стандарту не должно превышать 4 Ома. При организации локальных компьютерных сетей рекомендуется еще более низкое сопротивление заземления - не более 0.5-1 Ома. Впрочем, в этом случае заземление главным образом служит для уменьшения помех, возникающих при работе различного оборудования.

Для устройства заземления в грунте размещают металлические предметы с развитой поверхностью и надежно соединяют его с шиной заземления.

Ранее в России для подключения бытовых и офисных приборов не применялось заземление. В быту и офисах использовались двухпроводные розетки, рассчитанные на напряжение до 250 В и ток до 6 А. Один из контактов в этой розетке соединен с линейным проводом трехфазной цепи (или, как говорят электрики с "фазой"), а другой - с нейтралью.

Исключение делалось только для мощной бытовой техники, типа кухонных плит и некоторых стиральных машин. Эти приборы подключались к специальной розетке с заземлением (которым часто служила "нейтраль" электрической цепи).

С появлением персональных компьютеров и большого количества импортной офисной и бытовой техники, начала широко применяться розетка с расположенными в периферийной части розетки заземляющими контактами. Эта розетка рассчитана на напряжение до 250 В и ток до 10 А (иногда до 16 А). Обычно ее называют "компьютерной", "европейской" или "евророзеткой".

В странах Европы применяются несколько типов розеток (в частности, рассматриваемая розетка применяется в Германии), и включить применяемый скажем в Швейцарии компьютер в английскую розетку так же невозможно, как и в японскую. Поэтому в дальнейшем мы будем называть эту розетку просто розеткой с заземлением. Обычно именно такая розетка применяется для подключения компьютеров и другого офисного оборудования мощностью до 2 кВА (иногда до 3 кВА).

В России чаще всего применяется четырехпроводная трехфазная электрическая сеть с глухозаземленной нейтралью. Нейтральный провод в такой сети заземлен в нескольких местах (на электростанциях, подстанциях, в линиях электропередач).

В электрической сети с глухозаземленной нейтралью вместо защитного заземления допускается использовать защитное "зануление" - соединение корпуса устройства с нейтральным проводом (а не с землей). В промышленности этот вид защиты от поражения электрическим током является основным.

В некоторых странах применяется пятипроводная трехфазная сеть. В ней провод заземления и нейтраль отделены друг от друга. Пятипроводная сеть дороже (больше расходы на кабель и его прокладку), но более устойчива к помехам, особенно при работе компьютерного оборудования.

Как устроено оборудование

Электрооборудование, изготавливаемое в России, естественно рассчитано на российскую электрическую сеть и обязано работать при напряжении от 198 до 242 В и частоте от 49.5 до 51 Гц. Как правило диапазон напряжений и частот, в котором может работать оборудование, еще несколько шире (характерны например 187-242 В ). Для большинства работающих от сети устройств допустимы изменения частоты на 2 Гц (или даже более) по сравнению с номинальным значением.

Большая часть применяемого в России офисного оборудования - это оборудование импортное. Оно не всегда рассчитано на наши стандарты.

Например часто встречается оборудование, предназначенное для работы при номинальном напряжении 230 В и рассчитанное на допускаемые отклонения напряжения 10 %. Такое оборудование имеет право не работать при вполне стандартных в нашей стране условиях.

Сузим диапазон рассматриваемого оборудования до компьютеров и компьютерной периферии. Такого рода приборы обычно оснащены импульсными блоками питания, которые могут работать в очень широком диапазоне напряжений. Эксперименты показывают, что стандартный ПК (системный блок с одним диском и дисководами и монитор) с не слишком плохим блоком питания может работать при очень низких напряжениях. Не хотелось бы давать конкретные числа, поскольку они конечно же разные для разных компьютеров, но можно уверенно сказать: 99 % персональных компьютеров, продаваемых в России, могут стабильно работать при напряжениях 170-180 В.

При уменьшении напряжения, для получения той же мощности, требуемой для работы компьютера, импульсный блок питания потребляет больший ток. Это значит, что его ресурс при меньших напряжениях может уменьшиться. Кроме того, если компьютер оснащен многими устройствами, питаемыми от его блока питания (дисками, модемами и др.), то минимальное напряжение, при котором может работать компьютер, возрастает.

В России имеется стандарт (ГОСТ Р 50628-93), определяющий требования к персональным компьютерам по устойчивости к электромагнитным помехам. Этому стандарту должны соответствовать все компьютеры, производимые или импортируемые в России.

Компьютеры и периферийные устройства подразделяются на две группы в зависимости от устойчивости к помехам. Группу определяет производитель компьютера. После соответствующих испытаний и сертификации он имеет право объявить о соответствии его компьютера группе I или II ГОСТ Р 50628-93 по устойчивости к электромагнитным помехам. В таблице приведены параметры электрической сети, которые должны выдерживать компьютеры и периферийное оборудование в соотвествии с этим стандартом.

Таблица 1. Требования к качеству электрической сети.

Вид внешней помехи Группа
I II
Электростатические разряды:
- контактные 2-4 кВ 4-6 кВ
- воздушные 2-4 кВ 4-8 кВ
Наносекундные импульсные помехи:
- в цепях питания 0.5 кВ 1 кВ
- в цепях ввода-вывода 0.5 кВ 0.5 кВ
Динамические изменения напряжения питания:
- провалы напряжения 154 В на 200 мс 154 В на 500 мс
- прерывания напряжения 0 В на 20 мс 0 В на 100 мс
- выбросы напряжения 264 В на 200 мс 264 В на 500 мс
Микросекундные импульсы большой энергии 500 В 1000 В
Радиочастотные электромагнитные поля 1 В/м 3 В/м

Сбои электропитания

Описанная в начале главы благостная картина электрической сети встречается, конечно, только в книжках. На самом деле в электрической сети бывают разного рода сбои. В России получили известность данные исследований, проведенных в США фирмами Bell Labs и IBM.

Согласно последнему, каждый персональный компьютер подвергается воздействию 120 нештатных ситуаций с электропитанием в месяц.

По данным Bell Labs в США наблюдаются следующие наиболее часто встречающиеся сбои питания.

    1. Провалы напряжения - кратковременные понижения напряжения, связанные с резким увеличением нагрузки в сети в связи с включением мощных потребителей, таких, как промышленное оборудование, лифты и т.д. Является наиболее частой неполадкой в электрической сети, встречается в 87 % случаев.

    2. Высоковольтные импульсы - кратковременное (на наносекунды или единицы микросекунд) очень сильное увеличение напряжения, связанное с близким грозовым разрядом или включением напряжения на подстанции после аварии. Составляет 7.4 % всех сбоев питания.

    3. Полное отключение напряжения согласно этому исследованию является следствием аварий, грозовых разрядов, сильных перегрузок электростанции. Встречается в 4.7 % случаев.

    4. Слишком большое напряжение - кратковременное увеличение напряжения в сети, связанное с отключением мощных потребителей. Встречается в 0.7 % случаев.

Эту картину видимо можно считать типичной для большинства развитых стран. (Заметим в скобках, что и источники бесперебойного питания, производимые в этих странах, в большинстве случаев ориентированы именно на такую электрическую сеть).

К сожалению и эта картина не всегда соответствует нашей действительности. Фирмой "А и Т Системы" по заказам разных клиентов проводились обследования электрической сети на предприятиях в разных местах России и за рубежом. Кроме того, к нам также поступала косвенная информация о состоянии электрической сети в разных местах бывшего СССР. Таких обследований было не так много, чтобы можно было делать профессиональные статистические выводы, но все же кое-что просто бросается в глаза.

Рис. 2. Виды сбоев электропитания.

Наиболее часто встречающейся неполадкой в электрической сети, так же, как и в США, можно считать пониженное напряжение в сети. Однако этот вид сбоя питания вовсе не так доминирует над остальными видами сбоев.

Начнем с того, что повышенное напряжение в сети встречается почти так же часто, как и пониженное напряжение. Причем для разных мест (городов, районов, предприятий) обычно характерен определенный уровень напряжения в сети. Где-то оно может быть в основном пониженное, в других местах в основном нормальное или в основном повышенное. Этот уровень сохраняется примерно одинаковым все время. На его фоне происходят циклические изменения напряжения, связанные с изменением нагрузки в электрической сети.

Самый короткий цикл изменения напряжения - дневной. На рис. 3 приведены реальные графики изменения напряжения в двух точках России (отстоящих друг от друга на полторы тысячи километров) в течение суток.

Рис. 3. Суточный цикл изменения напряжения в сети.

Нижняя кривая на рис. 3 получена в сети с пониженным напряжением. Стабильное ночью напряжение около 215 В снижается с началом дня и вновь возрастает вечером, когда большинство потребителей отключаются.

Средняя кривая на рис. 3 получена в электрической сети с повышенным напряжением. Здесь наблюдается более характерная зависимость напряжения от времени суток. Стабильное ночью напряжение понижается утром, достигая минимума в середине рабочего дня, и плавно нарастает к его концу.

Оба описанные графика получены в рабочие дни недели. Верхний график на рис. 3 получен в праздничный день в том же месте, что и средний график. В этом случае напряжение остается стабильно повышенным в течение суток.

Если включить в рассмотрение и напряжение в выходные дни, то мы получим следующий по длительности цикл изменения напряжения в электрической сети - недельный. Видимо существуют циклы изменения напряжения большей длительности (например, годовой цикл) но они нами никогда не отслеживались.

В России, и особенно в других странах СНГ, наблюдается вид сбоя питания совершенно неизвестный на Западе. Это нестабильная частота. Самым характерным примером являлась Грузия в 1992-1994 годах. Энергосистема Грузии в целом видимо была очень сильно перегружена. Поэтому частота в сети могла опускаться до 42 Гц.

Само по себе изменение частоты не представляет существенной опасности для оборудования, оснащенного импульсным блоком питания, но очень низкая частота обычно сопровождается сильными гармоническими искажениями, которые могут отрицательно повлиять на работу не только компьютера, но и большинства источников бесперебойного питания (ИБП) . Кроме того, многие ИБП среднего класса воспринимают сильное понижение частоты как аварийный случай и начинают расходовать заряд батареи. Батарея разряжается через несколько минут и вся работа на этом заканчивается.

В России пониженная частота встречается довольно редко. Тем не менее, даже в Москве сотрудниками фирмы Merlin Gerin была, по их словам, однажды зарегистрирована частота ниже 45 Гц. В наших измерениях частота ниже 49.5 Гц не встречалась.

Еще одной отличительной особенностью России являются причины (и, соответственно, количество) полных отключений напряжения. Аварии и стихийные бедствия, являющиеся причинами полного отключения напряжения в развитых странах, случаются у нас примерно с такой же частотой, что и там. Но в России эти случайности не являются единственными, и даже главными, причинами полного исчезновения напряжения. Свое уверенное слово говорит человеческий фактор.

Дело в недостатке знаний. Электрики, обслуживающие офисное здание с множеством компьютеров, обычно не имеют никакого представления о том, какие последствия имеет отключение напряжения для компьютеров и данных. Поэтому они ведут себя совершенно так же, как и 20 лет назад.

При возникновении какой-либо проблемы с электропитанием на этаже (например, отключился автоматический выключатель - предохранитель), электрик начинает искать автоматический выключатель, отвечающий за зону, в которой возникла проблема. Ищет он разумеется не по схеме (это долго, да и схемы у него возможно, или скорее всего, нет). Он просто последовательно отключает и тут же включает все автоматы на щитке и смотрит на результат. В момент, когда в нужном помещении появляется свет, он считает свою миссию законченной.

Если нужный автомат окажется последним, то в течение минуты каждая электролампа и каждый компьютер на этаже подвергнутся кратковременному (менее секунды) отключению напряжения. Для освещения ничего страшного не происходит, люди обычно даже не успевают испугаться, оказавшись на мгновение в темноте. Но секундного отключения вполне достаточно для потери данных на компьютерах.

Особенно часто такие случаи бывают весной и осенью, когда заканчивается или начинается отопительный сезон. Если отопление уже отключили или еще не включили, и вдруг похолодало, то люди реагируют стандартно: они включают электрические подогреватели. Если электрическая сеть сильно нагружена, то подключение дополнительных (и мощных) потребителей может привести к срабатыванию автоматического предохранителя. А теперь вернитесь на два абзаца назад.

Такой цикл включений и отключений может в некоторых организациях повторяться по несколько раз в день.

В остальном электрическая сеть в России ведет себя примерно так же, как и в США.

Отметим еще один вид искажений электропитания, не рассмотренный Bell Labs. Речь идет об искажениях формы синусоиды, связанных с работой компьютеров и других нелинейных нагрузок.

При работе импульсных блоков питания в сильно перегруженной сети могут возникать искажения формы синусоидального напряжения. Это может выражаться в срезании вершины синусоиды и появлении гармоник - колебаний кратных частот. Эти искажения могут приводить к неполадкам в работе другого чувствительного оборудования, например измерительных приборов или видеоаппаратуры.

Искажения формы кривой напряжения усугубляются специфическими свойствами трехфазной электрической сети, изначально предназначенной для работы только с синусоидальными напряжениями и токами. Работа компьютеров в трехфазной электрической сети рассмотрена в разделе "Особенности трехфазных источников бесперебойного питания" главы 8.

Для любителей эмоционального осмысления неприятностей с электричеством, а также тем, кто склонен часто жаловаться на качество электрической энергии, можно рекомендовать один из лучших технологических романов Артура Хейли: "Перегрузка". Читая его, вы в течении нескольких часов сможете посмотреть на ситуацию со стороны производителя электроэнергии.

Таблица 2. Виды сбоев электропитания

Вид сбоя электропитания Причина возникновения Возможные следствия
Пониженное напряжение, провалы напряжения Перегруженная сеть, неустойчивая работа системы регулировнаия напряжения сети, подключение потребителей, мощность которых сравнима с мощностью участка электрической сети Перегрузки блоков питания электронных приборов и уменьшение их ресурса. Отключение оборудования при недостаточном для его работы напряжении. Выход из строя электродвигателей. Потери данных в компьютерах.
Повышенное напряжение Недогруженная сеть, недостаточно эффективная работы системы регулирования, отключение мощных потребителей Выход из строя оборудования. Аварийное отключение оборудования с потерей данных в компьютерах.
Высоковольтные импульсы Атмосферное электричество, включение и отключение мощных потребителей, запуск в эксплуатацию части энергосистемы после аварии. Выход из строя чувствительного оборудования.
Электрический шум Включение и отключение мощных потребителей. Взаимное влияние работающих неподалеку электроприборов. Сбои при выполнении программ и передаче данных. Нестабильное изображение на экранах мониторов и в видеосистемах.
Полное отключение напряжения Срабатывание предохранителей при перегрузках, непрофессиональные действия пересонала, аварии на линиях электропередач. Потери данных. На очень старых компьютерах - выход из строя жестких дисков.
Гармонические искажения напряжения Значитальную долю нагрузки сети составляют нелинейные потребители, оснащенные импульсными блоками питания (компьютеры, коммуникационное оборудование). Неправильно спроектирована электрическая сеть, работающая с нелинейными нагрузками, перегружен нейтральный провод. Помехи при работе чувствительного оборудования (радио и телевизионные системы, измерительные комплексы и т.д.)
Нестабильная частота Сильная перегрузка энергосистемы в целом. Потеря управления системой. Перегрев трансформаторов. Для компьютеров само по себе изменение частоты не страшно. Нестабильная частота является лучшим индикатором неправильной работы энергосистемы или ее существенной части.

Перегрузки

Попробуем слегка систематизировать уже сказанное относительно изменения нагрузки в сети.

Перегрузки (т.е. ситуации, когда ток в сети выше номинального или предельно допустимого для участка электрической сети) могут происходить на разных уровнях системы электроснабжения. Соответственно разные и последствия.

Локальная перегрузка - это перегрузка сети на участке от потребителей до ближайшего автоматического предохранителя. Перегрузки на участке сети могут вызывать срабатывание этого предохранителя и, следовательно, локальное отключение напряжения.

Местная перегрузка возникает, если перегружена вся линия от потребителей до понижающего трансформатора. Происходит снижение напряжения в сети. При сильных перегрузках и выходе из строя локальных систем защиты, возможно срабатывание системы защиты подстанции, также сопровождаемое временным полным отключением напряжения. Это отключение распространяется на всех потребителей, питаемых от этого трансформатора.

Общая перегрузка возникает, если перегружена вся энергосистема или существенная ее часть. В этом случае, помимо снижения напряжения может происходить и уменьшение частоты синусоидального напряжения. При глубоких общих перегрузках возможно срабатывание защиты на электростанции и отключение напряжения в системе в целом. В России перегрузки такого рода не встречаются или встречаются крайне редко. Основным препятствием для возникновения такой перегрузки является грамотное управление участком энергосистемы (временное, в том числе плановое, отключение части потребителей и другие способы уменьшения нагрузки).

Классическим случаем общей перегрузки является широко известный случай, произошедший в Нью-Йорке полтора десятилетия назад. В разгар рабочего дня из-за аварии на одной из подстанций города, все питаемые ею потребители были отключены. Автоматическая система управления энергосистемой немедленно восстановила питание потребителей, подключив их к другим подстанциям. Одна из подстанций была нагружена почти полностью, не выдержала дополнительной нагрузки и отключилась. Ее потребители опять были автоматически распределены между другими подстанциями. Началась цепная реакция отключения подстанций, охватившая весь Манхэттэн - деловой центр Нью-Йорка. Результатом мелкой аварии в сочетании с недоработанной системой управления и недостаточной выучкой диспетчеров было погружение во тьму офисов сотен крупнейших фирм мира.

Совершенно особенным случаем перегрузки является временная перегрузка, связанная со стартовыми токами, возникающими при запуске почти любого оборудования. Стартовый ток может превышать номинальный ток потребления электрического прибора в единицы, десятки и (к счастью очень редко) в сотни раз. В зависимости от величины стартового тока, временная перегрузка может распространиться на больший или меньший участок сети. Чаще всего включение оборудования вызывает местные перегрузки, но известны случаи, когда включение одного очень мощного агрегата вызывает перегрузку энергосистемы целой страны.

Например, в Монголии есть крупное горнообогатительное предприятие "Эрдэнэт", бывшая "стройка социализма", а сейчас совместное монгольско-российское предприятие. Это предприятие является крупнейшим в стране и потребляет примерно треть всей монгольсой электроэнергии (соответственно примерно 120 и 300 МВт ). Основой технологического процесса являются шаровые мельницы, перемалывающие руду в мелкую пыль. Барабан такой мельницы имеет диаметр 6 метров и длину около 18 метров. Электродвигатель, который крутит барабан - тоже не маленький - его мощность 5 МВт .

Мельницы работают круглосуточно, месяцы напролет. Каждая остановка для профилактического ремонта (или, наоборот, включение) - крупное событие, планирующееся за много месяцев. Дело в том, что двигатель мельницы запускается под нагрузкой (нужно преодолеть огромную инерцию барабана), и стартовые токи могут превышать номинальные в 10 раз. А 50 МВт - это почти 20 % от мощности энергосистемы Монголии. Управляемый запуск (например с помощью тиристорного привода) такого двигателя пока невозможен - слишком большая мощность.

Однажды мне довелось с осциллографом в руках следить за таким запуском. Он прошел очень удачно - напряжение (видимо по всей стране) просело всего на 12 вольт. Сказалось временное подключение энергосистемы Монголии к российской - часть пиковой нагрузки взяло на себя Иркутскэнерго.

В трехфазной сети, нагруженной в основном компьютерами, может возникать еще один вид перегрузки: перегрузка нейтрального провода из-за искаженной формы кривой тока нагрузки. Его особенная опасность обусловлена в основном тем, что не может быть обнаружена обычными щитовыми приборами и почти всегда остается незамеченной, а также отсутствием предохранителей на нейтральном проводе.

Нейтральный провод

Нейтральный провод в трехфазной системе переменного тока выполняет очень важную функцию. Он служит для выравнивания фазных напряжений во всех трех фазах при разных нагрузках фаз (или, как говорят электрики, - перекосе фаз).

В случае обрыва нейтрального провода при неодинаковых нагрузках в фазах фазные напряжения будут различными. В фазах с большой нагрузкой (меньшим сопротивлением) напряжение будет ниже нормального, даже если эта фаза очень далека от перегрузки. В фазах с меньшей нагрузкой (большим сопротивлением) напряжения станет выше нормального.

Особенно опасным является короткое замыкание после обрыва нейтрального провода. При этом напряжение на оставшихся незакороченными фазами возрастает в корень из трех раз (с нормальных 220 В до 380 В ). Для исключения обрыва на нейтральном проводе не устанавливают предохранителей и выключателей. Этот вид сбоя электропитания является одним из самых опасных, но при правильном проектировании и эксплуатации электрической сети или системы бесперебойного питания встречается очень редко.

В России применяется четырехпроводная трехфазная электрическая сеть. Она еще называется электрической сетью с глухо-заземленной нейтралью. За этими словами скрывается вполне простой факт: нейтральный провод на подстанции заземлен и практически не только выполняет свою функцию "симметрирования" трехфазной сети, но и используется как защитное заземление.

В Европе обычно применяется пяти-проводная электрическая сеть. В такой электрической сети имеется отдельный (пятый) провод заземления и нейтральный провод выполняет только одну функцию. Кстати сказать, все западные трехфазные ИБП предназначены для использования именно с такой электрической сетью.

Нейтральный провод рассчитан на эффективную компенсацию токов в разных фазах в случае синусоидальных токов в трехфазной электрической сети. Если в электрическую сеть включено много компьютеров, то форма кривой тока искажается и эффективность работы нейтрального провода резко снижается. При этом возможны опасные перегрузки нейтрального провода и искажения формы кривой напряжения. Подробнее об этом рассказано в главе 8.

С приближением холодов данная тема систематически возникает на страницах компьютерной периодики. Мы не собираемся нарушать эти традиции и в дополнение к уже сказанному ( , ) предлагаем материал, который поможет избежать множества неприятностей, связанных с вопросами обеспечения безопасного режима питания для вашей компьютерной техники. Какие перебои случаются в сетях электропитания?

Все неполадки в энергосетях можно классифицировать примерно следующим образом: полное отключение питания, пониженное или повышенное напряжение, высоковольтные всплески, кратковременные провалы напряжения, отклонение частоты от номинального значения (50 Hz), искажение синусоидальной формы напряжения.

Почему возникают неполадки в электросетях?

Сбои в электропитании вызываются самыми различными причинами: например грозами, происходящими вблизи линий электропередачи, неустойчивой работой генераторов, авариями на подстанциях, разрывами или выгоранием проводки, плохими контактами. Кроме того, отклонения от нормы напряжения в сети возникают вследствие включения/выключения мощного электрооборудования (лифтов, сварочных аппаратов, моторов, холодильников и т. д.) или, наконец, обусловливаются электромагнитными наводками и радиопомехами от работы бытовых электроприборов микроволнового излучения или радиопередатчиков.

Чем грозят сбои в электропитании домашнему компьютеру?

Некачественное электропитание крайне отрицательно воздействует на наших электронных любимцев. Во-первых, оно может привести к потере данных в памяти, а регулярные сбои неминуемо чреваты появлением bad-секторов на дисках (чаще всего в системной области). Во-вторых, сильные всплески напряжения способны вывести из строя блоки питания, а также некоторые микросхемы. В-третьих, систематические проблемы с электроэнергией вызывают преждевременное старение аппаратуры. Кстати сказать, нередко различные блокировки клавиатуры и "зависания" компьютера, которые, на наш взгляд, объясняются ошибками в программе, на самом деле могут быть обусловлены некачественным энергоснабжением.

Так ли уж важно заземлять компьютер? У моих знакомых, например, ПК прекрасно работает и без заземления.

Заземлять компьютер важно не только для его устойчивой работы, но и для вас самих, точнее, для сохранения вашего здоровья. Известно, что на корпусе компьютера существует потенциал порядка 100—110 В — напряжение немаленькое. Попасть под него можно, например, случайно прикоснувшись к неокрашенным металлическим частям корпуса компьютера и одновременно к батарее отопления. Если компьютер заземлен, удара током не последует — разряд уйдет в землю через соответствующий провод с низким сопротивлением, а не через вас.

Кроме того, производители вычислительной техники, приводя свои изделия в соответствие с жесткими современными нормами безопасности, постоянно уменьшают уровень их электромагнитных излучений. Однако многие из этих усилий сводятся к нулю из-за банального отсутствия заземления.

Проблема заземления станет особенно актуальной, если вы построите домашнюю сеть. Отдельные компьютеры в ней, естественно, будут подключаться к различным источникам питания, сетевой же кабель начнет играть роль своеобразного моста для выравнивания потенциалов. Возникающие при этом токи способны вывести сетевое оборудование из строя.

Итак, заземление необходимо, чтобы: 1) исключить поражение человека током; 2) уменьшить неблагоприятное воздействие электромагнитных излучений; 3) понизить влияние внешних наводок на компьютерную систему; 4) обеспечить нормальную работу аппаратуры в сети.

Если на металлическом корпусе компьютера присутствует потенциал, грозящий при неосторожном обращении с ПК перейти через нас в землю, то почему их не выпускают, например, в пластмассовых корпусах?

Все дело в том, что для "компьютерной начинки" просто необходим металлический кожух, чтобы, с одной стороны, экранировать электромагнитные излучения самого ПК, а с другой — уменьшить наводки и радиопомехи извне. Для обеспечения элементарной безопасности металлические корпуса покрываются довольно толстым слоем краски, не проводящей электричество, а некоторые "брэнды" действительно изготовляют пластиковые корпуса, но, открыв такой ПК, вы все равно внутри обнаружите металлический экран, скрепленный с пластмассой.

В моей квартире отсутствует заземляющий контур. Как мне обеспечить заземление ПК?

Ксожалению, во многих домах, сданных в эксплуатацию до 1996—1998 гг., в розетках нет контакта, предназначенного для заземления аппаратуры. Более того, бывают случаи, когда такие контакты в розетках имеются, но только к ним не подведены соответствующие провода. Нередко отечественные Кулибины сами пытаются исправить такое положение вещей, что иногда приводит к плачевным последствиям. Поэтому лучше проводку заземляющего контура доверить опытным специалистам. Да! Возможно, при этом придется слегка нарушить дизайн только что отремонтированной квартиры. Да! Необходимо будет вложить дополнительные средства. Но нужно отважиться на эти действия, чтобы раз и навсегда решить для себя данную проблему. Поверьте, игра стоит свеч! Здоровье все равно дороже, да и не забывайте народную мудрость — скупой платит дважды.

Главное, не пытайтесь обойтись "половинчатыми" или временными мерами, и давайте сразу договоримся, чего делать ни в коем случае нельзя, даже если вам это порекомендуют тысячи "продвинутых" знакомых. Никогда не заземляйте аппаратуру на: 1) батарею парового (водяного) отопления (вдруг соседу вздумается ее переварить?); 2) водопровод (во-первых, в нем и так встречаются блуждающие токи, и вовсе не обязательно их пускать на компьютер, а во-вторых, систематический ток с корпуса компьютера в землю вызовет активную коррозию труб); 3) газопровод (надеюсь, вы не из рода камикадзе); 4) молниеотвод (кажется, мы собрались защищать компьютер, а не пускать его "в расход"); 5) "нулевой" контакт обычной розетки (если не хотите, чтобы на корпус компьютера попало напряжение 220 В).

Могу ли я для заземления компьютера воспользоваться "зануляющим" контуром электроплиты?

Действительно, для заземления бытовой электроаппаратуры иногда используют "зануляющий" контакт электроплиты, но лучше будет взять "ноль" с распределительного щитка на лестничной площадке и развести его к соответствующим контактам розеток европейского образца.

На дачах и в частных домах заземление легко организовать самостоятельно. Для этого можно забить в грунт металлическую трубу диаметром 100 мм и длиной 2,5—3 м и приварить к ней провод сечением 5 мм. Для разводки по квартире достаточно использовать медную проволоку сечением 1,5—2 мм. И все же, еще раз подчеркну, для решения подобных задач лучше пригласить специалиста.

Я снимаю квартиру. О том, чтобы в ней провести заземление, речь не идет. Имею компьютер — не совсем современный, но для работы хватает. По роду занятий приходится много печатать, причем как на стареньком матричном, так и на струйном принтере. У меня почему-то уже второй раз выгорает LPT-порт. На работе мне сказали, что это из-за отсутствия заземления. Что мне делать?

Похоже, вы нередко подключаете печатающие устройства к компьютеру, предварительно не обесточив все изделия, что в вашем случае делать не рекомендуется. При этом на корпусах ПК и принтера существуют различные потенциалы. В результате при соединении устройств с помощью интерфейсного кабеля появляется уравнивающий электрический ток силой в несколько десятков миллиампер, чего вполне достаточно, чтобы вывести из строя параллельный порт. Если бы ПК и принтер были надежно заземлены на общий контур, проблемы разности потенциалов не возникало бы. В данном же случае, чтобы иметь возможность "горячего" подключения принтера, необходимо предварительно соединить корпуса ПК и принтера отдельным стальным многожильным или медным проводом для выравнивания потенциалов.

В нашей квартире заземление подведено, розетка в моей комнате расположена за шкафом, поэтому для подключения компьютера и других устройств я использую переноску-разветвлитель. Вилку, правда, пришлось обрезать (не помещается между шкафом и стеной) и запитать удлинитель непосредственно с проводов разводки. Однако недавно, делая ремонт, я обнаружил, что эти контакты сильно окислились и значительно выгорели, даже изолента расплавилась. В чем причина? Какие нормы электрической безопасности не соблюдены?

Как известно, для прокладки электросетей в наших квартирах применяются алюминиевые провода. Удлинители же выполняются из меди. При скручивании меди с алюминием образуется гальваническая пара, металл в месте контакта активно окисляется и разрушается, сопротивление растет, а значит, увеличивается и выделение тепла, что в конце концов может привести к выгоранию проводки и даже к пожару. Выход следующий: при соединении проводов необходимо использовать специальные переходники. Можно также применять обыкновенные стальные винты с гайками, при этом концы проводов разделяют с помощью шайбы.

От каких неприятностей может уберечь компьютер сетевой фильтр?

Основное назначение сетевых фильтров состоит в том, чтобы, с одной стороны, защищать аппаратуру от кратковременных (до 5 мс) бросков напряжения величиной до 6000 В (например, вследствие удара молнии), а с другой — беречь сеть от проникновения в нее помех от самого компьютера. Кроме того, многие фильтры включают в себя средства подавления электромагнитных наводок и радиопомех.

Большинство сетевых фильтров отводят броски питания через заземление, поэтому в случае его отсутствия ваш фильтр превращается просто в дорогостоящий удлинитель. Правда, часто для компенсации пиковых бросков питания используются высокоемкие конденсаторы, но и в этом случае заземление необходимо для защиты самого фильтра.

Сетевой фильтр не спасет вас при долговременном понижении напряжения в сети, при резких его перепадах или при внезапном отключении питания. От простейшего ИБП (источник бесперебойного питания) сетевой фильтр отличается отсутствием резервного источника энергии.

Следует также помнить, что в сетевые фильтры не следует подключать мощные нагрузки — утюги, электрочайники, стиральные машины и т. д.

Зачем покупать дополнительный сетевой фильтр, если большинство блоков питания ПК оснащены встроенным?

Действительно, практически любой современный блок питания компьютера или периферийного устройства имеет простейший встроенный сетевой фильтр, который предназначен для подавления высокочастотных помех питающей сети. Однако импульсным броскам амплитуды напряжения до 4—6 тысяч вольт, которые изредка случаются в сети, они противостоять не в силах.

На какие характеристики необходимо обращать внимание при выборе фильтра?

Впервую очередь — на суммарную мощность нагрузки. Она должна быть по крайней мере около 2 кВт. При превышении этого значения в хорошем фильтре обязательно сработает автоматический предохранитель, который разомкнет цепь. Далее поинтересуйтесь (если есть в этом необходимость), способен ли фильтр защищать модем, обеспечивая барьер на пути возможного проникновения в систему опасных скачков напряжения через телефонную линию. Ну и наконец, гарантия и сервисное обслуживание! Три года — это минимум. Для именитого и серьезного производителя такой срок — не проблема.

Можно ли включать компьютер через стабилизатор для телевизора?

Как известно, основная задача стабилизаторов — вы-равнивать напряжение до стандартных 220 В при его отклонении на 30—50 В. Если другие неприятности в сети встречаются редко, то стабилизатор способен частично решить ваши проблемы при условии, что он обеспечивает выходную мощность не менее 200 Вт. Для компьютера хватит, а вот монитор в этом случае все равно придется запитывать напрямую через розетку. Предпочтительнее использовать так называемые активные стабилизаторы напряжения. Феррорезонансные устройства для этих целей подходят меньше, поскольку в случае резких скачков напряжения они способны вывести из строя блоки питания компьютерных устройств.

Для чего служит UPS?

ИБП (UPS — Uninterruptible Power System) в первую очередь необходим для защиты ПК от длительных спадов напряжения, а также для обеспечения работы компьютера на сравнительно короткий промежуток времени после исчезновения напряжения в сети, чтобы пользователь смог корректно завершить работу приложений или переключиться на резервный источник питания (например, мобильный дизель-генератор). Как правило, большинство источников бесперебойного питания обладают свойствами сетевых фильтров. Так, они могут справляться со скачками напряжения до 1000 В, однако более мощных всплесков им не выдержать. Поэтому имеет смысл совместно использовать сетевой фильтр и UPS, подсоединив последний к розетке первого (но ни в коем случае не наоборот!). Кроме того, к оставшимся свободным розеткам фильтра можно подключить принтер, сканер и прочие периферийные устройства, питание которых в данный момент нет необходимости организовывать через ИБП. Сетевой фильтр в таком случае обеспечит им элементарную защиту.

На что следует обращать внимание при выборе UPS?

Вот основные характеристики ИБП, которые следует брать во внимание при выборе источника.

1. Мощность. Выражается в вольт-амперах (B·A). Суммарная мощность подключаемых устройств не должна превышать мощности, обеспечиваемой UPS.

2. Диапазон входного напряжения. Задается минимальным и максимальным допустимыми значениями напряжений в сети, при которых ИБП еще способен поддерживать номинальное напряжение на выходе, не переключаясь на питание от аккумуляторов. Чем шире этот диапазон, тем дольше прослужат батареи.

3. Время автономной работы. Зависит как от емкости батарей, так и от величины нагрузки.

4. Срок службы аккумуляторов. Этот параметр существенно зависит от условий эксплуатации: частоты переключения в автономный режим, условий зарядки, окружающей среды. Обычно срок службы аккумуляторов составляет 3—5 лет.

5. Время переключения ИБП на батарею и обратно. Естественно, чем оно меньше, тем лучше.

6. Наличие в UPS средств фильтрации питания, подавляющих импульсные броски напряжения.

7. Способ уведомления пользователя о начале работы компьютера от батарей, предусмотренный в UPS.

8. Возможность самостоятельной замены батарей.

9. Обеспечение защиты телефонных линий (если вы пользуетесь модемом).

10. Наличие функции "холодного" старта, т. е. возможности включить ИБП при отсутствии напряжения в сети. Она будет полезной во время длительного пропадания питания, если вдруг, к примеру, понадобится прочитать сообщения e-mail.

При покупке многофункциональных и дорогих источников питания особое внимание обращайте на известность торговой марки и сервисное обслуживание, которое обеспечивает продавец.

ИБП какого класса лучше использовать в зависимости от существующих условий?

Вопрос сложный, интересный и, пожалуй, не имеющий однозначного ответа. Тем не менее давайте попробуем с ним разобраться.

Источники типа off-line являются самыми простыми и наиболее дешевыми, а следовательно, на них чаще других останавливают свой выбор домашние пользователи. Однако данные ИБП плохо защищают ПК от длительных "проседаний" сети и кратковременных всплесков напряжения, изменений его частоты и формы. Практически все недорогие модели ИБП типа off-line пропускают входное напряжение "транзитом", никак его не корректируя. Ряд изделий не имеют средств управления компьютером, и при возникновении аварийных ситуаций единственная их реакция — достаточно громкий звуковой сигнал. Таким образом, ИБП резервного типа не годятся для работы в местах с низким качеством электропитания, их целесообразнее использовать в сетях со стабильным напряжением, но сравнительно частыми отключениями питания. Иногда источники типа off-line для снижения стоимости устройств заключают в дешевые пластиковые корпуса, а это означает полное отсутствие экранирования полей, наводимых трансформатором, ввиду чего такой ИБП нельзя располагать вблизи монитора.

Линейно-интерактивные ИБП (line-interactive UPS) обеспечивают довольно неплохую стабилизацию питания. Обычно они управляются микропроцессором, который осуществляет мониторинг линии, реагируя на различные отклонения электрических параметров от номинальных значений. Данные устройства могут быть рекомендованы, когда отключения питания редки, зато часты длительные спады напряжения. Одним из главных преимуществ данных ИБП перед устройствами off-line является широкий диапазон допустимых входных напряжений. К недостаткам такого рода устройств следует отнести слабую защиту от флуктуаций частоты и формы входного напряжения. Line-intеractive UPS — это, как правило, наилучшее соотношение цены и функциональности.

ИБП типа on-line обеспечивают на сегодняшний день наиболее высокий уровень защиты. Качество питания, предоставляемое ими, значительно лучше, чем у иных устройств. Полностью регенерируя входное напряжение, они надежно предохраняют нагрузку от таких нарушений, как изменение частоты и формы входного напряжения. Практически все on-line ИБП оснащены специальной обводной шиной, которая позволяет при кратковременных перегрузках и наличии напряжения в сети не обесточивать подключенное оборудование. Данные ИБП — естественный выбор там, где необходимо обеспечить надежную работу критически важных приложений. Очень часто такие устройства позволяют выставлять приоритет для отключаемой нагрузки, чтобы более разумно распорядиться зарядом батарей в случае отключения внешнего питания.

У нас дома два компьютера. Можно ли приобрести один ИБП для всех ПК или лучше для каждой машины установить свой собственный?

Если оба компьютера расположены недалеко друг от друга, например в пределах одной комнаты, то, конечно же, можно приобрести для них один общий ИБП мощностью примерно 1,0—1,2 кВ·А. Но вот стоит ли это делать? Вопрос спорный. Удобства от такого решения сомнительные. Допустим, вы закончили работу и случайно, по привычке, выключили UPS (если, конечно, модель допускает такие действия) в то время, когда ваш сын загружал из Internet жизненно важную для него информацию. Конфликт неизбежен!

О экономии средств также говорить не приходится: чаще всего два равноценных по классу ИБП от одного и того же производителя (в нашем случае на 500 В·А) в сумме стоят примерно столько же, сколько и один UPS "удвоенной мощности" (на 1000 В·А). Так что я все же посоветовал бы приобрести отдельный источник для каждого компьютера.

Я слышал, что существуют ИБП, которые можно встраивать в корпус компьютера. В каком случае имеет смысл их использовать?

Для многих пользователей поддержка долговременной работы компьютера без электричества не нужна. Основное, что требуется от UPS, — это обеспечение качественного энергоснабжения компьютера, а также возможность автономного питания ПК от аккумуляторов (в случае исчезновения напряжения в сети) в течение некоторого времени, достаточного для корректного завершения работы.

Сегодня существует довольно много моделей внутренних UPS. По ряду причин они не получили у нас широкого распространения. Такие изделия иногда вставляют в свободный пятидюймовый слот корпуса ПК, например ИБП SI300 производства компании Beam Tech Electronics . Данный источник является весьма "интеллектуальным" устройством, однако основной его недостаток — сильное выделение тепла внутри ПК. Необходимо серьезное охлаждение.

Среди прочих внутренних ИБП можно выделить PowerCard производства компании Guardian On Board . По сути, это обыкновенный UPS мощностью 420 В·А с весьма средними показателями. Интерфейс PCI — в некотором смысле бутафория (для связи с компьютером используется COM-порт), однако если не установить карту в свободный слот PCI и не проинсталлировать соответствующее ПО, UPS работать не будет. Батареи крепятся внутри корпуса с помощью специальных липучек, рядом с PCI-картой, на которой расположена электроника ИБП. Общая масса такого изделия составляет 2,3 кг. В принципе, все красиво, незаметно, компактно и, кстати, не сопровождается обильным выделением тепла, но зато и не обеспечиваются стабилизация напряжения и защита от скачков напряжения.

Для чего необходимо программное обеспечение, входящее в комплект поставки ИБП?

ПО, поставляемое с недорогими моделями ИБП, обычно доступно для бесплатной загрузки с сайтов производителей. Как правило, у такого ПО фиксированный набор функций: мониторинг электрической сети на входе и параметров питающего напряжения на выходе, контроль за состоянием батарей, а также управление защищаемым компьютером и уведомление пользователя о потенциальных и случившихся проблемах.

Приложения, поставляющиеся с дорогими моделями ИБП, позволяют осуществлять тестирование и диагностику UPS, мониторинг электросети, вести журнал регистрации событий, дистанционно управлять ИБП по коммутируемой линии, автоматически присваивать имена закрываемым файлам при завершении работы ПК, оповещать пользователя о проблемах с энергоснабжением по электронной почте или пейджинговой связи и даже отслеживать состояние окружающей среды.

Производители ИБП обычно выражают мощность в вольт-амперах (В·А), в то время как на блоках питания компьютеров и многих других электробытовых устройств мощность указывается в ваттах (Вт). Строго говоря, здесь речь идет о разных величинах — полной и активной мощностях. Для перевода одних единиц в другие можно воспользоваться формулой 1 В·А = 1,5 Вт. Такое соответствие весьма приблизительно, тем не менее кое-какие ориентиры дает.

1. Находим сумму мощностей всех устройств, которые планируем подключить к ИБП, например, игрового компьютера с 17-дюймовым монитором (всего около 220 Вт).

2. Воспользуемся приведенной выше формулой: 220 x 1,5 = 330 В·А.

3. Кроме того, многие производители UPS советуют увеличить полученное таким образом значение на 20%: 330 + 66 ~ 400 В·А. Итак, в данном случае неплохо бы приобрести ИБП мощностью 420 В·А, а если с запасом, то и 450, или все 500 В·А (поскольку эти характеристики у большинства производителей имеют строгую дискретизацию).

Вот, в целом, и вся арифметика.

Для того чтобы узнать активную мощность конкретного устройства, нужно заглянуть либо в руководство пользователя, либо в табличку, расположенную на задней стороне корпуса устройства. Там обязательно указывают хотя бы одну из двух величин: ватты (Вт) или амперы (А). Если указаны ватты — это то, что надо. В противном случае активную мощность придется вычислять самому: силу тока в амперах необходимо умножить на 220. Полученное значение и будет искомой активной мощностью в ваттах.

Какие правила необходимо соблюдать при эксплуатации ИБП?

Каких-то особых рекомендаций не существует. В первую очередь с ИБП нужно обращаться так же, как и со многими электробытовыми приборами: не касаться устройства влажными руками; если ИБП долго находился при низкой температуре, дать ему нагреться до комнатной. Кроме того, не следует подключать к источнику устройства, превышающие его мощность (в этом случае UPS просто отключит нагрузку), по возможности держать батарею на "плавающей" или постоянной подзарядке — это продлит срок ее службы. Любопытно, что срок эксплуатации подзаряжаемой батареи значительно превышает срок ее хранения. Объясняется это тем, что некоторые естественные процессы старения приостанавливаются вследствие постоянной подзарядки. Для источников типа on-line (они намного сильнее нагреваются, чем off-line) необходимо обеспечивать дополнительную вентиляцию.

Здравствуйте. Эта статья посвящена программе настройки BIOS, позволяющей пользователю изменять основные настройки системы. Параметры настройки хранятся в энергонезависимой памяти CMOS и сохраняются при выключении питания компьютера.

ВХОД В ПРОГРАММУ НАСТРОЙКИ

Чтобы войти в программу настройки BIOS, включите компьютер и сразу же нажмите клавишу . Чтобы изменить дополнительные настройки BIOS, нажмите в меню BIOS комбинацию «Ctrl+F1». Откроется меню дополнительных настроек BIOS.

УПРАВЛЯЮЩИЕ КЛАВИШИ

< ?> Переход к предыдущему пункту меню
< ?> Переход к следующему пункту
< ?> Переход к пункту слева
< ?> Переход к пункту справа
Выбрать пункт
Для главного меню - выход без сохранения изменений в CMOS. Для страниц настроек и сводной страницы настроек - закрыть текущую страницу и вернуться в главное меню

<+/PgUp> Увеличить числовое значение настройки или выбрать другое значение из списка
<-/PgDn> Уменьшить числовое значение настройки или выбрать другое значение из списка
Краткая справка (только для страниц настроек и сводной страницы настроек)
Подсказка по выделенному пункту
Не используется
Не используется
Восстановить предыдущие настройки из CMOS (только для сводной страницы настроек)
Установить безопасные настройки BIOS по умолчанию
Установить оптимизированные настройки BIOS по умолчанию
Функция Q-Flash
Информация о системе
Сохранить все изменения в CMOS (только для главного меню)

СПРАВОЧНАЯ ИНФОРМАЦИЯ

Главное меню

В нижней части экрана отображается описание выбранной настройки.

Сводная страница настроек / Страницы настроек

При нажатии клавиши F1 появляется окно с краткой подсказкой о возможных вариантах настройки и назначении соответствующих клавиш. Для закрытия окна нажмите .

Главное меню (на примере версии BIOS Е2)

При входе в меню настройки BIOS (Award BIOS CMOS Setup Utility) открывается главное меню (рис.1), в котором можно выбрать любую из восьми страниц настроек и два варианта выхода из меню. С помощью клавиш со стрелками выберите нужный пункт. Для входа в подменю нажмите .

Рис.1: Главное меню

Если вам не удается найти нужную настройку, нажмите «Ctrl+F1» и поищите ее в меню дополнительных настроек BIOS.

Standard CMOS Features (Стандартные настройки BIOS)

На этой странице содержатся все стандартные настройки BIOS.

Advanced BIOS Features (Дополнительные настройки BIOS)

На этой странице содержатся дополнительные настройки Award BIOS.

Integrated Peripherals (Встроенные периферийные устройства)

На этой странице производится настройка всех встроенных периферийных устройств.

Power Management Setup (Настройки управления питанием)

На этой странице производится настройка режимов энергосбережения.

PnP/PCI Configurations (Настройка ресурсов РnР и PCI)

На этой странице производится настройка ресурсов для устройств

PCI и РnР ISA PC Health Status (Мониторинг состояния компьютера)

На этой странице отображаются измеренные значения температуры, напряжения и частоты вращения вентиляторов.

Frequency/Voltage Control (Регулировка частоты и напряжения)

На этой странице можно изменить тактовую частоту и коэффициент умножения частоты процессора.

Для достижения максимальной производительности установите в пункте «Тор Performance» значение «Enabled».

Load Fail-Safe Defaults (Установить безопасные настройки по умолчанию)

Безопасные настройки по умолчанию гарантируют работоспособность системы.

Load Optimized Defaults (Установить оптимизированные настройки по умолчанию)

Оптимизированные настройки по умолчанию соответствуют оптимальным рабочим характеристикам системы.

Set Supervisor password (Задание пароля администратора)

На этой странице Вы можете задать, изменить или снять пароль. Эта опция позволяет ограничить доступ к системе и настройкам BIOS либо только к настройкам BIOS.

Set User password (Задание пароля пользователя)

На этой странице Вы можете задать, изменить или снять пароль, позволяющий ограничить доступ к системе.

Save & Exit Setup (Сохранение настроек и выход)

Сохранение настроек в CMOS и выход из программы.

Exit Without Saving (Выход без сохранения изменений)

Отмена всех сделанных изменений и выход из программы настройки.

Standard CMOS Features (Стандартные настройки BIOS)

Рис.2: Стандартные настройки BIOS

Date (Дата)

Формат даты: <день недели>, <месяц>, <число>, <год>.

День недели - день недели определяется BIOS по введенной дате; его нельзя изменить непосредственно.

Месяц - название месяца, с января по декабрь.

Число - день месяца, от 1 до 31 (или максимального числа дней в месяце).

Год - год, от 1999 до 2098.

Time (Время)

Формат времени: <часы> <минуты> <секунды>. Время вводится в 24-часовом формате, например, 1 час дня записывается как 13:00:00.

IDE Primary Master, Slave / IDE Secondary Master, Slave (Дисковые накопители IDE)

В этом разделе определяются параметры дисковых накопителей, установленных в компьютере (от С до F). Возможны два варианта задания параметров: автоматически и вручную. При определении вручную параметры накопителя задаёт пользователь, а в автоматическом режиме параметры определяются системой. Имейте в виду, что введенная информация должна соответствовать типу вашего диска.

Если вы укажете неверные сведения, диск не будет нормально работать. При выборе варианта User Туре (Задается пользователем) вам потребуется заполнить приведенные ниже пункты. Введите данные с клавиатуры и нажмите . Необходимая информация должна содержаться в документации к жесткому диску или компьютеру.

CYLS - Количество цилиндров

HEADS - Количество головок

PRECOMP - Предкомпенсация при записи

LANDZONE - Зона парковки головки

SECTORS - Количество секторов

Если один из жестких дисков не установлен, выберите пункт NONE и нажмите .

Drive А / Drive В (Флоппи-дисководы)

В этом разделе задаются типы флоппи-дисководов А и В, установленных в компьютере. -

None - Флоппи-дисковод не установлен
360К, 5.25 in. Стандартный 5.25-дюймовый флоппи-дисковод типа PC емкостью 360 Кбайт
1.2М, 5.25 in. 5.25-дюймовый флоппи-дисковод типа АТ с высокой плотностью записи емкостью 1,2 Мбайт
(3.5-дюймовый дисковод, если включена поддержка режима 3).
720К, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 720 Кбайт

1.44М, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 1.44 Мбайт

2.88М, 3.5 in. 3.5-дюймовый дисковод с двусторонней записью; емкость 2.88 Мбайт.

Floppy 3 Mode Support (for Japan Area) (Поддержка режима 3 - только для Японии)

Disabled Обычный флоппи-дисковод. (Настройка по умолчанию)
Drive А Флоппи-дисковод А поддерживает режим 3.
Drive В Флоппи-дисковод В поддерживает режим 3.
Both Флоппи-дисководы А и В поддерживают режим 3.

Halt on (Прерывание загрузки)

Данная настройка определяет, при обнаружении каких ошибок загрузка системы будет остановлена.

NO Errors Загрузка системы будет продолжена несмотря на любые ошибки. Сообщения об ошибках выводятся на экран.
All Errors Загрузка будет прервана, если BIOS обнаружит любую ошибку.
All, But Keyboard Загрузка будет прервана при любой ошибке, за исключением сбоя клавиатуры. (Настройка по умолчанию)
Ail, But Diskette Загрузка будет прервана при любой ошибке, за исключением сбоя флоппи-дисковода.
All, But Disk/Key Загрузка будет прервана при любой ошибке, за исключением сбоя клавиатуры или диска.

Memory (Память)

В этом пункте выводятся размеры памяти, определяемые BIOS при самотестировании системы. Изменить эти значения вручную нельзя.
Base Memory (Базовая память)
При автоматическом самотестировании BIOS определяет объем базовой (или обычной) памяти, установленной в системе.
Если на системной плате установлена память объемом 512 Кбайт, на экран выводится значение 512 К, если же на системной плате установлена память объемом 640 Кбайт или более, выводится значение 640 К.
Extended Memory (Расширенная память)
При автоматическом самотестировании BIOS определяет размер установленной в системе расширенной памяти. Расширенная память - это оперативная память с адресами выше 1 Мбайт в системе адресации центрального процессора.

Advanced BIOS Features (Дополнительные настройки BIOS)

Рис.З: Дополнительные настройки BIOS

First / Second / Third Boot Device
(Первое/второе/третье загрузочное устройство)
Floppy Загрузка с флоппи-диска.
LS120 Загрузка с дисковода LS120.
HDD-0-3 Загрузка с жесткого диска от 0 до 3.
SCSI Загрузка с SCSI-устройства. Загрузка с ZIP-дисковода.
USB-FDD Загрузка с флоппи-дисковода с интерфейсом USB.
USB-ZIP Загрузка с ZIP-устройства с интерфейсом USB.
USB-CDROM Загрузка с CD-ROM с интерфейсом USB.
USB-HDD Загрузка с жесткого диска с интерфейсом USB.
LAN Загрузка через локальную сеть.

Boot Up Floppy Seek (Определение типа флоппи-дисковода при загрузке)

В процессе самотестирования системы BIOS определяет тип флоппи-дисковода - 40-дорожечный или 80-дорожечный. Дисковод емкостью 360 Кбайт является 40-дорожечным, а дисководы на 720 Кб, 1,2 Мбайт и 1,44 Мбайт - 80-дорожечными.

Enabled BIOS определяет тип дисковода - 40- или 80-дорожечный. Имейте в виду, что BIOS не различает дисководы 720 Кбайт, 1,2 Мбайт и 1,44 Мбайт, поскольку все они являются 80-дорожечными.

Disabled BIOS не будет определять тип дисковода. При установке дисковода на 360 Кбайт никакого сообщения на экран не выводится. (Настройка по умолчанию)

Password Check (Проверка пароля)

System Если при запросе системы не ввести правильный пароль, компьютер не загрузится и доступ к страницам настроек будет закрыт.
Setup Если при запросе системы не ввести правильный пароль, компьютер загрузится, однако доступ к страницам настроек будет закрыт. (Настройка по умолчанию)

CPU Hyper-Threading (Многопоточный режим работы процессора)

Disabled Режим Hyper Threading отключен.
Enabled Режим Hyper Threading включен. Обратите внимание, что эта функция реализуется только в том случае, если операционная система поддерживает многопроцессорную конфигурацию. (Настройка по умолчанию)

DRAM Data Integrity Mode (Контроль целостности данных в памяти)

Опция позволяет установить режим контроля ошибок в оперативной памяти, если используется память типа ЕСС.

ЕСС Режим ЕСС включен.
Non-ECC Режим ЕСС не используется. (Настройка по умолчанию)

Init Display First (Порядок активизации видеоадаптеров)
AGP Активизировать первым видеоадаптер AGP. (Настройка по умолчанию)
PCI Активизировать первым видеоадаптер PCI.

Integrated Peripherals (Встроенные периферийные устройства)

Рис.4: Встроенные периферийные устройства

On-Chip Primary PCI IDE (Встроенный контроллер 1 канала IDE)

Enabled Встроенный контроллер 1 канала IDE включен. (Настройка по умолчанию)

Disabled Встроенный контроллер 1 канала IDE отключен.
On-Chip Secondary PCI IDE (Встроенный контроллер 2 канала IDE)

Enabled Встроенный контроллер 2 канала IDE включен. (Настройка по умолчанию)

Disabled Встроенный контроллер 2 канала IDE отключен.

IDE1 Conductor Cable (Tип шлейфа, подключенного к IDE1)


АТА66/100 К IDE1 подключен шлейф типа АТА66/100. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТА66/100.)
АТАЗЗ К IDE1 подключен шлейф типа АТАЗЗ. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТАЗЗ.)

IDE2 Conductor Cable (Тип шлейфа, подключенного к ШЕ2)
Auto Автоматически определяется BIOS. (Настройка по умолчанию)
АТА66/100/133 К IDE2 подключен шлейф типа АТА66/100. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТА66/100.)
АТАЗЗ К IDE2 подключен шлейф типа АТАЗЗ. (Убедитесь, что ваши устройство IDE и шлейф поддерживают режим АТАЗЗ.)

USB Controller (Контроллер USB)

Если вы не используете встроенный контроллер USB, отключите здесь эту опцию.

Enabled Контроллер USB включен. (Настройка по умолчанию)
Disabled Контроллер USB отключен.

USB Keyboard Support (Поддержка USB-клавиатуры)

При подключении USB-клавиатуры задайте в этом пункте значение “Enabled”.

Enabled Поддержка USB-клавиатуры включена.
Disabled Поддержка USB-клавиатуры отключена. (Настройка по умолчанию)

USB Mouse Support (Поддержка мыши USB)

При подключении мыши USB задайте в этом пункте значение “Enabled”.

Enabled Поддержка мыши USB включена.
Disabled Поддержка мыши USB отключена. (Настройка по умолчанию)

АС97 Audio (Аудиоконтроллер АС’97)

Auto Встроенный аудиоконтроллер АС’97 включен. (Настройка по умолчанию)
Disabled Встроенный аудиоконтроллер АС’97 отключен.

Onboard H/W LAN (Встроенный сетевой контроллер)

Enable Встроенный сетевой контроллер включен. (Настройка по умолчанию)
Disable Встроенный сетевой контроллер отключен.
Onboard LAN Boot ROM (Загрузочное ПЗУ встроенного сетевого контроллера)

Использование ПЗУ встроенного сетевого контроллера для загрузки системы.

Enable Функция включена.
Disable Функция отключена. (Настройка по умолчанию)

Onboard Serial Port 1 (Встроенный последовательный порт 1)

Auto BIOS устанавливает адрес порта 1 автоматически.
3F8/IRQ4 Включить встроенный последовательный порт 1, присвоив ему адрес 3F8.(Настройка по умолчанию)
2F8/IRQ3 Включить встроенный последовательный порт 1, присвоив ему адрес 2F8.

3E8/IRQ4 Включить встроенный последовательный порт 1, присвоив ему адрес ЗЕ8.

2E8/IRQ3 Включить встроенный последовательный порт 1, присвоив ему адрес 2Е8.

Disabled Отключить встроенный последовательный порт 1.

Onboard Serial Port 2 (Встроенный последовательный порт 2)

Auto BIOS устанавливает адрес порта 2 автоматически.
3F8/IRQ4 Включить встроенный последовательный порт 2, присвоив ему адрес 3F8.

2F8/IRQ3 Включить встроенный последовательный порт 2, присвоив ему адрес 2F8. (Настройка по умолчанию)
3E8/IRQ4 Включить встроенный последовательный порт 2, присвоив ему адрес ЗЕ8.

2E8/IRQ3 Включить встроенный последовательный порт 2, присвоив ему адрес 2Е8.

Disabled Отключить встроенный последовательный порт 2.

Onboard Parallel port (Встроенный параллельный порт)

378/IRQ7 Включить встроенный LPT-порт, присвоив ему адрес 378 и назначив прерывание IRQ7. (Настройка по умолчанию)
278/IRQ5 Включить встроенный LPT-порт, присвоив ему адрес 278 и назначив прерывание IRQ5.
Disabled Отключить встроенный LPT-порт.

3BC/IRQ7 Включить встроенный LPT-порт, присвоив ему адрес ЗВС и назначив прерывание IRQ7.

Parallel Port Mode (Режим работы параллельного порта)

SPP Параллельный порт работает в обычном режиме. (Настройка по умолчанию)
ЕРР Параллельный порт работает в режиме Enhanced Parallel Port.
ЕСР Параллельный порт работает в режиме Extended Capabilities Port.
ЕСР+ЕРР Параллельный порт работает в режимах ЕСР и ЕРР.

ЕСР Mode Use DMA (Канал DMA, используемый в режиме ЕСР)

3 Режим ЕСР использует канал DMA 3. (Настройка по умолчанию)
1 Режим ЕСР использует канал DMA 1.

Game Port Address (Адрес игрового порта)

201 Установить адрес игрового порта равным 201. (Настройка по умолчанию)
209 Установить адрес игрового порта равным 209.
Disabled Отключить функцию.

Midi Port Address (Адрес MIDI-порта)

290 Установить адрес MIDI-порта равным 290.
300 Установить адрес MIDI-порта равным 300.
330 Установить адрес MIDI-порта равным 330. (Настройка по умолчанию)
Disabled Отключить функцию.
Midi Port IRQ (Прерывание для MIDI-порта)

5 Назначить MIDI-порту прерывание IRQ 5.
10 Назначить MIDI-порту прерывание IRQ 10. (Настройка по умолчанию)

Power Management Setup (Настройки управления питанием)

Рис.5: Настройки управления питанием

ACPI Suspend Туре (Тип режима ожидания ACPI)

S1(POS) Установить режим ожидания S1. (Настройка по умолчанию)
S3(STR) Установить режим ожидания S3.

Power LED in SI state (Индикатор питания в режиме ожидания S1)

Blinking В режиме ожидания (S1) индикатор питания мигает. (Настройка по умолчанию)

Dual/OFF В режиме ожидания (S1):
a. Если используется одноцветный индикатор, в режиме S1 он гаснет.
b. Если используется двухцветный индикатор, в режиме S1 он меняет цвет.
Soft-offby PWR BTTN (Программное выключение компьютера)

Instant-off При нажатии кнопки питания компьютер выключается сразу. (Настройка по умолчанию)
Delay 4 Sec. Для выключения компьютера кнопку питания следует удерживать нажатой в течение 4 сек. При кратковременном нажатии кнопки система переходит в режим ожидания.
РМЕ Event Wake Up (Пробуждение по событию РМЕ)

Disabled Функция пробуждения по событию РМЕ отключена.

ModemRingOn (Пробуждение по сигналу модема)

Disabled Функция пробуждения по сигналу модема/локальной сети отключена.
Enabled Функция включена. (Настройка по умолчанию)

Resume by Alarm (Включение по часам)

В пункте Resume by Alarm можно задать дату и время включения компьютера.


Enabled Функция включения компьютера в заданное время включена.

Если функция включена, задайте следующие значения:

Date (of Month) Alarm: День месяца, 1-31
Time (hh: mm: ss) Alarm: Время (чч: мм: cc): (0-23): (0-59): (0-59)

Power On By Mouse (Пробуждение по двойному щелчку мыши)

Disabled Функция отключена. (Настройка по умолчанию)
Double Click Пробуждение компьютера при двойном щелчке мыши.

Power On By Keyboard (Включение по сигналу с клавиатуры)

Password Для включения компьютера необходимо ввести пароль длиной от 1 до 5 символов.
Disabled Функция отключена. (Настройка по умолчанию)
Keyboard 98 Если на клавиатуре имеется кнопка включения, при нажатии на нее компьютер включается.

КВ Power ON Password (Задание пароля для включения компьютера с клавиатуры)

Enter Введите пароль (от 1 до 5 буквенно-цифровых символов) и нажмите Enter.

AC Back Function (Поведение компьютера после временного исчезновения напряжения в сети)

Memory После восстановления питания компьютер возвращается в то состояние, в котором он находился перед отключением питания.
Soft-Off После подачи питания компьютер остается в выключенном состоянии. (Настройка по умолчанию)
Full-On После восстановления питания компьютер включается.

PnP/PCI Configurations (Настройка PnP/PCI)

Рис.6: Настройка устройств PnP/PCI

PCI l/PCI5 IRQ Assignment (Назначение прерывания для PCI 1/5)

Auto Автоматическое назначение прерывания для устройств PCI 1/5. (Настройка по умолчанию)
3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройств PCI 1/5 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

РСI2 IRQ Assignment (Назначение прерывания для PCI2)

Auto Автоматическое назначение прерывания для устройства PCI 2. (Настройка по умолчанию)
3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 2 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

РОЗ IRQ Assignment (Назначение прерывания для PCI 3)

Auto Автоматическое назначение прерывания для устройства PCI 3. (Настройка по умолчанию)

3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 3 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.
PCI 4 IRQ Assignment (Назначение прерывания для PCI 4)

Auto Автоматическое назначение прерывания для устройства PCI 4. (Настройка по умолчанию)

3, 4, 5, 7, 9, 10, 11, 12, 15 Назначение для устройства PCI 4 прерывания IRQ 3, 4, 5, 7, 9, 10, 11, 12, 15.

PC Health Status (Мониторинг состояния компьютера)

Рис.7: Мониторинг состояния компьютера

Reset Case Open Status(Возврат датчика вскрытия корпуса в исходное состояние)

Case Opened (Вскрытие корпуса)

Если корпус компьютера не вскрывался, в пункте «Case Opened» отображается «No» (Нет). Если корпус был вскрыт, в пункте «Case Opened» отображается «Yes» (Да).

Чтобы сбросить показания датчика, установите в пункте «Reset Case Open Status» значение «Enabled» и выйдите из BIOS с сохранением настроек. Компьютер перезагрузится.
Current Voltage (V) Vcore / VCC18 / +3.3 V / +5V / +12V (Текущие значения напряжения в системе)

В этом пункте отображаются автоматически измеренные основные напряжения в системе.

Current CPU Temperature (Текущее значение температуры процессора)

В этом пункте отображается измеренная температура процессора.

Current CPU/SYSTEM FAN Speed (RPM) (Текущая частота вращения вентиляторов)

В этом пункте отображается измеренная частота вращения вентиляторов процессора и корпуса.

CPU Warning Temperature (Выдача предупреждения при повышении температуры процессора)

Disabled Температура процессора не контролируется. (Настройка по умолчанию)
60°С / 140°F Предупреждение выдается при превышении значения температуры 60°С.
70°С / 158°F Предупреждение выдается при превышении значения температуры 70°С.

80°С / 176°F Предупреждение выдается при превышении значения температуры 80°С.

90°С / 194°F Предупреждение выдается при превышении значения температуры 90°С.

CPU FAN Fail Warning (Выдача предупреждения об остановке вентилятора процессора)

Disabled Функция отключена. (Настройка по умолчанию)

SYSTEM FAN Fail Warning (Выдача предупреждения об остановке вентилятора корпуса)

Disabled Функция отключена. (Настройка по умолчанию)
Enabled При остановке вентилятора выдается предупреждение.

Frequency/Voltage Control (Регулировка частоты/напряжения)

Рис.8: Регулировка частоты/напряжения

CPU Clock Ratio (Коэффициент умножения частоты процессора)

Если коэффициент умножения частоты процессора фиксирован, эта опция в меню отсутствует. - 10Х- 24Х Значение устанавливается в зависимости от тактовой частоты процессора.

CPU Host Clock Control (Управление базовой частотой процессора)

Замечание: Если система зависает до загрузки утилиты настройки BIOS, подождите 20 сек. По истечении этого времени система перезагрузится. При перезагрузке будет установлено значение базовой частоты процессора, задаваемое по умолчанию.

Disabled Отключить функцию. (Настройка по умолчанию)
Enabled Включить функцию управления базовой частотой процессора.

CPU Host Frequency (Базовая частота процессора)

100MHz - 355MHz Установить значение базовой частоты процессора в пределах от 100 до 355 МГц.

PCI/AGP Fixed (Фиксированные частоты PCI/AGP)

Для регулировки тактовых частот AGP/PCI выберите в этом пункте значение 33/66, 38/76, 43/86 или Disabled (Отключено).
Host/DRAM Clock Ratio (Отношение тактовой частоты памяти к базовой частоте процессора)

Внимание! Если значение в этом пункте задано неверно, компьютер не сможет загрузиться. В этом случае следует сбросить настройки BIOS.

2.0 Частота памяти = Базовая частота X 2.0.
2.66 Частота памяти = Базовая частота X 2.66.
Auto Частота устанавливается по данным SPD модуля памяти. (Значение по умолчанию)

Memory Frequency (Mhz) (Тактовая частота памяти (МГц))

Значение определяется базовой частотой процессора.

PCI/AGP Frequency (Mhz) (Тактовая частота PCI /AGP (МГц))

Частоты устанавливаются в зависимости от значения опции CPU Host Frequency или PCI/AGP Divider.

CPU Voltage Control (Регулировка напряжения питания процессора)

Напряжение питания процессора можно повысить на величину от 5.0% до 10.0%. (Значение по умолчанию: номинальное)

DIMM OverVoltage Control (Повышение напряжения питания памяти)

Normal Напряжение питания памяти равно номинальному. (Значение по умолчанию)
+0.1V Напряжение питания памяти повышено на 0.1 В.
+0.2V Напряжение питания памяти повышено на 0.2 В.
+0.3V Напряжение питания памяти повышено на 0.3 В.

Только для опытных пользователей! Неправильная установка может привести к поломке компьютера!

AGP OverVoltage Control (Повышение напряжения питания платы AGP)

Normal Напряжение питания видеоадаптера равно номинальному. (Значение по умолчанию)
+0.1V Напряжение питания видеоадаптера повышено на 0.1 В.
+0.2V Напряжение питания видеоадаптера повышено на 0.2 В.
+0.3V Напряжение питания видеоадаптера повышено на 0.3 В.

Только для опытных пользователей! Неправильная установка может привести к поломке компьютера!

Top Performance (Максимальная производительность)

Рис.9: Максимальная производительность

Top Performance (Максимальная производительность)

Для достижения наибольшей производительности системы задайте в пункте «Тор Performance» значение «Enabled».

Disabled Функция отключена. (Настройка по умолчанию)
Enabled Режим максимальной производительности.

При включении режима максимальной производительности увеличивается скорость работы аппаратных компонентов. На работу системы в этом режиме оказывают влияние как аппаратная, так и программная конфигурации. Например, одна и та же аппаратная конфигурация может хорошо работать под Windows NT, но не работать под Windows ХР. Поэтому в случае, если возникают проблемы с надежностью или стабильностью работы системы, рекомендуем отключить эту опцию.

Load Fail-Safe Defaults (Установка безопасных настроек по умолчанию)

Рис.10: Установка безопасных настроек по умолчанию

Load Fail-Safe Defaults (Установка безопасных настроек по умолчанию)

Безопасные настройки по умолчанию - это значения параметров системы, наиболее безопасные с точки зрения работоспособности системы, но обеспечивающие минимальное быстродействие.

Load Optimized Defaults (Установка оптимизированных настроек по умолчанию)

При выборе этого пункта меню загружаются стандартные настройки параметров BIOS и набора микросхем, автоматически определяемые системой.

Set Supervisor/User Password (Задание пароля администратора/пароля пользователя)

Рис.12: Задание пароля

При выборе этого пункта меню в центре экрана появится приглашение для ввода пароля.

Введите пароль длиной не более 8 знаков и нажмите . Система попросит подтвердить пароль. Введите этот же пароль еще раз и нажмите . Чтобы отказаться от ввода пароля и перейти в главное меню, нажмите .

Чтобы отменить пароль, в ответ на приглашение ввести новый пароль нажмите . В подтверждение того, что пароль отменён, появится сообщение «PASSWORD DISABLED». После снятия пароля система перезагрузится и вы сможете свободно войти в меню настроек BIOS.

Меню настроек BIOS позволяет задать два разных пароля: пароль администратора (SUPERVISOR PASSWORD) и пароль пользователя (USER PASSWORD). Если пароли не заданы, любой пользователь может получить доступ к настройкам BIOS. При задании пароля для доступа ко всем настройкам BIOS необходимо ввести пароль администратора, а для доступа только к основным настройкам - пароль пользователя.

Если в меню дополнительных настроек BIOS в пункте «Password Check» вы выберете параметр “System”, система будет запрашивать пароль при каждой загрузке компьютера или попытке входа в меню настроек BIOS.

Если в меню дополнительных настроек BIOS в пункте «Password Check» вы выберете “Setup”, система будет запрашивать пароль только при попытке войти в меню настроек BIOS.

Save & Exit Setup (Сохранение настроек и выход)

Рис.13: Сохранение настроек и выход

Для сохранения сделанных изменений и выхода из меню настроек нажмите «Y». Для возврата в меню настроек нажмите «N».

Exit Without Saving (Выход без сохранения изменений)

Рис.14: Выход без сохранения изменений

Для выхода из меню настроек BIOS без сохранения сделанных изменений нажмите «Y». Для возврата в меню настроек BIOS нажмите «N».

ВведениеКомпания OCZ хорошо известна как один из пионеров рынка потребительских SSD. Однако даже до того, как она была куплена Toshiba, её интересы простирались в том числе и на рынок серверных твердотельных накопителей. Несмотря на то, что до недавних пор у OCZ не было стабильных каналов закупок флеш-памяти, она не оставляла попыток создания высоконадёжных SSD, предназначенных для значительных нагрузок. Производство серверных SSD требует от производителя более тщательного подхода к проектированию аппаратной платформы, отдельной заботы об обеспечении безопасности хранения данных и специальных мер для придания накопителю гораздо более высокого ресурса записи. И инженерный потенциал OCZ позволял решать эти задачи. Впрочем, справедливости ради стоит отметить, что особых успехов в поставках серверных SSD в своей прошлой жизни компания всё-таки добиться не смогла.

Однако теперь всё поменялось. После банкротства и перехода под крыло Toshiba у OCZ появился надёжный источник для получения флеш-памяти, включая и её вариации с повышенным ресурсом. Пользуясь возникшей возможностью компания перевыпустила свои серверные SSD. На смену старым сериям Intrepid и Deneva пришла новая серия накопителей с интерфейсом SATA III, Intrepid 3000. Она включает в себя две линейки моделей, 3600 и 3800, и обе они доступны как по OEM, так и по розничным каналам.

Не будет преувеличением сказать, что, имея мощную поддержку в лице материнской компании, теперь OCZ предлагает очень интересные SSD для бизнес-приложений. С одной стороны они не уступает по характеристикам производительности и надёжности предложениям конкурентов, а с другой – обладают привлекательной ценой. Накопители Intrepid 3800 вполне могут использоваться в серверах со средней интенсивностью операций записи, так как их декларируемый ресурс очень высок и, например, для 800-гигабайтной версии он достигает 5,8 Пбайт данных. Серия Intrepid 3600 немного попроще, она позиционируется как решение для серверов с преобладающими операциями чтения, например, для веб-серверов или мультимедиа-серверов. Тем не менее, даже в этом случае ресурс записи очень неплох и достигает у 800-гигабайтной версии SSD величины 1,5 Пбайт. На самом деле Intrepid 3800 и 3600 мало отличаются друг от друга. Они используют одну и ту же аппаратную и программную платформу, и в обоих случаях в них используется 19-нм флеш-память компании Toshiba. Однако в накопители серии 3800 идёт более выносливая eMLC-память, в то время как серия 3600 довольствуется стандартными чипами MLC.

Память Toshiba – не единственное нововведение в серверных накопителях OCZ нового поколения. Ранее компания применяла в своих бизнес-накопителях контроллеры SandForce. Однако к сегодняшнему дню они изрядно устарели, а, кроме того, в этом случае возможности инженеров по изменению прошивки были достаточно ограничены, в результате чего у них не получалось внедрять какие-то интересные и уникальные решения. Поэтому с появлением серии Intrepid 3000 компания перешла на контроллер Marvell SS9187, микропрограмма для которого пишется специалистами OCZ полностью автономно. Это позволяет OCZ добавлять в свои накопители специальные серверные функции, востребованные в бизнес-среде. Следует заметить, что в ассортименте OCZ есть и серверные накопители на собственном контроллере Barefoot 3, но аппаратная платформа Marvell более привлекательна тем, что она относится к тщательно проверенным и общепризнанным в индустрии решением. Именно поэтому семейство Intrepid 3000 считается наиболее стабильным, живучим и отказоустойчивым решением.

Надо сказать, что и сама OCZ имеет немалый опыт использования контроллера Marvell SS9187 – вспомните серию накопителей Octane , основанную на чипах Everest 2, полученных на основе дизайна Marvell. Как видим, старые наработки инженеров OCZ не были выброшены в корзину, но теперь они неожиданно нашли место в серверном сегменте. И более того, теперь к ним добавлены новые функции для повышения надёжности. В их числе: проверка целостности данных на базе контрольных сумм на каждом этапе их обработки, расширенные алгоритмы контроля чётности и внутренние RAID-подобные механизмы распределения данных по разным чипам флеш-памяти с избыточностью. Всё это позволяет гарантировать крайне низкую вероятность ошибок, которая у Intrepid 3000 примерно на порядок ниже, чем у лучших накопителей для потребительского сегмента.

Мы получили на тесты накопитель Intrepid 3800 ёмкостью 800 Гбайт. Это – максимальный объём в линейке, который позволяет достигнуть наивысшей производительности во всём семействе Intrepid 3000. Скорости последовательных операций у этой модели дотягивают до 500 и 460 Мбайт в секунду при чтении и записи соответственно. А при случайных операциях с 4-килобайтными блоками быстродействие достигает 90 и 40 тысяч операций в секунду при чтении и записи. И, кстати, здесь имеется в виду установившаяся производительность, показываемая диском после нескольких часов активного использования. Именно поэтому эти числа кажутся не слишком впечатляющими на фоне скоростей потребительских SSD, где обычно указываются показатели, наблюдаемые на «свежем» флеш-диске.



Стоит отметить, что при разработке своего семейства накопителей Intrepid 3000 инженеры компании OCZ фокусировались не только на обеспечении лидирующей производительности, но и на постоянстве латентностей операций ввода-вывода. А это значит, что представители семейства Intrepid 3000 должны демонстрировать малый разброс скоростных параметров в течение времени, что очень важно для улучшения времени отклика при установке этих накопителей в RAID-массивы.

В дополнение к указанным скоростным показателям в числе характеристик семейства Intrepid 3000 значится надёжная защита данных от сбоев питания, поддержка аппаратного шифрования по стандарту AES-256 и высокое среднее время наработки на отказ на уровне 2 млн. часов. К не менее полезным свойствам рассматриваемой новинки следует отнести температурный мониторинг и расширенную SMART-статистику, которая позволяет получать детальную информацию о том, как себя чувствует SSD.

Спецификации и внутреннее устройство

Итак, спецификации твердотельных накопителей серии Intrepid 3800, использующей высоконадёжную eMLC память, выглядят следующим образом:



Как видно из характеристик, высоконадёжная eMLC NAND и дополнительное резервное пространство, недоступное пользователю, обеспечивают внушительный ресурс флеш-дисков серии Intrepid 3800. Именно поэтому такие предложения и ценятся потребителями из корпоративного сегмента. Однако высокая надёжность отражается и на цене. Подобные Intrepid 3800 твердотельные накопители примерно вдвое дороже обычных потребительских SSD похожего объёма.

Если же говорить о внешнем виде серверного накопителя Intrepid 3800, то он совершенно обычен. Этот SSD заключён в привычный корпус из стального сплава. Правда, учитывая, что устанавливаются такие диски в сервера, зачастую оборудованные специализированными корзинами, высота этого корпуса составляет не 7, а 9 мм. На лицевой поверхности SSD наклеена маркетинговая этикетка. С оборотной стороны – этикетка с маркировкой, серийными номерами и штрих-кодами.


Внутри корпуса обнаруживается не совсем типичная печатная плата, занимающая всё его внутреннее пространство. Следует заметить, что базовый контроллер примыкает к крышке корпуса через термопроводящую прокладку, чем обеспечивается его охлаждение. Однако в процессе работы этот чип всё равно очень сильно нагревается и даже может уходить в троттлинг, сбрасывая свою частоту. Во избежание таких ситуаций мы рекомендуем использовать Intrepid 3800 в хорошо продуваемых корпусах или специальных корзинах, укомплектованных вентиляторами.


Основной контроллер имеет достаточную неожиданную маркировку Indilinx IDX400M00-BC, но на самом деле это перемаркированная микросхема Marvell 88S9187. Подобная архитектура накопителя с использованием контроллера Marvell и собственной микропрограммы уже встречалась нам в потребительском флеш-диске OCZ Octane, который основывался на платформе Everest 2. Теперь же эта платформа обрела второе дыхание. Контроллер в ней поддерживает интерфейс SATA 6 Гбит/с и имеет 8-канальную архитектуру для подключения флеш-памяти. При этом в каждом канале допускается чередование устройств NAND с максимальной кратностью 16. Учитывая, что в рассматриваемом нами накопителе Intrepid 3800 800 Гбайт общий объём массива флеш-памяти составляет 1024 Гбайт, а используемые чипы eMLC флеш-памяти имеют объём по 64 Гбит, в нём возможности контроллера задействуются по максимуму.

Контроллер Marvell 88S9187 в Intrepid 3800 работает в паре с чипом оперативной памяти DDR3-1333 объёмом 1 Гбайт. Этот чип нужен для кэширования случайных операций и для хранения быстрой копии таблицы трансляции адресов.

Массив флеш-памяти в Intrepid 3800 800 Гбайт набран шестнадцатью чипами Toshiba TH58TEG8DDJBA8C, в каждом из которых собрано по восемь 64-гигабитных кристаллов. Память с подобной маркировкой встречается повсеместно и в обычных твердотельных накопителях, например, компании Plextor. Но в данном случае это – не простая MLC NAND с Toggle Mode интерфейсом, а eMLC-память, собранная из отборных кристаллов, имеющих ресурс перезаписи, существенно превышающий типичный.



Но самая любопытная часть начинки Intrepid 3800 – это установленный на дочерней плате суперконденсатор компании AVX, имеющий ёмкость 22 мФ. Такой конденсатор не только имеет внушительную ёмкость, но и способен выдавать достаточно высокий ток, что позволяет гарантировать корректное завершение в SSD всех внутренних процессов даже в случае перебоев или внезапных отключений питания. Плата с суперконденсатором подключается к основной плате посредством специального разъёма и плотно зажимается корпусом.

Программное обеспечение

Следует отметить, что для своих твердотельных накопителей, ориентированных на использование в серверной среде, компания OCZ разрабатывает специальное программное обеспечение StoragePeak 1000. Это приложение позволяет организовать централизованное и удалённое управление и мониторинг всех накопителей OCZ, имеющихся в серверах и прочих устройствах внутри сегмента сети.

Благодаря данному программному обеспечению системные администраторы имеют доступ к полной информации по накопителям, в том числе к сведениям по их производительности, надежности и работоспособности. Наряду с контролем функционирования StoragePeak 1000 предлагает настраиваемые системы оповещения о возникающих проблемах или о выходе каких-либо рабочих параметров SSD за указанные рамки. Варианты StoragePeak 1000 есть для различных операционных систем семейств Windows, CentOS и RHEL.

Помимо Intrepid 3800, программа StoragePeak 1000 может связываться и с накопителями других серверных серий, в частности, Z-Drive 4500 и R4, ZD-XL, Intrepid 3600, Saber 1000, Deneva 2 и Talos 2.



Подобно привычной утилите OCZ Toolbox, программное обеспечение StoragePeak 1000 обладает функциями удалённого обновления прошивок и Secure Erase. Также поддерживается журналирование параметров SMART и производительности. Работа с StoragePeak 1000 возможна в том числе и из командной строки.



Впрочем, обычная утилита OCZ Toolbox с Intrepid 3800 тоже работает, предоставляя пользователю вполне привычный набор возможностей, к которым добавляется ещё одна дополнительная функция – проверка работоспособности суперконденсатора AVX. Кстати сказать, наблюдение за состоянием этого конденсатора доступно и через обычный SMART-мониторинг, в котором добавлен отдельный параметр, описывающий его состояние.



Да и в целом набор значений SMART у Intrepid 3800 значительно расширен. Он позволяет гораздо более подробно, чем в потребительских SSD, контролировать состояние флеш-памяти, а также накапливает сведения об ошибках, возникающих на всех этапах работы с данными внутри твердотельного накопителя. Естественно, в Intrepid 3800 реализован и полноценный температурный мониторинг.

Тестовая система

Производительность твердотельного накопителя Intrepid 3800 800 Гбайт исследовалась при его работе в составе тестовой системы, основанной на интеловский платформе с процессором Core i5-4690K. Используемая материнская плата основывалась на наборе системной логики Z97, накопитель подключался к чипсетным портам SATA 6 Гбит/с.

К сожалению, мы не смогли найти для серверного диска OCZ Intrepid 3800 800 Гбайт равноценный объект для сравнения. На момент проведения тестирования в сфере нашей досягаемости из предложений аналогичного предназначения оказался лишь Intel SSD DC S3500 объёмом 600 Гбайт. В отличие от OCZ Intrepid 3800 этот интеловский твердотельный накопитель базируется на обычной MLC NAND, однако следует иметь в виду, что в ассортименте компании Intel есть почти такие же флеш-диски Intel SSD DC S3700, базирующиеся на eMLC памяти. Иными словами, сравнение OCZ Intrepid 3800 и Intel SSD DC S3500 не лишено смысла. Оно как минимум позволяет понять, насколько прогрессивны характеристики продукта OCZ на фоне того, что предлагают для корпоративного сегмента другие производители.

В итоге, в тестовой платформе задействовался следующий набор оборудования:

Процессор: Intel Core i5-4690K (Haswell, 4 ядра, 3,5-3,9 ГГц, 4x256 Кбайт L2, 6 Мбайт L3);
Процессорный кулер: Noctua NH-U14S;
Материнская плата: ASUS Z97-Pro (LGA1150, Intel Z97 Express);
Память: 2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX);
Системный накопитель – Crucial M550 512 GB (CT512M550SSD1);
Тестовые накопители:

OCZ Intrepid 3800 800 Гбайт (IT3RSK41ET350-0800, прошивка);
Intel SSD DC S3500 600 Гбайт (SSDSC2BB600G401, прошивка);

Блок питания: Seasonic Platinum SS-760XP2 (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Professional x64 с использованием следующего комплекта драйверов:

Intel Chipset Driver 10.0.20;
Intel Management Engine Driver 10.0.0.1204;
Intel Rapid Storage Technology 13.2.4.1000;
Intel Graphics Accelerator Driver 10.18.10.3910.

Тестирование проводилось с использованием программного средства IOMeter 1.1.0.

Производительность

Десктопная производительность

Прежде чем перейти к тестированию OCZ Intrepid 3800 800 Гбайт при серверных нагрузках, мы решили уделить внимание тому, как может проявить себя этот SSD, будучи установленным в обычной десктопной системе. Для этого мы измерили его производительность популярным бенчмарком, входящим в состав Anvil’s Storage Utilities.



Как можно заметить по приведённому скриншоту, в сравнении с современными потребительскими SSD рассматриваемый OCZ Intrepid 3800 800 Гбайт не может похвастать никакими особенными достижениями. Более того, если бы речь шла о SATA SSD для персональных компьютеров, мы бы отнести этот флеш-диск к числу предложений среднего или даже нижнего уровня, так как скорости последовательного чтения и записи у него откровенно слабые, да и при произвольных операциях производительность оказывается существенно ниже, чем выдают многие популярные флеш-диски.

Впрочем, основываясь на этих результатах, совсем не нужно делать вывод о том, что OCZ Intrepid 3800 800 Гбайт – это медленный SSD. Просто у него несколько иное назначение, и высокие пиковые показатели в типичной десктопной среде ни о чём не говорят. Подобные OCZ Intrepid 3800 твердотельные накопители ориентированы на работу в условиях высоких нагрузок, когда дисковой подсистеме приходится сталкиваться с непрерывным и интенсивным потоком запросов. Поэтому всё дальнейшее тестирование проводилось в соответствии с принципами, сформулированными в методике SNIA, подразумевающей измерение скоростей и латентностей операций ввода вывода в условиях высокой нагрузки. То есть тогда, когда накопитель вынужден проводить операции высвобождения страниц флеш-памяти и сборки мусора «на лету», одновременно с обслуживанием поступающих запросов.

Стабилизация производительности и переходные процессы

В новом SSD флеш-память полностью свободна от каких-либо данных, поэтому накопитель, только извлечённый из упаковки, на первых порах демонстрирует существенно более высокую производительность. Однако со временем его флеш-память заполняется данными, и новые операции записи начинают требовать предварительной очистки блоков страниц флеш-памяти. Поэтому со временем производительность SSD снижается, и накопитель переходит в устойчивое «использованное» состояние. Для того чтобы проследить этот переходный процесс, мы проводим восьмичасовой цикл случайной записи данных (блоками по 4 Кбайт с глубиной очереди запросов 64 команды), по окончанию которого уже и измеряется «реальное» быстродействие накопителя.

В то же время наблюдение за переходным процессом в скорости работы SSD также представляет интерес. Показанный ниже график как раз и отображает падение производительности рассматриваемых накопителей под воздействием потока запросов на случайную запись 4-килобайтных блоков с глубиной очереди запросов 64 команды.



Приведённый график сразу же обнаруживает более высокую производительность OCZ Intrepid 3800 800 Гбайт, которая сохраняется на всём протяжении 8-часового теста. В то время как быстродействие этого SSD начинается с примерно 83 тысяч IOPS и снижается до 40 тысяч IOPS, показатели Intel SSD DC S3500 600 Гбайт гораздо хуже. В свежем состоянии интеловскому накопителю удаётся выдать лишь 65 тысяч IOPS, а в устойчивом состоянии его скорость – всего 15 тысяч IOPS.

Однако тут есть один нюанс. Несмотря на то, что OCZ Intrepid 3800 800 Гбайт работает быстрее, стабильность его скоростных показателей оставляет желать лучшего. Этот накопитель время от времени демонстрирует одномоментные несколькократные снижения производительности, а это – не очень хорошая модель поведения для серверных SSD, которые нередко собираются в RAID-массивы. Intel SSD DC S3500 же может похвастать куда более стабильной и предсказуемой скоростью, что является его несомненным достоинством. Но, справедливости ради, заметим, что провалы в производительности у накопителя OCZ встречаются не слишком часто, а примерно раз в одну-две минуты и имеют продолжительность в одну-две секунды.

Скорость случайных операций с 4K-блоками






При чтении OCZ Intrepid 3800 800 Гбайт заметно превосходит Intel SSD DC S3500 600 Гбайт. Существенная разница в результатах начинает наблюдаться при глубине очереди запросов 32 команды.






Ещё более впечатляющее преимущество OCZ Intrepid 3800 800 Гбайт выявляется при случайной записи. Оно есть при абсолютно любой очереди запросов. Кстати, обратите внимание – с ростом глубины очереди команд производительность серверных накопителей практически не увеличивается. Очевидно, что скорость в этом случае ограничивается необходимостью очистки блоков страниц флеш-памяти. Однако несмотря на это, латентность операций от глубины очереди зависит.






Скорость работы при произвольных смешанных операциях случайного чтения и записи демонстрирует достаточно интересную зависимость. Оба SSD демонстрируют наивысшую производительность в том случае, когда к операциям чтения записи не подмешиваются вообще. Но минимальная производительность у Intel SSD DC S3500 600 Гбайт и OCZ Intrepid 3800 800 Гбайт наблюдается при разных вариантах нагрузки. У OCZ Intrepid 3800 800 Гбайт чем больше операций записи, тем ниже скорость, а максимальное и минимальное значение величины IOPS различается в 2,25 раза. Для Intel SSD DC S3500 600 Гбайт же наиболее проблемная нагрузка – это когда на одну операцию чтения приходится четыре операции записи. А разрыв между максимальной и минимальной производительностью – больше чем у конкурента и достигает 3,5-кратного размера.

Скорость случайных операций с 8K-блоками






В серверной нагрузке скорость операций с блоками 8 Кбайт имеет не меньшее значение, чем производительность с 4 Кбайт блоками. Например, 8 Кбайт – типичный пакет данных, передаваемый базами данных. И в данном случае ситуация несколько отличается от того, что мы видели до этого. При случайном чтении 8 Кбайт блоками Intel SSD DC S3500 600 Гбайт оказывается немного быстрее OCZ Intrepid 3800 800 Гбайт, начиная с очереди глубиной 16 запросов.






Однако при записи всё возвращается на свои места. Здесь OCZ Intrepid 3800 800 Гбайт обгоняет Intel SSD DC S3500 600 Гбайт примерно в 2,5 раза. И вновь, как и при записи 4Кбайт блоками, мы видим, что количество IOPS (в отличие от латентности) практически не зависит от глубины очереди.






Тестирование при смешанной нагрузке позволяет сделать вывод о том, что отставание OCZ Intrepid 3800 800 Гбайт от Intel SSD DC S3500 600 Гбайт – это ситуация, свойственная лишь для нагрузки, состоящей исключительно из операций чтения. Если же к ним подмешивается любая, пусть даже небольшая, часть операций записи, лидерство возвращается к OCZ Intrepid 3800 800 Гбайт. При этом обратите внимание, добавление к чтениям запросов на произвольную запись информации приводит к снижению производительности, которое тем больше, чем больше доля записей. Иными словами, максимальное и минимальное значение производительности у обоих SSD наблюдается в тех случаях, когда имеет место «чистая» нагрузка, состоящая исключительно из чтений или записей соответственно.

Скорость последовательных операций



Любопытно, но по скорости последовательного чтения OCZ Intrepid 3800 800 Гбайт оказывается далеко не на лидирующих позициях. Он заметно отстаёт от Intel SSD DC S3500 600 Гбайт и, более того, показывает максимальную производительность лишь при очереди запросов в 32 команды, когда интеловский флеш-диск выдаёт наивысшее быстродействие уже при очереди в 16 команд.



Но при последовательной записи картина обратная. OCZ Intrepid 3800 800 Гбайт смотрится заметно выигрышнее, чем Intel SSD DC S3500 600 Гбайт, опережая его в 2-2,5 раза.



Приведённый график производительности при смешанной нагрузке вносит в картину дополнительную ясность. Как можно видеть, Intrepid 3800 прекрасно справляется со смешанной нагрузкой, когда наряду с операциями чтения на SSD хотя бы в минимальном объёме поступают и операции записи. Intel SSD DC S3500 600 Гбайт же напротив, в этом случае в скорости теряет.

Производительность при смешанной нагрузке

Тесты, проведённые в этом разделе, воссоздают нагрузку, характерную для тех или иных серверных приложений.









Intrepid 3800 800 Гбайт показывает лучший результат в сценариях, моделирующих сервер баз данных или файловый сервер, в то время как Intel SSD DC S3500 600 Гбайт быстрее конкурента при использовании в веб-сервере. Это вполне согласуется с той картиной, которая сложилась у нас до этого момента. Серверный SSD компании OCZ хорош при смешанных нагрузках и в тех случаях, когда существенная доля операций – это записи. Собственно, в такой среде он не только показывает отличное быстродействие, но и хорошо вписывается в неё благодаря своей высокой выносливости. Интеловский накопитель больше подходит для тех случаев, когда важна скорость чтения данных, а записи носят редкий характер.

Выводы

Хотя имя OCZ у многих ассоциируется в первую очередь с твердотельными накопителями для персональных компьютеров, эта компания достаточно давно пытается выйти на рынок систем хранения данных корпоративного класса. В ассортименте OCZ серверные SSD представлены уже несколько лет, но теперь они вышли на качественно новый уровень, предлагая как минимум не худшие возможности, чем в продукции лидеров этого рынка. Например, рассмотренный в этой статье Intrepid 3800 – это не просто высоконадёжный SSD, основанный на eMLC NAND с повышенной выносливостью. В дополнение к этому ему также свойственны и типичные функции лучших серверных флеш-дисков, в частности, усиленные контрольные суммы, проверка целостности данных на всех этапах их обработки, защита от сбоев питания, а также RAID-подобная избыточность массива флеш-памяти, защищающая от утраты информации при отказе NAND-кристаллов. Кроме того, для своих SSD корпоративного класса OCZ предлагает программное средство StoragePeak 1000, позволяющее легко организовать обслуживание всего парка накопителей по локальной сети.

В результате, Intrepid 3800 может стать достаточно удачным выбором для использования в файловых серверах или серверах баз данных. На это указывает и декларируемая надёжность: все технологии, реализованные в этом флеш-диске, позволяют в течение пятилетнего гарантийного срока ежедневно четырежды перезаписывать полную ёмкость этого SSD. Справедливости ради надо заметить, что серверные накопители вроде Intel SSD DC S3700 располагают заметно более высоким ресурсом, но для применений в серверной среде с небольшой и средней нагрузкой ресурса OCZ Intrepid 3800 более чем достаточно.



К тому же у OCZ Intrepid 3800 есть важное преимущество – высокое быстродействие. Как показало тестирование, при операциях записи или при смешанной нагрузке этот накопитель оказывается существенно быстрее интеловского SSD, который выигрывает у предложения OCZ лишь при чистых чтениях. А это значит, что аппаратная платформа Everest 2, разработанная OCZ на основе контроллера Marvell 88S9187 и собственной микропрограммы, оказалась хорошо приспособленной для работы в серверной среде. Фактически, с точки зрения производительности к Intrepid 3800 может быть лишь одна претензия – при непрерывной нагрузке его производительность периодически проседает. Частота подобных эпизодов не слишком высока, но в RAID-массивах с большим количеством участников использовать Intrepid 3800 мы бы всё-таки не рекомендовали.

Ну и в заключение хочется добавить, что OCZ Intrepid 3800 стоит примерно на 10-15 процентов дешевле конкурирующих SSD на базе eMLC-памяти с похожими характеристиками. И это делает его действительно интересным вариантом для бизнес-применений.
Похожие статьи