Скорость соединения при использовании технологии ADSL. Беспроводные сети - как это работает

09.06.2018

Почему при использовании технологии ADSL скорость передачи данных всегда меньше скорости соединения? Почему ADSL-модем соединяется на скорости 12 Мбит/с, а скорость, измеряемая speedtest.net, не превышает 8 Мбит/с?

При использовании технологии ADSL скорость передачи данных всегда меньше скорости соединения как минимум на 13-15% . Это технологическое ограничение, о котором мы далее расскажем подробнее. Оно не зависит ни от провайдера, ни от используемого модема.
В идеальных условиях при скорости соединения 12 Мбит/с можно рассчитывать на максимальную реальную скорость ~ 10 Мбит/с.

В реальности, помимо технологического ограничения, есть еще целый ряд факторов, снижающих скорость передачи. Об этих факторах мы расскажем далее.


Технология ADSL (Asymmetric Digital Subscriber Line) - асимметричная технология передачи данных, в которой доступная полоса пропускания канала распределена между входящим (Download ) и исходящим (Upload ) трафиком асимметрично. Таким образом, при подключении ADSL-модема используется скорость к абоненту (Download ) и скорость от абонента (Upload ).
В ADSL-сетях передачи данных скорость подключения измеряется в Мегабитах в секунду (Мбит/с) или Килобитах в секунду (Кбит/с) .
Например: цифры 10240/768 говорят о том, что максимальная входящая скорость подключения к абоненту составит 10240 Кбит/с (скорость, с которой данные будут поступать на ваш локальный компьютер), а максимальная исходящая скорость подключения от абонента составит 768 Кбит/с (скорость, с которой данные будут поступать от вашего локального компьютера на удаленный сервер).
При этом максимальная скорость при скачивании файлов (скорость закачки) составит ~ 1000 Килобайт в секунду (КБ/сек) .
Эта цифра получена по следующей формуле:
скорость подключения (10240) - 15% (1500) / 8 (для перевода килобит в килобайты) .


Дело в том, что интернет-браузеры или менеджеры закачек/загрузок показывают скорость передачи в Килобайтах в секунду .



Например, в браузере Internet Expolrer скорость закачки файла отображается в поле Скорость передачи (Transfer rate): xxx КБ/сек (KB/Sec).


Браузеры и/или менеджеры закачек/загрузок используют эту цифру для оценки скорости передачи, чтобы рассчитать общее время загрузки файла. Но обращаем ваше внимание, что по ряду причин скорость передачи данных отображается неточно. Например, данные могут буферизироваться (при этом таймеры запускаются с небольшой задержкой, что приводит к неправильным показаниям). Также скорость передачи данных может зависеть от производительности компьютера.


Реальную скорость соединения рекомендуем проверить следующим образом. Самый надежный способ для получения более достоверных результатов - замерить скорость скачивания файла с сайта вашего интернет-провайдера.
Нужно скачать какой-нибудь файл с сайта провайдера и посмотреть скорость закачки этого файла.

Многие пользователи часто используют популярные интернет-сервисы для проверки скорости интернет-канала (например, speedtest.net). Мы обращаем ваше внимание, что проверка скорости с помощью интернет-сервисов не гарантирует достоверного измерения. В данном случае точность измерения скорости вашего интернет-канала будет зависеть от выбранного сервера и его загруженности, его местоположения, загруженности вашего интернет-канала и других факторов.


Подробно рассмотрим факторы, которые влияют на реальную скорость соединения:

  • В качестве транспортного протокола коммуникационное оборудование (IP ADSL-коммутаторы) использует технологию АТМ (Asynchronous Transfer Mode - асинхронный способ передачи данных). АТМ - сетевая высокопроизводительная технология коммутации и мультиплексирования, основанная на передаче данных в виде кадров (ячейки) фиксированного размера (53 байта).
    Как известно, Интернет использует протокол IP в качестве протокола связи, и в частности протокол TCP/IP. Технология ADSL в качестве транспортного протокола используют ATM, и поэтому данные передаются по вашей ADSL-линии с помощью TCP/IP через ATM. Т.е. IP-кадры упаковываются (инкапсулируются) в АТМ-ячейки и передаются по DSL-линии, а затем принимающим оборудованием снова распаковываются, и получаются обычные IP-кадры.
    Крупные пакеты при этом будут поделены на 48-байтные части. Если пакет не делится без остатка на 48, то к нему добавляется заполнение, чтобы получилось целое число ячеек по 48 байт. После деления пакета на ячейки по 48 байт к каждой из получившихся ячеек добавляется заголовок (5 байт).
    В результате происходит снижение скорости на уровне 10% от скорости передачи данных.
  • Использование протокола TCP/IP при передаче данных снижает скорость на уровне 3% от скорости передачи данных, т.к. передаваемую полезную информацию (данные) дополняет служебная (протокольная) информация.

Указанные выше факторы - это и есть, те самые технологические ограничения, о которых шла речь в начале статьи. Эти ограничения и приводят к тому, что скорость передачи данных всегда меньше скорости соединения как минимум на 13-15% .


Но существуют и другие факторы, снижающие скорость передачи данных.

  • Теоретически в окне браузера или менеджера закачек/загрузок при загрузке файла вы должны видеть скорость передачи, вычисляемой по формуле скорость подключения - 15% (расходы при использовании TCP/IP и ATM) / 8 (для перевода килобит в килобайты) , но в реальности отображается скорость ниже, и этому есть свои причины:

    • Настройки компьютера. Например, недостаточно памяти (виртуальной/оперативной), устаревший процессор, нестабильная работа (сбои) операционной системы (синий экран) или программного обеспечения, недостаток свободного места на жестком диске, наличие на компьютере вредоносных программ/вирусов и т.д.

    • Потери пакетов при передаче данных. Большое количество потерь возможно на плохих линиях (каналах связи) или при использовании предельно допустимой скорости подключения.
      Если происходит потеря пакетов при передаче кадров, то протокол TCP/IP замечает отсутствующий пакет в общем потоке данных, не признает его получения и затем инициирует повторную передачу потерянных данных. Процедура ретрансляции приводит к дополнительным задержкам.
      Таким образом, протокол TCP/IP, помимо важной функции контроля и транспортировки данных, при наличии больших потерь пакетов на линии замедляет скорость передачи данных.
      Для проверки качества соединения с сервером в сети Интернет можно использовать утилиту ping (пинг). В командной строке операционной системы выполните команду ping -t имя_сайта , например ping -t www.download.com . Подождите секунд 30 и затем нажмите Ctrl+C для завершения работы утилиты. В статистике будет указан % потерь пакетов. Если потери пакетов составят свыше 5%, то производительность протокола TCP/IP будет плохой при работе с указанным сайтом.

    • Перегрузка серверов и шлюзов провайдера. Зависит от структуры сети провайдера (например, много шлюзов) или низкой пропускной способности исходящего канала провайдера. Проблема наблюдается при пиковой нагрузке со стороны пользователей. Слишком большое количество обращений на сервер может превысить максимум его использования в часы пиковой нагрузки и вызовет замедления в работе.

    • Проблемы с маршрутизацией также могут вызвать снижение скорости. При обнаружении проблем с маршрутизацией пакеты могут перенаправляться по альтернативным маршрутам, что вызовет задержки при передаче данных.

    • Использование протокола PPPoE может приводить к снижению скорости. PPPoE - это туннелирующий сетевой протокол канального уровня передачи кадров PPP через Ethernet. В основном используется DSL-сервисами. PPPoE ресурсоемкий протокол, и при передаче сетевых данных требования к процессору возрастают. В зависимости от реализации и использования PPPoE можно увидеть снижение максимальной скорости до 5-25%.

    • Недостаточная (низкая) производительность сервера BRAS (Broadband Remote Access Server). Маршрутизатор широкополосного удаленного доступа (BRAS) маршрутизирует трафик к/от DSL-коммутатора (DSLAM) в сетях интернет-провайдера. BRAS находится в ядре сети провайдера и агрегирует пользовательские подключения из сети уровня доступа. Маршрутизатор производит логическую терминацию туннелей точка-точка (PPP). Это могут быть инкапсулированные туннели PPP через Ethernet (PPPoE) или PPP через ATM (PPPoA). BRAS также является интерфейсом к системам аутентификации, авторизации и учета трафика.

    • Возможно ограничение скорости по тарифному плану на сервере BRAS. Типовой случай, когда скорость физического соединения одна, а скорость приема данных ограничена оплаченным тарифным планом.

    • При использовании дополнительного сервиса, например IPTV (цифровое телевидение), поток принимаемого телевидения тоже занимает определенную полосу, как правило около 4 Мбит/с для каналов стандартного разрешения. Максимальная скорость приема данных, при использовании сервиса IPTV, может быть рассчитана по следующей формуле:
      скорость подключения - 15% - скорость потока IPTV .
      Например, скорость подключения (10240) - 15% (1500) - скорость потока IPTV (4000) = 4700 Кбит/с (587 Кбайт/с).


Written on 16 Августа 2006 . Posted in Беспроводные сети

Страница 12 из 13

Максимальная скорость передачи данных в протоколах 802.11b/g

Как было показано, максимальная скорость, определяемая протоколом 802.11b, составляет 11 Мбит/с, а для протокола 802.11g — 54 Мбит/с.

Однако следует четко различать полную скорость передачи и полезную скорость передачи. Дело в том, что технология доступа к среде передачи данных, структура передаваемых кадров, заголовки, прибавляемые к передаваемым кадрам на различных уровнях модели OSI, — все это предполагает наличие достаточно большого объема служебной информации. Вспомним хотя бы наличие охранных интервалов при использовании OFDM-технологии. В результате полезная или реальная скорость передачи, то есть скорость передачи пользовательских данных, всегда оказывается ниже полной скорости передачи.

Более того, реальная скорость передачи зависит и от структуры беспроводной сети. Так, если все клиенты сети используют один и тот же протокол, например 802.11g, то сеть является гомогенной и скорость передачи данных в такой сети выше, чем в смешанной сети, где имеются клиенты как 802.11g, так и 802.11b. Дело в том, что клиенты 802.11b «не слышат» клиентов 802.11g, которые используют OFDM-кодирование. Поэтому с целью обеспечения совместного доступа к среде передачи данных клиентов, использующих различные типы модуляции, в подобных смешанных сетях точки доступа должны отрабатывать определенный механизм защиты. В результате использования механизмов защиты в смешанных сетях реальная скорость передачи становится еще меньше.

Кроме того, реальная скорость передачи данных зависит и от используемого протокола (TCP или UDP) и от размера длины пакета. Естественно, что протокол UDP предусматривает более высокие скорости передачи. Теоретические максимальные скорости передачи данных для различных типов сетей и протоколов представлены в таблице 3.

Таблица. 3. Максимальные скорости передачи данных для различных типов сетей и протоколов при размере пакетов 1500 байт

Тип сети

110    Глава 2. Физический уровень

помех на линии. Другими словами, ограничение полосы пропускания частот канала ограничивает его пропускную способность для передачи двоичных данных даже для идеальных каналов. Однако схемы, использующие несколько уровней напряжений, существуют и позволяют достичь более высоких скоростей передачи данных. Мы обсудим это ниже в этой главе.

Таблица 2.1. Соотношение между скоростью передачи данных и числом гармоник для нашего примера

1-я гармоника, Гц

Количество пропускаемых гармоник

С термином «полоса пропускания» связано множество недоразумений, так как для инженеров-электриков и компьютерных специалистов он означает разные вещи. Для инженера-электрика (аналоговая) полоса пропускания, как уже говорилось выше, это значение в герцах, указывающее ширину диапазона частот. Для компьютерного специалиста (цифровая) полоса пропускания - это максимальная скорость данных в канале, то есть значение, измеряемое в битах в секунду. Фактически скорость данных определяется аналоговой полосой пропускания физического канала, применяемого для передачи цифровой информации, и эти два показателя связаны, как мы увидим далее. В этой книге будет понятно из контекста, какой термин имеется в виду в каждом конкретном случае - аналоговая (Гц) или цифровая (бит/с) полоса пропускания.

2.1.3. Максимальная скорость передачи данных через канал

В 1924 году американский ученый Х. Найквист (H. Nyquist) из компании AT&T пришел к выводу, что существует некая предельная скорость передачи даже для идеальных каналов. Он вывел уравнение, позволяющее найти максимальную скорость передачи данных в бесшумном канале с ограниченной полосой пропускания частот. В 1948 году Клод Шеннон (Claude Shannon) продолжил работу Найквиста и расширил ее для случая канала со случайным (то есть термодинамическим) шумом. Это важнейшая работа во всей теории передачи информации. Мы кратко рассмотрим результаты работы Найквиста и Шеннона, ставшие сегодня классическими.

Найквист доказал, что если произвольный сигнал прошел через низкочастотный фильтр с полосой пропускания B , то такой отфильтрованный сигнал может быть полностью восстановлен по дискретным значениям этого сигнала, измеренным с частотой

2.1. Теоретические основы передачи данных    111

2B в секунду. Производить измерения сигнала чаще, чем 2B в секунду, нет смысла, так как более высокочастотные компоненты сигнала были отфильтрованы. Если сигнал состоит изV дискретных уровней, то уравнение Найквиста будет выглядеть так:

максимальная скорость передачи данных = 2B log2 V , бит/с.

Так, например, бесшумный канал с частотой пропускания в 3 кГц не может передавать двоичные (то есть двухуровневые) сигналы на скорости, превосходящей 6000 бит/с.

Итак, мы рассмотрели случай бесшумных каналов. При наличии в канале случайного шума ситуация резко ухудшается. Уровень термодинамического шума в канале измеряется отношением мощности сигнала к мощности шума и называется отношением сигнал/шум . Если обозначить мощность сигналаS , а мощность шума -N , то отношение сигнал/шум будет равноS/N . Обычно величина отношения выражается через ее десятичный логарифм, умноженный на 10: 10 lgS/N , так как ее значение может меняться в очень большом диапазоне. Единица такой логарифмической шкалы называетсядецибелом (decibel, dB, дБ); здесь приставка «деци» означает «десять», а «бел» - это единица измерения, названная в честь изобретателя телефона Александра Грэма Белла. Таким образом, отношение сигнал/шум, равное 10, соответствует 10 дБ, отношение, равное 100, равно 20 дБ, отношение, равное 1000, равно 30 дБ и т. д. Производители стереоусилителей часто указывают полосу частот (частотный диапазон), в которой их аппаратура имеет линейную амплитудно-частотную характеристику в пределах 3 дБ. Отклонение в 3 дБ соответствует ослаблению сигнала примерно в два раза (потому что 10 log10 0,5≈ –3).

Главным результатом, который получил Шеннон, было утверждение о том, что максимальная скорость передачи данных или емкость канала с полосой частот B Гц и отношением сигнал/шум, равнымS/N , вычисляется по формуле:

максимальная скорость передачи данных = B log2 (1 +S/N ), бит/с.

Это наилучшее значение емкости, которое можно наблюдать для реального канала. Например, полоса пропускания канала ADSL (Asymmetric Digital Subscriber Line, ассиметричная цифровая абонентская линия), по которому осуществляется доступ в Интернет через телефонные сети, равна приблизительно 1 МГц. Отношение сигнал/ шум в значительной степени зависит от расстояния между компьютером пользователя и телефонной станцией. Для коротких линий длиной от 1 до 2 км очень хорошим считается значение около 40 дБ. С такими характеристиками канал никогда не сможет передавать более 13 Мбит/с, независимо от способа модуляции сигнала, то есть количества используемых уровней сигнала, частоты дискретизации и т. д. Поставщики услуг заявляют скорость передачи данных до 12 Мбит/с, однако пользователям редко удается наблюдать такое качество передачи данных. Тем не менее это великолепный результат для шестидесяти лет развития технологий передачи информации, в течение которых произошел огромный скачок от емкости каналов, характерной для времен Шеннона, и до существующей в современных реальных сетях.

Результат, полученный Шенноном и подкрепленный постулатами теории информации, применим к любому каналу с Гауссовским (термальным) шумом. Попытки доказать обратное заранее обречены на провал. Для того чтобы добиться в канале ADSL скорости, превышающей 13 Мбит/с, необходимо либо улучшить отношение

Работаю с недавнего времени в техподдержке одного известного в России, но не в Москве, интернет-провайдера. Захотелось максимально доступно рассказать Пикабушникам как самостоятельно настроить свою домашнюю wi-fi сеть и почему же скорость по замерам зачастую отличается от заявленной по тарифу. Если вкратце, потому что Wi-Fi.

Термин «Wi-Fi» изначально был придуман как игра слов для привлечения внимания потребителя «намёком» на Hi-Fi (англ. High Fidelity - высокая точность). Несмотря на то, что поначалу фигурировало словосочетание «Wireless Fidelity» («беспроводная точность»), на данный момент от такой формулировки отказались, и термин «Wi-Fi» никак не расшифровывается. (wiki)

Под аббревиатурой Wi-Fi скрывается множество стандартов, которые принято обобщённо называть IEEE 802.11x. В частности, сегодня наиболее распространены стандарты IEEE 802.11g (до 54 Мбит/с) и IEEE 802.11n (до 600 Мбит/с). В реальных условиях вам очень повезёт, если максимальная скорость передачи данных составит хотя бы половину от заявленной. Дело в том, что, с одной стороны, заявленная максимальная пропускная способность линии связи – это полная пропускная способность, которая используется не только для передачи полезной информации, но и для служебных данных, которых набирается примерно на половину общего объёма полезной информации. С другой же стороны на скорость передачи данных влияет окружающая среда. Например, типичный беспроводной адаптер «пробивает» три-четыре капитальные стены, а иногда (если в стенах много металлических элементов) и того меньше. В условиях прямой видимости можно ожидать дальности связи в несколько десятков метров.

Пока получается скучновато, но я стараюсь найти баланс между информативностью и наглядностью.

Итак, у вас дома наверняка уже есть как минимум одно устройство, поддерживающее передачу данных по wi-fi, например ноутбук или смартфон. Соответственно вам хочется иметь возможность быть "на связи" в любой точке квартиры не будучи связанным проводами и чтобы интернет страницы и видео открывались без тормозов. Для этого нужен интернет, который вам протянет провайдер и wifi точка доступа, которую он же вам может предоставить на условиях аренды или в собственность. О разнице между точкой доступа и wi-fi роутером сейчас говорить не будем, скажу лишь, что скорее всего ваш выбор падет именно на роутер (маршрутизатор).

Простейший роутер с поддержкой стандарта 802.11n можно приобрести за 1,5-2 т.р. (Подобного класса роутер предоставляет обычно и провайдер.) Такое устройство чаще всего может выдать до 64 Мбит/с реальной скорости, если у вас современный ноутбук с wifi адаптером того же 802.11n, а беспроводная сеть нормально настроена. На смартфонах и планшетах адаптеры обычно послабее и реальную скорость которую они могут получить как правило не превышает 30 Мбит/с, чего им, в общем-то, хватает. О том какой стандарт wifi поддерживает ваше устройство информацию можно найти в технических характеристиках на сайте производителя.

На ноутбуках так же или смотрим состояние сетевого подключения. Пуск ->

Панель управления -> Сеть и Интернет -> Центр управления сетями и общим доступом -> Изменение параметров адаптера ->

Правый клик по вашему беспроводному подключению -> Состояние. Тут ищем строку "Скорость", если значение 54 Мбит/с, то нормальной скоростью загрузки по замерам будет 18-22 Мбит/с, а если 150 Мбит/с, то от 40 до 50 Мбит/с.

Вот мы и дошли до сути данного эпоса. Настройка домашней беспроводной сети начинается с расположения роутера.

1. Удостоверьтесь, что разместили маршрутизатор/точку доступа в центральном местоположении по отношению к вашей будущей беспроводной сети для наилучшей производительности. Постарайтесь расположить маршрутизатор/точку доступа как можно выше в помещении, так чтобы сигнал распределялся по всему дому. Если у Вас двух-этажный дом, большая квартира, Вам может понадобится повторитель (репитер, ретранслятор), чтобы расширить рабочий диапазон сигнала.

2. Расположите домашние приборы, такие как беспроводные телефоны, bluetooth-устройства, микроволновые печи и телевизоры, как можно дальше от маршрутизатора/точки доступа. Это значительно снизит различные помехи, которые могут вызывать подобные приборы при их работе на определенной частоте. Здесь еще стоит добавить, что радиосигнал от роутера к устройству идет по прямой и если на пути сигнала окажется телевизор или отражающие поверхности типа стекла или зеркала, это так же негативно повлияет на качество сигнала, а значит на скорость и на радиус покрытия. Есть и еще факторы негативно влияющие на качество wifi соединения, но основные я затронул.

3. Не позволяйте вашим соседям или злоумышленникам подключаться к вашей беспроводной сети. Обезопасьте беспроводную сеть, включив функцию WPA/WPA2 безопасности на маршрутизаторе (пароль на wifi).

Настоятельно рекомендую к ознакомлению всем владельцам роутеров в многоквартирных домах для понимания почему скорость по wifi скачет, ниже заявленной или вообще соединение прерывается. Показано на примере роутера Zyxel, но выбор канала обычно предусмотрен и в настройках роутеров других марок.

Кстати выражаю огромный респект составителям данной базы, потому что лучшего материала я еще не встречал. Очень доступно и интересно об интернет технологиях.

Обычно чтобы зайти в настройки роутера нужно вбить в адресную строку браузера адрес самого роутера. Посмотреть его можно нажав в том же состоянии подключения (см. выше) кнопку Сведения. Строка "Основной шлюз" или "Шлюз по умолчанию". Нужный адрес и данные для входа могут быть так же указаны на самом роутере.

Чаще всего бывают:

192.168.0.1

192.168.1.1

192.168.10.1

192.168.100.1

Стандартные данные для входа в настройки популярных моделей роутеров:

Перезагружать роутер по питанию (выключать из розетки на 10 секунд) после смены канала не обязательно, но возможно придется подождать 30-40 секунд пока роутер и ваше устройство не согласуются работать на новой частоте. Грубо говоря wifi сеть может отвалиться ненадолго или пока ее не подключат на устройстве вручную.

Для более простого определения оптимального канала (чем указано в статье по ссылке) установите на свой смартфон или планшет (Android) приложение Wifi Analyzer, просканируйте им окружающие вас wifi сети. Далее настройте на вашем роутере канал, которому приложение даст максимальный рейтинг и не забудьте сохранить изменения.

Хотелось бы чтобы данный пост прочитало и осмыслило максимальное количество людей, ведь тогда у меня и других сотрудников техподдержки освободится масса времени на то, чтобы помочь тем людям у которых реально могут быть проблемы с соединением, требующие срочного решения. А у Вас будет меньше поводов ругать провайдера за "плохой" интернет. За рейтингом не гонюсь, поэтому добавлю 3 коммента для минусов. Так же буду рад любой обратной связи, дабы повысить свой профессионализм и радовать Клиентов грамотными консультациями. Ну а если появятся подписчики, то буду рад продолжить клепать посты на it-тематику и о работе техподдержки. Спасибо, что дочитали.

Lou Frenzel

Electronic Design

Скорость последовательной передачи данных обычно обозначают термином битрейт (bit rate). Однако другой часто используемой единицей является скорость передачи в бодах (baud rate). Хотя это не одно и то же, при определенных обстоятельствах между обеими единицами существует определенное сходство. В статье дается четкое разъяснение различий между этими понятиями.

Общая информация

В большинстве случаев в сетях информация передается последовательно. Биты данных поочередно передаются по каналу связи, кабельному или беспроводному. На Рисунке 1 изображена последовательность бит, передаваемая компьютером или какой-либо другой цифровой схемой. Такой сигнал данных часто называют исходным. Данные представлены двумя уровнями напряжения, например, логической единице соответствует напряжение +3 В, а логическому нулю - +0.2 В. Могут использоваться и другие уровни. В формате кода без возврата к нулю (NRZ) (Рисунок 1) сигнал не возвращается к нейтральному положению после каждого бита, в отличие от формата с возвращением к нулю (RZ).

Битрейт

Скорость передачи данных R выражается в битах в секунду (бит/с или bps). Скорость является функцией продолжительности существования бита или времени бита (T B) (Рисунок 1):

Эту скорость называют также шириной канала и обозначают буквой C. Если время бита равно 10 нс, то скорость передачи данных определится как

R = 1/10 × 10 - 9 = 100 млн. бит/с

Обычно это записывается как 100 Мб/с.

Служебные биты

Битрейт, как правило, характеризует фактическую скорость передачи данных. Однако в большинстве последовательных протоколов данные являются только частью более сложного кадра или пакета, включающего в себя биты адреса источника, адреса получателя, обнаружения ошибок и коррекции кода, а также прочую информацию или биты управления. В кадре протокола данные называются полезной информацией (payload). Биты, не являющиеся данными, называются служебными (overhead). Иногда количество служебных бит может быть существенным - от 20% до 50%, в зависимости от общего числа полезных бит, передаваемых по каналу.

К примеру, кадр протокола Ethernet, в зависимости от количества полезных данных, может иметь до 1542 байт или октетов. Полезных данных может быть от 42 до 1500 октетов. При максимальном числе полезных октетов служебных будет только 42/1542, или 2.7%. Их было бы больше, если полезных байт было бы меньше. Это соотношение, известное также под названием эффективность протокола, обычно выражают в процентах количества полезных данных от максимального размера кадра:

Эффективность протокола = количество полезных данных/размер кадра = 1500/1542 = 0.9727 или 97.3%

Как правило, чтобы показать истинную скорость передачи данных по сети, фактическая скорость линии увеличивается на коэффициент, зависящий от количества служебной информации. В One Gigabit Ethernet фактическая скорость линии равна 1.25 Гб/с, тогда как скорость передачи полезных данных составляет 1 Гб/с. Для 10-Gbit/s Ethernet эти величины равны, соответственно, 10.3125 Гб/с и 10 Гб/с. При оценке скорости передачи данных по сети также могут использоваться такие понятия, как пропускная способность, скорость передачи полезных данных или эффективная скорость передачи данных.

Скорость передачи в бодах

Термин «бод» происходит от фамилии французского инженера Эмиля Бодо (Emile Baudot), который изобрел 5-битовый телетайпный код. Скорость передачи в бодах выражает количество изменений сигнала или символа за одну секунду. Символ - это одно из нескольких изменений напряжения, частоты или фазы.

Двоичный формат NRZ имеет два представляемых уровнями напряжения символа, по одному на каждый 0 или 1. В этом случае скорость передачи в бодах или скорость передачи символов - то же самое, что и битрейт. Однако на интервале передачи можно иметь более двух символов, в соответствии с чем на каждый символ отводится несколько бит. При этом данные по любому каналу связи могут передаваться только с помощью модуляции.

Когда средство передачи не может обработать исходный сигнал, на первый план выходит модуляция. Конечно, речь идет о беспроводных сетях. Исходные двоичные сигналы не могут передаваться непосредственно, они должны переноситься на несущую радиочастоту. В некоторых протоколах кабельной передачи данных также применяется модуляция, позволяющая повысить скорость передачи. Это называется «широкополосной передачей».
Выше: модулирующий сигнал, исходный сигнал

Используя составные символы, в каждом можно передавать по несколько бит. Например, если скорость передачи символов равна 4800 бод, и каждый символ состоит из двух бит, полная скорость передачи данных будет 9600 бит/с. Обычно количество символов представляется какой-либо степенью числа 2. Если N - количество бит в символе, то число требуемых символов будет S = 2N. Таким образом, полная скорость передачи данных:

R = скорость в бодах × log 2 S = скорость в бодах × 3.32 log 1 0 S

Если скорость в бодах равна 4800, и на символ отводится два бита, количество символов 22 = 4.

Тогда битрейт равен:

R = 4800 × 3.32log(4) = 4800 × 2 = 9600 бит/с

При одном символе на бит, как в случае с двоичным форматом NRZ, скорости передачи в битах и бодах совпадают.

Многоуровневая модуляция

Высокий битрейт можно обеспечить многими способами модуляции. Например, при частотной манипуляции (FSK) в каждом символьном интервале для представления логических 0 и 1 обычно используются две различные частоты. Здесь скорость передачи в битах равна скорости передачи в бодах. Но если каждый символ представляет два бита, то требуются четыре частоты (4FSK). В 4FSK скорость передачи в битах в два раза превышает скорость в бодах.

Еще одним распространенным примером является фазовая манипуляция (PSK). В двоичной PSK каждый символ представляет 0 или 1. Двоичному 0 соответствует 0°, а двоичной 1 - 180°. При одном бите на символ скорость в битах равна скорости в бодах. Однако соотношение числа бит и символов несложно увеличить (см. Таблицу 1).

Таблица 1. Двоичная фазовая манипуляция.

Биты

Фазовый сдвиг (градусов)

Например, в квадратурной PSK на один символ приходится два бита. При использовании такой структуры и двух бит на бод скорость передачи в битах превышает скорость в бодах в два раза. При трех битах на один бод модуляция получит обозначение 8PSK, и восемь различных фазовых сдвигов будут представлять три бита. А при 16PSK 16 фазовых сдвигов представляют 4 бита.

Одной из уникальных форм многоуровневой модуляции является квадратурная амплитудная модуляция (QAM). Для создания символов, представляющих множество битов, QAM использует комбинацию различных уровней амплитуд и смещений фаз. Например, 16QAM кодирует четыре бита на символ. Символы представляют собой сочетание различных уровней амплитуды и фазовых сдвигов.

Для наглядного отображения амплитуды и фазы несущей для каждого значения 4-битного кода используется квадратурная диаграмма, имеющая также романтическое название «сигнальное созвездие» (Рисунок 2). Каждая точке соответствует определенная амплитуда несущей и фазовый сдвиг. В общей сложности 16 символов кодируются четырьмя битами на символ, в результате чего битрейт превышает скорость передачи в бодах в 4 раза.

Почему несколько бит на бод?

Передавая больше одного бита на бод можно отправлять данные с высокой скоростью по более узкому каналу. Следует напомнить, что максимально возможная скорость передачи данных определяется пропускной способностью канала передачи.
Если рассмотреть наихудший вариант чередования нулей и единиц в потоке данных, то максимальная теоретическая скорость передачи C в битах для данной полосы пропускания B будет равна:

Или полоса пропускания при максимальной скорости:

Для передачи сигнала со скоростью 1 Мб/с требуется:

B = 1/2 = 0.5 МГц или 500 кГц

При использовании многоуровневой модуляции с несколькими битами на символ максимальная теоретическая скорость передачи данных будет равна:

Здесь N - количество символов в символьном интервале:

log 2 N = 3.32 log10N

Полоса пропускания, требуемая для обеспечения желаемой скорости при заданном количестве уровней, вычисляется следующим образом:

Например, полоса пропускания, необходимая для достижения скорости передачи 1 Мб/с при двух битах на один символ и четырех уровнях, может быть определена как:

log 2 N = 3.32 log 10 (4) = 2

B = 1/2(2) = 1/4 = 0.25 МГц

Количество символов, необходимых для получения желаемой скорости передачи данных в фиксированной полосе пропускания, может быть вычислено как:

3.32 log 10 N = C/2B

Log 10 N = C/2B = C/6.64B

N = log-1 (C/6.64B)

Используя предыдущий пример, количество символов, необходимых для передачи со скоростью 1 Мб/с по каналу 250 кГц, определится следующим образом:

log 10 N = C/6.64B = 1/6.64(0.25) = 0.60

N = log-1 (0.602) = 4 символа

Эти расчеты предполагают, что в канале отсутствуют шумы. Для учета шума нужно применить теорему Шеннона-Хартли:

C = B log 2 (S/N + 1)

C -пропускная способность канала в битах в секунду,
В - полоса пропускания канала в герцах,
S/N -отношение сигнал/шум.

В форме десятичного логарифма:

C = 3.32B log 10 (S/N + 1)

Какова максимальная скорость в канале 0.25 МГц с отношением S/N равным 30 дБ? 30 дБ переводится в 1000. Следовательно, максимальная скорость:

C = 3.32B log 10 (S/N + 1) = 3.32(0.25) log 10 (1001) = 2.5 Мб/с

Теорема Шеннона-Хартли конкретно не утверждает, что для достижения этого теоретического результата должна применяться многоуровневая модуляция. Используя предыдущую процедуру, можно узнать, сколько бит требуется на один символ:

log 10 N = C/6.64B = 2.5/6.64(0.25) = 1.5

N = log-1 (1.5) = 32 символа

Использование 32 символов подразумевает пять бит на символ (25 = 32).

Примеры измерения скорости передачи в бодах

Практически все высокоскоростные соединения используют какие-либо формы широкополосной передачи. В Wi-Fi в схемах модуляции с мультиплексированием с ортогональным частотным разделением каналов (OFDM) применяются QPSK, 16QAM и 64QAM.

То же самое верно для WiMAX и технологии сотовой связи Long-Term Evolution (LTE) 4G. Передаче сигналов аналогового и цифрового телевидения в системах кабельноого ТВ и высокоскоростного доступ в Интернет основана на 16QAM и 64QAM, в то время как в спутниковой связи используют QPSK и различные версии QAM.

Для систем наземной мобильной радиосвязи, обеспечивающих общественную безопасность, недавно были приняты стандарты модуляции речевой информации и данных с помощью 4FSK. Этот сужающий полосу пропускания способ разработан для сокращения полосы с 25 кГц на канал до 12.5 кГц, и, в конечном счете, до 6.25 кГц. В результате в том же спектральном диапазоне можно разместить больше каналов для других радиостанций.

Телевидение высокой четкости в США использует метод модуляции, называемый eight-level vestigial sideband (8-уровневая передача сигналов с частично подавленной боковой полосой), или 8VSB. В этом методе отводится три бита на символ при 8 уровнях амплитуды, что позволяет передавать 10,800 тыс. символов в секунду. При 3 битах на символ полная скорость будет равна 3 × 10,800,000 = 32.4 Мб/с. В сочетании с методом VSB, который передает только одну полную боковую полосу частот и часть другой, видео- и аудиоданные высокой четкости могут передаваться по телевизионному каналу шириной 6 МГц.

Похожие статьи