Виртуальная функция. Виртуальные методы, свойства и индексаторы

24.06.2019

Виртуальные методы, свойства и индексаторы

Полиморфизм предоставляет подклассу способ определения собственной версии метода, определенного в его базовом классе, с использованием процесса, который называется переопределением метода (method overriding) . Чтобы пересмотреть текущий дизайн, нужно понять значение ключевых слов virtual и override.

Виртуальным называется такой метод, который объявляется как virtual в базовом классе. Виртуальный метод отличается тем, что он может быть переопределен в одном или нескольких производных классах. Следовательно, у каждого производного класса может быть свой вариант виртуального метода. Кроме того, виртуальные методы интересны тем, что именно происходит при их вызове по ссылке на базовый класс. В этом случае средствами языка C# определяется именно тот вариант виртуального метода, который следует вызывать, исходя из типа объекта, к которому происходит обращение по ссылке, причем это делается во время выполнения. Поэтому при ссылке на разные типы объектов выполняются разные варианты виртуального метода. Иными словами, вариант выполняемого виртуального метода выбирается по типу объекта, а не по типу ссылки на этот объект.

Так, если базовый класс содержит виртуальный метод и от него получены производные классы, то при обращении к разным типам объектов по ссылке на базовый класс выполняются разные варианты этого виртуального метода.

Метод объявляется как виртуальный в базовом классе с помощью ключевого слова virtual, указываемого перед его именем. Когда же виртуальный метод переопределяется в производном классе, то для этого используется модификатор override . А сам процесс повторного определения виртуального метода в производном классе называется переопределением метода. При переопределении метода - имя, возвращаемый тип и сигнатура переопределяющего метода должны быть точно такими же, как и у того виртуального метода, который переопределяется. Кроме того, виртуальный метод не может быть объявлен как static или abstract.

Переопределение метода служит основанием для воплощения одного из самых эффективных в C# принципов: динамической диспетчеризации методов , которая представляет собой механизм разрешения вызова во время выполнения, а не компиляции. Значение динамической диспетчеризации методов состоит в том, что именно благодаря ей в C# реализуется динамический полиморфизм.

Если при наличии многоуровневой иерархии виртуальный метод не переопределяется в производном классе, то выполняется ближайший его вариант, обнаруживаемый вверх по иерархии.

И еще одно замечание: свойства также подлежат модификации ключевым словом virtual и переопределению ключевым словом override. Это же относится и к индексаторам.

Давайте рассмотрим пример использования виртуальных методов, свойств и индексаторов:

// Реализуем класс содержащий информацию о шрифтах // и использующий виртуальные методы, свойства и индексаторы using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace ConsoleApplication1 { // Базовый класс class Font { string TypeFont; short FontSize; public Font() { TypeFont = "Arial"; FontSize = 12; } public Font(string TypeFont, short FontSize) { this.TypeFont = TypeFont; this.FontSize = FontSize; } public string typeFont { get { return TypeFont; } set { TypeFont = value; } } public short fontSize { get { return FontSize; } set { FontSize = value; } } // Создаем виртуальный метод public virtual string FontInfo(Font obj) { string s = "Информация о шрифте: \n------------------\n\n" + "Тип шрифта: " + typeFont + "\nРазмер шрифта: " + fontSize + "\n"; return s; } } // Производный класс 1 уровня class ColorFont: Font { byte Color; public ColorFont(byte Color, string TypeFont, short FontSize) : base(TypeFont, FontSize) { this.Color = Color; } // Переопределение для виртуального метода public override string FontInfo(Font obj) { // Используется ссылка на метод, определенный в базовом классе Font return base.FontInfo(obj) + "Цвет шрифта: " + Color + "\n"; } // Создадим виртуальное свойство public virtual byte color { set { Color = value; } get { return Color; } } } // Производный класс 2 уровня class GradientColorFont: ColorFont { char TypeGradient; public GradientColorFont(char TypeGradient, byte Color, string TypeFont, short FontSize) : base(Color, TypeFont, FontSize) { this.TypeGradient = TypeGradient; } // Опять переопределяем виртуальный метод public override string FontInfo(Font obj) { // Используется ссылка на метод определенный в производном классе FontColor return base.FontInfo(obj) + "Тип градиента: " + TypeGradient + "\n\n"; } // Переопределим виртуальное свойство public override byte color { get { return base.color; } set { if (value

Начну с повторения: вы не должны вызывать виртуальные функции во время работы конструкторов или деструкторов, потому что эти вызовы будут делать не то, что вы думаете, и результатами их работы вы будете недовольны. Если вы – программист на Java или C#, то обратите на это правило особое внимание, потому что это в этом отношении C++ ведет себя иначе.

Предположим, что имеется иерархия классов для моделирования биржевых транзакций, то есть поручений на покупку, на продажу и т. д. Важно, чтобы эти транзакции было легко проверить, поэтому каждый раз, когда создается новый объект транзакции, в протокол аудита должна вноситься соответствующая запись. Следующий подход к решению данной проблемы выглядит разумным:


class Transaction { // базовый класс для всех

public: // транзакций

virtual void logTransaction() const = 0; // выполняет зависящую от типа

// запись в протокол

Transaction::Transaction() // реализация конструктора

{ // базового класса

logTransaction();

class BuyTransaction: public Transaction { // производный класс

// транзакции данного типа

class SellTransaction: public Transaction { // производный класс

virtual void logTransaction() const = 0; // как протоколировать

// транзакции данного типа


Посмотрим, что произойдет при исполнении следующего кода:


BuyTransaction b;


Ясно, что будет вызван конструктор BuyTransaction, но сначала должен быть вызван конструктор Transaction, потому что части объекта, принадлежащие базовому классу, конструируются прежде, чем части, принадлежащие производному классу. В последней строке конструктора Transaction вызывается виртуальная функция logTransaction, тут-то и начинаются сюрпризы. Здесь вызывается та версия logTransaction, которая определена в классе Transaction, а не в BuyTransaction, несмотря на то что тип создаваемого объекта – BuyTransaction. Во время конструирования базового класса не вызываются виртуальные функции, определенные в производном классе. Объект ведет себя так, как будто он принадлежит базовому типу. Короче говоря, во время конструирования базового класса виртуальных функций не существует.

Есть веская причина для столь, казалось бы, неожиданного поведения. Поскольку конструкторы базовых классов вызываются раньше, чем конструкторы производных, то данные-члены производного класса еще не инициализированы во время работы конструктора базового класса. Это может стать причиной неопределенного поведения и близкого знакомства с отладчиком. Обращение к тем частям объекта, которые еще не были инициализированы, опасно, поэтому C++ не дает такой возможности.

Есть даже более фундаментальные причины. Пока над созданием объекта производного класса трудится конструктор базового класса, типом объекта является базовый класс. Не только виртуальные функции считают его таковым, но и все прочие механизмы языка, использующие информацию о типе во время исполнения (например, описанный в правиле 27 оператор dynamic_cast и оператор typeid). В нашем примере, пока работает конструктор Transaction, инициализируя базовую часть объекта BuyTransaction, этот объект относится к типу Transaction. Именно так его воспринимают все части C++, и в этом есть смысл: части объекта, относящиеся к BuyTransaction, еще не инициализированы, поэтому безопаснее считать, что их не существует вовсе. Объект не является объектом производного класса до тех пор, пока не начнется исполнение конструктора последнего.

То же относится и к деструкторам. Как только начинает исполнение деструктор производного класса, предполагается, что данные-члены, принадлежащие этому классу, не определены, поэтому C++ считает, что их больше не существует. При входе в деструктор базового класса наш объект становится объектом базового класса, и все части C++ – виртуальные функции, оператор dynamic_cast и т. п. – воспринимают его именно так.

В приведенном выше примере кода конструктор Transaction напрямую обращается к виртуальной функции, что представляет собой откровенное нарушение принципов, описанных в данном правиле. Это нарушение легко обнаружить, поэтому некоторые компиляторы выдают предупреждение (а другие – нет; дискуссию о предупреждениях см. в правиле 53). Но даже без такого предупреждения ошибка наверняка проявится до времени исполнения, потому что функция logTransaction в классе Transaction объявлена чисто виртуальной. Если только она не была где-то определена (маловероятно, но возможно – см. правило 34), то такая программа не скомпонуется: компоновщик не найдет необходимую реализацию Transaction::logTransaction.

Не всегда так просто обнаружить вызов виртуальной функции во время работы конструктора или деструктора. Если Transaction имеет несколько конструкторов, каждый из которых выполняет одну и ту же работу, то следует проектировать программу так, чтобы избежать дублирования кода, поместив общую часть инициализации, включая вызов logTransaction, в закрытую невиртуальную функцию инициализации, скажем, init:


class Transaction {

{ init(); } // вызов невиртуальной функции

Virtual void logTransaction() const = 0;

logTransaction(); // а это вызов виртуальной

// функции!


Концептуально этот код не отличается от приведенного выше, но он более коварный, потому что обычно будет скомпилирован и скомпонован без предупреждений. В этом случае, поскольку logTransaction – чисто виртуальная функция класса Transaction, в момент ее вызова большинство систем времени исполнения прервут программу (обычно выдав соответствующее сообщение). Однако если logTransaction будет «нормальной» виртуальной функцией, у которой в классе Transaction есть реализация, то эта функция и будет вызвана, и программа радостно продолжит работу, оставляя вас в недоумении, почему при создании объекта производного класса была вызвана неверная версия logTransaction. Единственный способ избежать этой проблемы – убедиться, что ни один из конструкторов и деструкторов не вызывает виртуальных функций при создании или уничтожении объекта, и что все функции, к которым они обращаются, следуют тому же правилу.

Но как вы можете убедиться в том, что вызывается правильная версия log-Transaction при создании любого объекта из иерархии Transaction? Понятно, что вызов виртуальной функции объекта из конструкторов не годится.

Есть разные варианты решения этой проблемы. Один из них – сделать функцию logTransaction невиртуальной в классе Transaction, затем потребовать, чтобы конструкторы производного класса передавали необходимую для записи в протокол информацию конструктору Transaction. Эта функция затем могла бы безопасно вызвать невиртуальную logTransaction. Примерно так:


class Transaction {

explicit Transaction(const std::string& loginfo);

void logTransaction(const std::string& loginfo) const; // теперь –

// невиртуальная

// функция

Transaction::Transaction(const std::string& loginfo)

logTransaction(loginfo); // теперь –

// невиртуальный

class BuyTransaction: public Transaction {

BuyTransaction(parameters )

: Transaction(createLogString(parameters )) // передать информацию

{...} // для записи в протокол

... // конструктору базового

static std::string createLogString(parameters );


Другими словами, если вы не можете вызывать виртуальные функции из конструктора базового класса, то можете компенсировать это передачей необходимой информации конструктору базового класса из конструктора производного.

В этом примере обратите внимание на применение закрытой статической функции createLogString в BuyTransaction. Использование вспомогательной функции для создания значения, передаваемого конструктору базового класса, часто удобнее (и лучше читается), чем отслеживание длинного списка инициализации членов для передачи базовому классу того, что ему нужно. Сделав эту функцию статической, мы избегаем опасности нечаянно сослаться на неинициализированные данные-члены класса BuyTransaction. Это важно, поскольку тот факт, что эти данные-члены еще не определены, и является основной причиной, почему нельзя вызывать виртуальные функции из конструкторов и деструкторов.

Виртуальные функции - специальный вид функций-членов класса. Виртуальная функция отличается об обычной функции тем, что для обычной функции связывание вызова функции с ее определением осуществляется на этапе компиляции. Для виртуальных функций это происходит во время выполнения программы.

Для объявления виртуальной функции используется ключевое слово virtual . Функция-член класса может быть объявлена как виртуальная, если

  • класс, содержащий виртуальную функцию, базовый в иерархии порождения;
  • реализация функции зависит от класса и будет различной в каждом порожденном классе.

Это функция, которая определяется в базовом классе, а любой порожденный класс может ее переопределить. Виртуальная функция вызывается только через указатель или ссылку на базовый класс.

Определение того, какой экземпляр виртуальной функции вызывается по выражению вызова функции, зависит от класса объекта, адресуемого указателем или ссылкой, и осуществляется во время выполнения программы. Этот механизм называется динамическим (поздним) связыванием или разрешением типов во время выполнения .

Указатель на базовый класс может указывать либо на объект базового класса, либо на объект порожденного класса. Выбор функции-члена зависит от того, на объект какого класса при выполнении программы указывает указатель, но не от типа указателя. При отсутствии члена порожденного класса по умолчанию используется виртуальная функция базового класса.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

#include
using namespace std;
class X
{
protected :
int i;
public :
void seti(int c) { i = c; }
virtual void print() { cout << endl << "class X: " << i; }
};
class Y: public X // наследование
{
public :
void print() { cout << endl << "class Y: " << i; } // переопределение базовой функции
};
int main()
{
X x;
X *px = &x; // Указатель на базовый класс
Y y;
x.seti(10);
y.seti(15);
px->print(); // класс X: 10
px = &y;
px->print(); // класс Y: 15
cin.get();
return 0;
}

Результат выполнения

В каждом случае выполняется различная версия функции print() . Выбор динамически зависит от объекта, на который ссылается указатель.

Если в строке 9 (см. код выше) убрать ключевое слово virtual , то результат выполнения будет уже другим, т.к. связывание функций будет происходить на этапе компиляции:

В терминологии ООП «объект посылает сообщение print и выбирает свою собственную версию соответствующего метода». Виртуальной может быть только нестатическая функция-член класса. Для порожденного класса функция автоматически становится виртуальной, поэтому ключевое слово virtual можно опустить.

Пример : выбор виртуальной функции

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

#include
using namespace std;
class figure
{
protected :
double x, y;
public :
figure(double a = 0, double b = 0) { x = a; y = b; }
virtual double area() { return (0); } // по умолчанию
};
class rectangle: public figure
{
public :
rectangle(double a = 0, double b = 0) : figure(a, b) {};
double area() { return (x*y); }
};
class circle: public figure
{
public :
circle(double a = 0) : figure(a, 0) {};
double area() { return (3.1415*x*x); }
};
int main()
{
figure *f;
rectangle rect(3, 4);
circle cir(2);
double total = 0;
f = ▭
f = ○
total = f->area();
cout << total << endl;
total += f->area();
cout << total << endl;
cin.get();
return 0;
}

Результат выполнения


Чистая виртуальная функция

Базовый класс иерархии типа обычно содержит ряд виртуальных функций, которые обеспечивают динамическую типизацию. Часто в самом базовом классе сами виртуальные функции фиктивны и имеют пустое тело. Определенное значение им придается лишь в порожденных классах. Такие функции называются чистыми виртуальными функциями .

Чистая виртуальная функция - это метод класса, тело которого не определено.

В базовом классе такая функция записывается следующим образом.

Чисто виртуальные функции

К механизму виртуальных функций обращаются в тех случаях, когда в базовый класс необходимо поместить функцию, которая должна по-разному выполняться в производных классах. Точнее, по-разному должна выполняться не единственная функция из базового класса, а в каждом производственном классе требуется свой вариант этой функции.

До объяснения возможностей виртуальных функций отметим, что классы, включающие такие функции, играют особую роль в объектно-ориентированном программировании. Именно поэтому они носят специальное название - полиморфные. .

Виртуальными могут быть не любые функции, а только нестатические компонентные функции какого-либо класса. После того как функция определена как виртуальная, ее повторное определение в производном классе (с тем же самым прототипом) создает в этом классе новую виртуальную функцию, причем спецификатор virtual может не использоваться.

В производном классе нельзя определять функцию с тем же именем и с тем же набором параметров, но с другим типом возвращаемого значения, чем у виртуальной функции базового класса. Это приводит к ошибке на этапе компиляции.

Если в производном классе ввести функцию с тем же именем и типом возвращаемого значения, что и виртуальная функция базового класса, но с другим набором параметров, то эта функция производного класса не будет виртуальной. В этом случае с помощью указателя на базовый класс при любом значении этого указателя выполняется обращение к функции базового класса (несмотря на спецификатор virtual и присутствие в производном классе похожей функции).

Методы(функции)

Виртуальные методы объявляются в базовом классе с ключевым словом virtual, а в производном классе могут быть переопределены. Прототипы виртуальных методов как в базовом, так и в производном классе должны быть одинаковы.

Применение виртуальных методов позволяет реализовывать механизм позднего связывания, при котором определение вызываемого метода происходит на этапе выполнения, а не на этапе компиляции. При этом вызываемый виртуальный метод зависит от типа объекта, для которого он вызывается. При раннем связывании, используемом для не виртуальных методов, определение вызываемого метода происходит на этапе компиляции.

На этапе компиляции строится таблица виртуальных методов, а конкретный адрес проставляется уже на этапе выполнения.

При вызове метода с использованием указателя на класс действуют следующие правила:

  • для виртуального метода вызывается метод, соответствующий типу объекта, на который указывает указатель.
  • для не виртуального метода вызывается метод, соответствующий типу самого указателя.

В следующем примере иллюстрируется вызов виртуальных методов:

Class A // Объявление базового класса{ public: virtual void VirtMetod1(); // Виртуальный метод void Metod2(); // Не виртуальный метод};void A::VirtMetod() { cout << "Вызван A::VirtMetod1\n";} void A::Metod2() { cout << "Вызван A::Metod2\n"; } class B: public A // Объявление производного класса{public: void VirtMetod1(); // Виртуальный метод void Metod2(); // Не виртуальный метод};void B::VirtMetod1() { cout << "B::VirtMetod1\n";}void B::Metod2() { cout << "B::Metod2\n"; }void main() { B aB; // Объект класса B B *pB = &aB; // Указатель на объект класса B A *pA = &aB; // Указатель на объект класса A pA->VirtMetod1(); // Вызов метода VirtMetod класса B pB->VirtMetod1(); // Вызов метода VirtMetod класса B pA->Metod2(); // Вызов метода Metod2 класса A pB->Metod2(); // Вызов метода Metod2 класса B}

Результатом выполнения этой программы будут следующие строки:

Вызван B::VirtMetod1Вызван B::VirtMetod1Вызван A::Metod2Вызван B::Metod2

Чисто виртуальной функцией называется виртуальная функция, указанная с инициализатором

Например:

Virtual void F1(int) =0;

Объявление класса может содержать виртуальный деструктор, используемый для удаления объекта определенного типа. Однако виртуального конструктора в языке С++ не существует. Некоторой альтернативой, позволяющей создавать объекты заданного типа, могут служить виртуальные методы, в которых выполняется вызов конструктора для создания объекта данного класса.

Полиморфизм времени исполнения обеспечивается за счет использования производных классов и виртуальных функций. Виртуальная функция - это функция, объявленная с ключевым словом virtual в базовом классе и переопределенная в одном или в нескольких производных классах. Виртуальные функции являются особыми функциями, потому что при вызове объекта производ­ного класса с помощью указателя или ссылки на него С++ определяет во время исполнения про­граммы, какую функцию вызвать, основываясь на типе объекта. Для разных объектов вызываются разные версии одной и той же виртуальной функции. Класс, содержащий одну или более вир­туальных функций, называется полиморфным классом (polymorphic class).

Виртуальная функция объявляется в базовом классе с использованием ключевого слова virtual. Когда же она переопределяется в производном классе, повторять ключевое слово virtual нет не­обходимости, хотя и в случае его повторного использования ошибки не возникнет.

В качестве первого примера виртуальной функции рассмотрим следующую короткую программу:

// небольшой пример использования виртуальных функций
#include
class Base {
public:

cout << *Base\n";
}
};

public:
void who() { // определение who() применительно к first_d
cout << "First derivation\n";
}
};
class seconded: public Base {
public:

cout << "Second derivation\n*";
}
};
int main()
{
Base base_obj;
Base *p;
first_d first_obj;
second_d second_obj;
p = &base_obj;
p->
p = &first_obj;
p->
p = &second_ob;
p->who(); // доступ к who класса second_d
return 0;
}

Программа выдаст следующий результат:

Base
First derivation
Second derivation

Проанализируем подробно эту программу, чтобы понять, как она работает.

Как можно видеть, в объекте Base функция who() объявлена как виртуальная. Это означает, что эта функция может быть переопределена в производных классах. В каждом из классов first_d и second_d функция who() переопределена. В функции main() определены три переменные. Первой является объект base_obj, имеющий тип Base. После этого объявлен указатель р на класс Base, затем объекты first_obj и second_obj, относящиеся к двум производным классам. Далее указателю р при­своен адрес объекта base_objи вызвана функция who(). Поскольку эта функция объявлена как виртуальная, то С++ определяет на этапе исполнения, какую из версий функции who() употребить, в зависимости от того, на какой объект указывает указатель р. В данном случае им является объект типа Base, поэтому исполняется версия функции who(), объявленная в классе Base. Затем указате­лю р присвоен адрес объекта first_obj. (Как известно, указатель на базовый класс может быть ис­пользован для любого производного класса.) После того, как функция who() была вызвана, С++ снова анализирует тип объекта, на который указывает р, для того, чтобы определить версию фун­кции who(), которую необходимо вызвать. Поскольку р указывает на объект типа first_d, то ис­пользуется соответствующая версия функции who(). Аналогично, когда указателю р присвоен адрес объекта second_obj, то используется версия функции who(), объявленная в классе second_d.

Наиболее распространенным способом вызова виртуальной функции служит использование параметра функции. Например, рассмотрим следующую модификацию предыдущей программы:

/* Здесь ссылка на базовый класс используется для доступа к виртуальной функции */
#include
class Base {
public:
virtual void who() { // определение виртуальной функции
cout << "Base\n";
}
};
class first_d: public Base {
public:
void who () { // определение who() применительно к first_d
cout << "First derivation\n";
}
};

public:
void who() { // определение who() применительно к second_d
cout << "Second derivation\n*";
}
};
// использование в качестве параметра ссылки на базовый класс
void show_who (Base &r) {
r.who();
}
int main()
{
Base base_obj;
first_d first_obj;
second_d second_obj;
show_who (base_ob j) ; // доступ к who класса Base
show_who(first_obj); // доступ к who класса first_d
show_who(second_obj); // доступ к who класса second_d
return 0;
}

Эта программа выводит на экран те же самые данные, что и предыдущая версия. В данном при­мере функция show_who() имеет параметр типа ссылки на класс Base. В функции main() вызов виртуальной функции осуществляется с использованием объектов типа Base, first_d и second_d. Вызываемая версия функции who() в функции show_who() определяется типом объекта, на кото­рый ссылается параметр при вызове функции.

Ключевым моментом в использовании виртуальной функции для обеспечения полиморфизма времени исполнения служит то, что используется указатель именно на базовый класс. Полимор­физм времени исполнения достигается только при вызове виртуальной функции с использовани­ем указателя или ссылки на базовый класс. Однако ничто не мешает вызывать виртуальные функ­ции, как и любые другие «нормальные» функции, однако достичь полиморфизма времени исполнения на этом пути не удается.

На первый взгляд переопределение виртуальной функции в производном классе выглядит как специальная форма перегрузки функции. Но это не так, и термин перегрузка функции не приме­ним к переопределению виртуальной функции, поскольку между ними имеются существенные раз­личия. Во-первых, функция должна соответствовать прототипу. Как известно, при перегрузке обычной функции число и тип параметров должны быть различными. Однако при переопределе­нии виртуальной функции интерфейс функции должен в точности соответствовать прототипу. Если же такого соответствия нет, то такая функция просто рассматривается как перегруженная и она утрачивает свои виртуальные свойства. Кроме того, если отличается только тип возвращаемо­го значения, то выдается сообщение об ошибке. (Функции, отличающиеся только типом возвра­щаемого значения, порождают неопределенность.) Другим ограничением является то, что вирту­альная функция должна быть членом, а не другом класса, для которого она определена. Тем не менее виртуальная функция может быть другом другого класса. Хотя деструктор может быть виртуальным, но конструктор виртуальным быть не может.

В силу различий между перегрузкой обычных функций и переопределением виртуальных фун­кций будем использовать для последних термин переопределение (overriding).

Если функция была объявлена как виртуальная, то она и остается таковой вне зависимости от количества уровней в иерархии классов, через которые она прошла. Например, если класс second_d получен из класса first_d, а не из класса Base, то функция who() останется виртуальной и будет вызываться корректная ее версия, как показано в следующем примере:

// порождение от first_d, а не от Base
class second_d: public first_d {
public:
void who() { // определение who() применительно к second_d
cout << "Second derivation\n*";
}
};

Если в производном классе виртуальная функция не переопределяется, то тогда используется ее версия из базового класса. Например, запустим следующую версию предыдущей программы:

#include
class Base {
public:
virtual void who() {
cout << "Base\n";
}
};
class first_d: public Base {
public:
void who() {
cout << "First derivation\n";
}
};
class second_d: public Base {
// who() не определяется
};
int main()
{
Base base_obj;
Base *p;
first_d first_obj; ,
second_d second_obj;
p = &base_obj;
p->who(); // доступ к who класса Base
p = &first obj;
p->who(); // доступ к who класса first_d
p = &sepond_ob;
p->who(); /* доступ к who() класса Base, поскольку second_d не переопределяет */
return 0;
}

Эта программа выдаст следующий результат:

Base
First derivation
Base

Надо иметь в виду, что характеристики наследования носят иерархический характер. Чтобы проиллюстрировать это, предположим, что в предыдущем примере класс second_d порожден от класса first_d вместо класса Base. Когда функцию who() вызывают, используя указатель на объект типа second_d (в котором функция who() не определялась), то будет вызвана версия функции who(), объявленная в классе first_d, поскольку этот класс - ближайший к классу second_d. В общем случае, когда класс не переопределяет виртуальную функцию, С++ использует первое из определений, которое он находит, идя от потомков к предкам.

Похожие статьи