Узип устройства для защиты от импульсных перенапряжений и помех. Установка узип — схемы подключения, правила монтажа

08.07.2019

Классификация и применение УЗИП

Для защиты домашней электрики и электроники существует специальный класс приборов. Устройства такого типа называют двояко: устройства защиты от импульсных перенапряжений (УЗИП) или ограничитель импульсных перенапряжений (ОПС) .

Как защищаться?

Для надежной защиты домашней электропроводки необходимо построить многоуровневую (по крайней мере, трехступенчатую) систему защиты из УЗИП разных классов. Их применение регламентирует ГОСТ Р 51992-2002 (МЭК 61643-1-98). Согласно этому ГОСТУ существуют три класса таких устройств.

УЗИП класса I(B)

Предназначены для защиты от прямых ударов молнии в или . Устанавливаются на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРЩ). Нормируются импульсным током I imp с формой волны 10/350 мкс. Номинальный разрядный ток 30-60 кА.

УЗИП класса II(C)

Такие устройства защиты от импульсных перенапряжений п редназначены для защиты токораспределительной сети объекта от коммутационных помех или как вторая ступень защиты при ударе молнии. Устанавливаются в распределительные щиты. Нормируются импульсным током с формой волны 8/20 мкс Номинальный разрядный ток 20-40 кА.

УЗИП класса III(D)

Такие устройства защиты от имупльсных перенапряжений п редназначены для защиты потребителей от остаточных бросков напряжений, защиты от дифференциальных (несимметричных) перенапряжений (например, между фазой и нулевым рабочим проводником в системе TN-S), фильтрации высокочастотных помех.

Устанавливаются непосредственно возле потребителя. Могут иметь самую разнообразную конструкцию (в виде розеток, сетевых вилок, отдельных модулей для установки на DIN-рейку или навесным монтажом). Нормируются импульсным током с формой волны 8/20 мкс. Номинальный разрядный ток 5-10 кА.

Устройство УЗИП

) построены на базе разрядников или варисторов и часто имеют индикаторные устройства, сигнализирующие о выходе УЗИП из строя. Недостатком УЗИП на базе варисторов является то, что сработав один раз им необходимо остыть, чтобы снова прийти в рабочее состояние. Это ухудшает защиту при многократном ударе молний.

Обычно УЗИП на базе варисторов изготавливаются с креплением на DIN рейку. Сгоревший варистор можно заменить простым извлечением модуля из корпуса УЗИП и установкой нового.

Практика применения

Для надежной защиты объекта от воздействия перенапряжений, в первую очередь необходимо создать эффективную систему заземления и уравнивания потенциалов. При этом нужно перейти на системы заземления TN-S или TN-CS с разделёнными нулевым и защитным проводниками.

Следующим шагом должна стать установка защитных устройств. При установке УЗИП необходимо, чтобы расстояние между соседними ступенями защиты было не менее 10 метров по кабелю электропитания. Выполнение этого требования очень важно для правильной последовательности срабатывания защитных устройств.

Если для подключения применяется воздушная линия, во входном щите на столбе лучше использовать УЗИП на основе разрядников и плавкие вставки. В главном щите здания ставятся варисторные УЗИП класса I или II, а в щитках на этажах ставятся УЗИП III класса. Если необходимо дополнительно защитить оборудование, то в розетки включаются УЗИП в виде вставок и удлинителей.

Выводы

В заключении следует сказать, что все перечисленные меры, конечно, снижают вероятность поражения РЭА и людей повышенным напряжением, но не являются панацеей. Поэтому в случае грозы лучше отключать наиболее ответственные узлы, если это конечно возможно.

Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.

Причины появления ИП

Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.

Назначение УЗИП

Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).

В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.

Виды УЗИП

По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.

По типу нелинейного элемента делятся на:

● УЗИП коммутирующего типа;

● УЗИП ограничивающего типа;

● УЗИП комбинированного типа.

  1. УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
  2. УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
  3. Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.

Классы УЗИП

УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.

УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.

УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.

Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.

УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.

Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.

По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.

Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.

В современном доме находится немалое количество бытовой техники, приборов и электроники. При этом большинство частных домов получают энергию с помощью воздушной линии электропередачи (ЛЭП). В такой ситуации имеет смысл устройство защиты от импульсных перенапряжений, возникающих в сети при ударах молнии.

Ужасно выглядит удар молнии в дом

Причины возникновения и характер импульсов перенапряжения

Многие пожилые люди, покидая свое жилище на продолжительный срок, по старинке вынимают из розеток шнуры всех электроприборов, опасаясь молнии. В настоящее время линии электропередач относительно защищены от атмосферных воздействий, а в бытовой электронике имеется элементарная защита от импульсов напряжением до нескольких тысяч вольт.

Таким образом, в многоквартирном доме, к которому электроснабжение подается подземным кабелем, проблема защиты от грозы в значительной степени решена.

В случае энергоснабжения по воздуху необходимо принимать комплексные меры по защите от удара молнии.

Негативное воздействие атмосферного электричества может возникать:

  • при ударе молнии непосредственно в линию электропередачи рядом с домом, что приводит к возникновению импульса 10/350мкс (первое значение – время роста импульса, второе – время спада);
  • при попадании молнии в ЛЭП на дальнем расстоянии и образовании волны с характеристикой 8/20мкс;
  • при грозовом разряде в непосредственной близости и наведении на линию электропередачи электромагнитного импульса.

Варианты схем удара молнии

Классификация защиты от импульсов перенапряжения


Знакомые всем искровые разрядники

Заметим, что высоковольтные импульсы в сети могут также возникать в результате аварии на электрической подстанции или обрыва нулевого провода в трехфазной сети. В результате перечисленных воздействий отказывает бытовая техника, а также электрические коммутационные приборы. Если изоляция проводки в доме будет пробита, произойдет короткое замыкание, возгорание и пожар.


Вентильные разрядники на электрической подстанции

Основу ограничителя перенапряжения составляет варистор, то есть резистор, сопротивление которого меняется в зависимости от приложенного напряжения. ОПН более надежны, имеют меньшие размеры. В конкретной ситуации имеется возможность установить ограничители импульсного перенапряжения с наиболее подходящей характеристикой.

В низковольтных сетях, которые обеспечивают питание жилых домов, используют устройства защиты от импульсных перенапряжений (УЗИП). Эти малогабаритные приборы модульного типа делятся на три класса и могут быть применены владельцами жилья в собственных домах и квартирах.


Модульные УЗИП для монтажа в электрощите

Устройства I класса устанавливаются на вводном щите жилого дома. Они предназначены для защиты от близких ударов молнии (до 1,5км) и пропускают через себя токи от 25 до 100 тысяч ампер с характеристикой импульса 10/350мкс. УЗИП II класса монтируются в распределительном щите в качестве второй ступени защиты от удара молнии и пропускают через себя токи 10-40 тысяч ампер с характеристикой импульса 8/20мкс.

Устройства III класса гасят импульсы с характеристикой 8/20мкс и рассчитаны на токи до 10 кА. Они устанавливаются непосредственно у электроприборов. По конструктивному исполнению УЗИП III класса могут изготавливаться в виде модулей и монтироваться на din-рейку, а также встраиваться в розетку или в вилку потребителя энергии.

Нужна ли установка УЗИП в Вашем случае?


Стандартная электрическая схема подключения УЗИП в трехфазной сети

Классическая схема подключения УЗИП предусматривает последовательную установку устройств всех трех классов. Если ограничиться только устройством класса I, то оно может не сработать при относительно слабых импульсах. Наоборот, самое чувствительное УЗИП класса III не выполнит свою задачу при мощном воздействии.

Существуют стандарты и методики для расчета степени риска удара молнии и оценки последствий. В общем виде УЗИП класса I можно не устанавливать, если опоры линии электропередачи имеют заземление, заземлен нулевой провод, установлен громоотвод, и реализована система выравнивания потенциалов.

Однако, не обладая специальными знаниями в области электроснабжения, куда проще обеспечить стандартную схему защиты от импульсных скачков напряжения.

При этом в любом случае отрицательное воздействие грозового разряда сильно снижается при установке громоотвода. Если Вы этого еще не сделали, читайте статью

Как работают различные виды УЗИП

Устройства защиты от импульсных перенапряжений используют в своей конструкции разрядники или полупроводниковые приборы – варисторы. Последние нагреваются при срабатывании и плохо работают при повторении высоковольтных воздействий. Варистор должен остыть, чтобы вернуться в рабочее состояние. УЗИП модульного типа часто имеют индикаторы работоспособности и могут быть заменены при выходе из строя.


Электрическая схема работы УЗИП

При нормальном напряжении в сети ток проходит по проводникам к нагрузке. Во время скачка напряжения разрядник открывается и пропускает ток на землю. После возвращения напряжения в сети к рабочим значениям, элементы УЗИП снова закрываются, и электроснабжение протекает в обычном режиме.

Во время срабатывания устройства защиты через него протекает ток до десятков тысяч ампер. При этом выделяется большое количество энергии, то есть тепла.

Устройство защиты от импульсных скачков напряжения своими руками


Пример монтажа УЗИП в электрощите

Защита от грозовых перенапряжений может быть выполнена своими руками. УЗИП модульного типа устанавливают в вводном щите с корпусом из металла. При этом следует применять устройство, номинальный рабочий ток которого не меньше величины, ограниченной входным автоматом. Также напряжение ограничения УЗИП не должно быть ниже допустимого в Вашей сети.

УЗИП класса I подключается после входного автомата в однофазной или трехфазной сети. Сверху к устройству подводятся защищаемые линии электроснабжения, снизу – заземление. Ниже приводится вариант электромонтажной схемы подключения УЗИП класса I в однофазной сети.


Электромонтажная схема подключения УЗИП в однофазной сети

УЗИП класса II монтируется в распределительном щите внутри дома. Устройство защиты третьего класса устанавливается непосредственно у потребителей. Если ступени устройства защиты находятся рядом, между ними необходимо включать дроссели для согласования. В противном случае УЗИП с большей чувствительностью примет весь ток нагрузки на себя. Если расстояние между приборами защиты более 10м, роль дросселей выполнит электропроводка.

Тема выбора и подключения устройств защиты от грозовых перенапряжений не является простой для неспециалистов. В любом случае оставшиеся вопросы можно разрешить при помощи видеоролика.

УЗИП (Уcтройства защиты от импульсных перенапряжений и помех) электрооборудования низковольтных силовых распределительных сетей до 1000 В предназначены для защиты от импульсных перенапряжений источниками которых являются:

  • прямые удары молнии (ПУМ) в систему молниезащиты объекта или воздушную линию электропередач в непосредственной близости перед вводом в объект;
  • межоблачные разряды или удары молнии в радиусе до нескольких километров вблизи от объектов и коммуникаций входящих и выходящих из объекта;
  • коммутации индуктивных и емкостных нагрузок, короткие замыкания в распределительных электрических сетях высокого и низкого напряжения;
  • электромагнитные помехи, создаваемые промышленными электроустановками и электронными приборами.

УЗИП – это защитное устройство от импульсных перенапряжений, предназначенное для установки как в городских квартирах, так и в частных домах. Оно обладает рядом неоспоримых достоинств: эффективностью, технической совершенностью и доступной стоимостью.

Эти три фактора делают УЗИП незаменимым оснащением для каждого дома и квартиры.

Кому нужны устройства защиты? Современные квартиры и офисы оборудуются большим количеством энергопотребляющей техники. Её совокупная стоимость обычно исчисляется десятками тысяч вложенных рублей. Поскупившись на покупку недорогих защитных устройств и надеясь на извечное русское «авось», вы рискуете потерять всё сразу: и компьютер, и плазменную панель, и стиральную машину, и электроплиту и всё то, что питается электроэнергией. Ведь достаточно всего одного скачка напряжения – и пиши пропало. Особенно остро вопрос безопасности стоит в загородных домах, оборудованных автономными системами электро- и водоснабжения, отопления, пожаротушения, видеонаблюдения и т.д. Только представьте, какие затраты вас подстерегают из-за беспечного отношения к электричеству! Что уж говорить о модных ныне системах «Умный дом», где всё завязано именно на стабильной работе электрической сети. Отнеситесь к собственной безопасности со всей аккуратностью. Ведь вы же не хотите понести колоссальные потери из-за какого-то каприза электричества?

Ограничитель перенапряжения предназначены для защиты от импульсных перенапряжение в результате грозовых разрядов или работой устройств с большой индуктивной нагрузкой (высоковольтные трансформаторы, большие электродвигатели с короткозамкнутым ротором)

Принцип действия ограничителя (УЗИП) основан на способности материала варистора при многократном увеличении напряжения пропускать электрический ток. Материал варистора утрачивает свои свойства, после нескольких разрядов. В большинстве серий УЗИП имеется возможность визуально проверить работоспособность варистора в индикаторном окне. В конструкцию ограничителя зачастую включен предохранитель для защиты от сверхтоков

Основные типы/классы УЗИП

Тип 1, класс В - используются при возможности непосредственного удара молний в линию электропередач или в землю в непосредственной близости от места установки.Остаточное импулсное перенапряжение на выходе 4-2,5 кВ.Очень рекомендуется при воздушном вводе, а при наличии молниеотвода установка обязательна. Устанавливается в специальном железном ящике вблизи ввода в здание или в вводно распределительном устройстве (ВРУ), или главном распределительном щите (ГРЩ).

Тип 2, класс С - используются в местах, в которых отсутствует угроза прямого удара молнии в непосредственной близости от места установки. По сравнению с Тип 1 имеют меньшую способность к защите от импульсных перенапряжений, рекомендуется устанавливать на вводе электроустановок и вводе в жилые помещения в качестве второго уровня защиты.Остаточное импулсное перенапряжение на выходе 2,5-1,5 кВ.Устанавливаются в распределительные щиты.

Тип 3, класс D - защита оборудования от остаточных токов перенапряжения, защита от несеметричных дифференциальных токов, защиты от высокочастотных помех, располагается в конечных распределительных щитах или, что лучше, не посредственно возле электроприборов. .Остаточное импулсное перенапряжение на выходе 1,5-0,8 кВ.Желательно чтоб от приборов находилось на растоянии не более 5 метров, а при наличии молниеотвода как можно ближе к электроприборам, так как ток в спусках молниеприемников расположеных снаружи здания индуцирует импульс перенапряжения в электропроводке.

При выборе защитных устройств на разрядниках или оксидно-цинковых варисторах необходимо обращать внимание на следующие параметры:

Номинальное рабочее напряжение Un - это номинальное действующее напряжение сети, для работы в которой предназначено защитное устройство.

Наибольшее длительно допустимое рабочее напряжение защитного устройства (максимальное рабочее напряжение) Uc - это наибольшее действующее значение напряжения переменного тока, которое может быть длительно (в течение всего срока службы) приложено к выводам защитного устройства.

Согласно ГОСТ и моей логике максимальное долговременное напряжение которое должен выдерживать УЗИП должно равнятся номинальному напряжению умноженному на кооифициент 1,6 для 220 вольт и 1,1 для 380 вольт и соответственно должно составлять 352 и 418 вольт. Это нужно для того чтоб в случае перенапряжений или обрыва нейтрали УЗИП не вышел из строя из-за срабатывания встроенной тепловой защиты или внешнего плавкого предохранителя.

У УЗИП с более высоким Uc соответственно выше остаточное напряжение на выходе Up, например у УЗИП с Uc 275 вольт остаточное напряжение составляет 1,5 кВ, а с Uc 385 вольт 1,9 кВ. Но если правильно сделать монтаж с Uc 385 вольт, то степень ограничения может получится даже лучше чем с неправильным монтажом при использовании УЗИП с Uc 275 вольт, но самое главное будет безопасно при временном перенапряжении.

Классификационное напряжение (параметр для варисторных УЗИП) - это действующее значение напряжения промышленной частоты, которое прикладывается к варисторному УЗИП для получения классификационного тока (обычно значение классификационного тока принимается равным 1,0 мА).

Импульсный ток Iimp - этот ток определяется пиковым значением Ipeak испытательного импульса и зарядом Q. Применяется для испытаний УЗИП класса I. Как правило, используется волна с формой 10/350 мкс.

Номинальный импульсный разрядный ток In - это пиковое значение испытательного импульса тока формы 8/20 мкс, проходящего через защитное устройство. Ток данной величины защитное устройство может выдерживать многократно. Используется для испытания УЗИП класса II. При воздействии данного импульса определяется уровень защиты УЗИП. По этому параметру также производится координация других характеристик УЗИП, а также норм и методов его испытаний.

Максимальный импульсный разрядный ток Imax - это пиковое значение испытательного импульса тока формы 8/20 мкс, который защитное устройство может пропустить один раз и не выйти из строя. Используется для испытания УЗИП класса II.

Сопровождающий ток If (параметр для УЗИП на базе разрядников) - это ток, который протекает через разрядник после окончания импульса перенапряжения и поддерживается самим источником тока, т.е. электроэнергетической системой. Фактически значение этого тока стремится к расчётному току короткого замыкания (в точке установки разрядника для данной конкретной электроустановки). Поэтому для установки в цепи «L-N; L-PE» нельзя применять газонаполненные (и другие) разрядники со значением If равным 100...400А. В результате длительного воздействия сопровождающего тока они будут повреждены и могут вызвать пожар. Для установки в данную цепь необходимо применять разрядники со значением If, превышающим расчётный ток короткого замыкания, т.е. желательно величиной от 2...3 кА и выше.

В системе ТТ при воздушном вводе нейтральный провод на вводе повторно не заземляется, во время грозы возможен обрыв нейтального провода и перехлестывание его фазным, в следствии чего возможно не контролируемое КЗ в цепи разрядника N-PE, If которого обычно равен 100...400А, если сопротивление заземления будет меньше 2,5 Ом. В подавляющем числе случаев реально токого быть не должно так как наврядли на практике получится что сумарное сопротивление заземления подстанции и местного заземления будет меньше 2,5 Ом. Это так для информации, чтоб имели ввиду.

Уровень защиты Up - это максимальное значение падения напряжения на УЗИП при протекании через него импульсного тока разряда. Параметр характеризует способность устройства ограничивать появляющиеся на его клеммах перенапряжения. Обычно определяется при протекании номинального импульсного разрядного тока In.

Время срабатывания. Для оксидно-цинковых варисторов его значение обычно не превышает 25 нс. Для разрядников разной конструкции время срабатывания может находиться в пределах от 100 наносекунд до нескольких микросекунд.

Существует ряд других параметров, которые тоже учитываются при выборе УЗИП: ток утечки (для варисторов), максимальная энергия, выделяемая на варисторе, ток срабатывания предохранителей (для защитных устройств со встроенными предохранителями).

Для правильной и согласованной работы УЗИП разных ступеней длина проводников между ними должна быть не меньше определенной длины для обеспечения необходимой временной задержки в нарастании импульса перенапряжения на следующей ступени защиты. Благодаря этой задержке более мощная ступень УЗИП успевает сработать, чем защищает от перегрузки следующую, более низковолтную ступень УЗИП.

Расстояние проводников между УЗИП на разрядниках и следующего за ним УЗИП на варисторах должно быть не менее 10 метров. Расстояние проводников между УЗИП на варисторах и следующего за ним УЗИП на варисторах следующей ступени должно быть не менее 5 метров. Расстояние проводников между одинаковыми по характеристикам УЗИП на варисторах одной ступени должно быть не менее 1 метра.

Если длина проводников между УЗИП меньше требуемой, устанавливают индуктивности для компенсации недостающей длины проводника из расчета 0,5-1 мкГ/м, в зависимости от сечения провода, если фазовые и защитные провода находятся в одном кабеле. Если провода проложены отдельно, то величина индуктивности будет большей. В продаже есть готовые индуктивности эквивалентные 6-15 метрам.

Если от УЗИП до защищаемых электроприборов более 10 метров, например если последняя ступень установлена в щите, желательно установить повторный УЗИП вблизи защищаемых электроприборов, а если расстояние более 30 метров то установка повторного УЗИП вблизи защищаемых электроприборов обязательна.

Каждую ступень УЗИП к заземляющему устройству (ЗУ) нужно стремится подключать отдельным проводником. Такое подключение позволяет свести к минимуму бросок потенциала на корпусах электроприборов в результате срабатывания устройств защиты от импульсного перенапряжения, хотя для приборов лучше чтоб УЗИП подключалось к шине заземления щита где установлен УЗИП, но защита человека главней.

Зонная концепция защиты.

Международной Электротехнической Комиссией (МЭК) разработаны стандарты, которые формируют «зонную концепцию защиты», одним из основных принципов является деление объекта на условные защитные зоны с точки зрения прямого и непрямого воздействия молнии.

Зона 0А - зона внешней среды объекта, все точки которой могут подвергаться воздействию прямого удара молнии (иметь непосредственный контакт с каналом молнии) и возникающего при этом электромагнитного поля.

Зона 0В - зона внешней среды объекта, точки которой не подвергаются воздействию прямого удара молнии, т.к. находятся в пространстве, защищенном системой внешней молниезащиты. Однако в данной зоне имеется воздействие неослабленного электромагнитного поля.

Зона 1 - внутренняя зона объекта, точки которой не подвергаются воздействию прямого удара молнии. В этой зоне во всех токопроводящих частях имеют значительно меньшее значение по сравнению с зонами 0А и 0В. Электромагнитное поле также снижено по сравнению с зонами 0А и 0В за счёт экранирующих свойств строительных конструкций.

Последующие зоны (Зона 2 и т.д.). Если требуется дальнейшее снижение разрядных токов или электромагнитного поля в местах размещения чувствительного оборудования, то необходимо проектировать так называемые последующие зоны. Критерий для этих зон определяется соответственно общими требованиями по ограничению внешних воздействий, влияющих на защищаемую систему. Имеет место общее правило, по которому с увеличением номера защитной зоны уменьшаются влияние электромагнитного поля и грозового тока. На границах раздела отдельных зон необходимо обеспечить защитное последовательное соединение всех металлических частей, с обеспечением их периодического контроля.

Особенности монтажа УЗИП в щитах -

Молниезащита и громоотвод - нажмите на ссылку для ознакомления.

Итак, в предыдущих публикациях были рассмотрены физические процессы, лежащие в основе имеющих существенную дальность действия вторичных эффектов при разряде молнии – и . Ознакомившись с материалом, вы непременно придете к выводу о необходимости установки внутренней молниезащиты.

Такая защита, помимо уже рассмотренной ранее , включает также установку устройств защиты от импульсных перенапряжений (УЗИП). Ниже будет дан обзор различных типов этих устройств, принципов работы и правил их установки в системах электрокоммуникаций здания.

Возникающие в электросети импульсные перенапряжения бывают двух типов – противофазные и синфазные. Первые, называемые также поперечными или провод-провод, возникают на клеммах электрооборудования L/N. Для защиты от подобных перенапряжений соответствующий УЗИП устанавливается между фазными L и заземленным PEN проводниками или между фазными L и нулевым N и нулевым N и PE проводниками. Синфазные (продольные или провод – земля) перенапряжения возникают на клеммах N/PE и L/PE. Для защиты от них соответствующий УЗИП устанавливается между L и PE и N и PE проводниками. Более опасными для электрооборудования являются противофазные напряжения, но при проектировании внутренней молниезащиты, как правило, на границах зон используют схемы подключения для защиты от обоих типов перенапряжений.

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ и СВОЙСТВА УЗИП

Подключение УЗИП к линиям электропитания может осуществляться тремя разными способами. Самым оптимальным является применение V-образной конфигурации. В этом случае рабочий ток течет по входящему участку цепи, затем внутри устройства по шунту и далее по исходящему участку. Последовательное подключение в разрыв проводников питания. При использовании такой конфигурации необходимо, чтобы номинальный ток нагрузки устройства I L превышал максимальное значение рабочего тока электроцепи.

И третий вариантТ-образная конфигурация или параллельное подключение позволяет использовать УЗИП в системе электропитания любой мощности, поскольку в этом случае через устройство рабочий ток не проходит. Но при этом длина присоединяющего УЗИП к электросети провода не должна превышать 50 см. Поскольку при крутизне переднего фронта импульса за счет индуктивного сопротивления провода на каждом его метре будет иметь место падение напряжения около 1 кВ, которое прибавится к величине напряжения после УЗИП.

Согласно международного стандарта IEC 61643 УЗИП для силовых линий электропитания разделяются на три типа (1 – 3) согласно трем классам испытаний (І – ІІІ). Принятый на основе этого стандарта российский ГОСТ Р 51992-2002 использует только классы испытаний. В соответствии с немецким стандартом E DIN VDE 0675-6 устройства защиты от перенапряжений разделяются на четыре класса требований, обозначаемых буквами (A, B, C и D).

Класс испытаний І означает проверку импульсом 10/350 мкс, моделирующим воздействие прямого удара молнии. Испытания проводятся в рабочем режиме импульсом тока I imp , величина которого указывается затем на корпусе изделия.

Класс испытаний ІІ включает проверку на возможность УЗИП один раз пропустить и не выйти из строя (то есть без разрушений) импульс тока 8/20 мкс величиной I max .

При этом УЗИП обоих классов обязаны выдерживать серию из пяти нарастающих импульсов амплитудой 0,1; 0,25; 0,5; 0,75 и 1,0 от величины I imp для класса І и от I max – для класса ІІ. Также устройства обоих классов проходят испытания импульсом 8/20 мкс для определения значения номинального импульсного разрядного тока I n , то есть такого воздействия, которое УЗИП может переносить без последствий для работоспособности многократно (не менее 15 импульсов).

При I n часто определяют одну из важнейших характеристик УЗИП – уровень защитного напряжения или уровень защиты U p . Этот параметр показывает, на какую величину устройство способно ограничивать появляющийся на его клеммах импульс напряжения, то есть до какого значения за ним снизиться действующее на электрооборудование импульсное перенапряжение. U p может измеряться и при иных величинах импульса тока, например I max , поэтому на УЗИП обязательно должно указываться при каких параметрах определялся уровень защиты.

Класс испытаний ІІІ означает проверку действия на УЗИП комбинированной волны: при разомкнутой цепи подается испытательный импульс напряжения 1,2/50 мкс, а при коротком замыкании цепи - импульс тока 8/20 мкс. При этом на корпусе устройства указывается значение U oc - напряжения разомкнутой цепи.

Помимо указанных, важными параметрами для всех УЗИП являются также:

  • U n - номинальное рабочее напряжение (то есть на электросеть с каким действующим напряжением рассчитано применение устройства);
  • U c - наибольшее длительно допустимое рабочее напряжение (то есть максимальное напряжение в электросети переменного тока при котором устройство будет нормально работать длительное время);
  • t A - время срабатывания.

Основой любого УЗИП является нелинейный элемент, который резко увеличивает свою проводимость при превышении входящим напряжением определенного значения и восстанавливает ее исходную величину после уменьшения напряжения на входе. В качестве такого нелинейного элемента в УЗИП для бытовых низковольтных (до 1000 В) линий электроснабжения используются варисторы, разрядники и диоды двойной проводимости.

Воздушный разрядник состоит из электродов, разделенных воздушным зазором определенной величины – искровым промежутком. При прохождении импульса перенапряжения за счет электрического пробоя в зазоре зажигается электрическая дуга, обеспечивающая падение напряжения. Искровой промежуток в устанавливаемом в доме разряднике обязательно должен быть герметичным, то есть с защищающим от вылета раскаленных газов и плазмы закрытым корпусом. Такие УЗИП в состоянии отводить импульсы тока величиной свыше I imp = 100 кА и относятся к классу І.

В газонаполненном или газовом разряднике искровой промежуток заполнен инертным газом (аргон, неон и т.п.). Электроды и находящийся под низким давлением газ окружены герметичным металлокерамическим корпусом. Часто с целью улучшения уровня защиты на электроды наносится покрытие из радиоактивного материала для дополнительной ионизации искрового промежутка. Как правило, газовые разрядники предназначены для отвода импульсов тока 8/20 мкс величиной < 40 кА и относятся к классам ІІ или ІІІ.

После окончания действия импульса через разрядник будет проходить поддерживаемый самой электросетью сопровождающий ток, величина которого приближается к значению, рассчитываемому для тока короткого замыкания в месте установки устройства. То есть электрическая дуга замыкает не только импульс перенапряжения, но и цепь электропитания. Если разрядник не сможет погасит этот ток, то длительном воздействии это может привести к возгоранию. Поэтому для установки между проводниками L и N или L и PE (PEN) следует выбирать разрядники, у которых указанное на корпусе значение сопровождающего тока I f выше расчетного тока короткого замыкания в этом месте электроцепи. Время срабатывания УЗИП на основе разрядников t A ≤ 100 нс.

Варистор по сути является полупроводниковым резистором, для которого при характерна нелинейная зависимость электропроводности от приложенного внешнего напряжения. Во время действия импульса перенапряжения сопротивление варистора резко уменьшается и основной всплеск тока протекает через него, а не через электрооборудование. Выделяемая при прохождении через варистор тока энергия рассеивается в виде тепла. После окончания импульса перенапряжения варистор практически мгновенно восстанавливает свое первоначальное большое сопротивление. Во избежание перегрева, вызывающего разрушение с угрозой возгорания, ведущие производители снабжают устройства внутренним терморасцепителем.

Производят варисторы путем спекания при температуре около 1700 о C «таблетки» из порошкообразного полупроводника - оксида цинка (ZnO) или карбида кремния (SiC) и связующего зерна вещества (смолы, жидкое стекло, лаки и т.д.). После этого поверхность такой композитной «таблетки» металлизируется и к ней припаиваются выводы. Нелинейность изменения сопротивления варисторов при прикладываемом напряжении связана со сложными электрофизическими явлениями на поверхности зерен кристаллитов полупроводника и в межзеренной прослойке.

В отличие от разрядника, варистор не имеет сопровождающего тока, но для него характерно наличие тока утечки. То есть при нормальной работе находящегося в режиме ожидания варисторного УЗИП через него протекает ток, величина которого при номинальном рабочем напряжении электросети не превышает 1 мА. Значение напряжения, при котором через конкретный варистор протекает ток в 1 мА, называется классификационным. Поэтому для оптимизации параметров УЗИП производители выпускают модели, в которых последовательно соединяют разрядник и варистор. При этом первым исключается ток утечки, а вторым – сопровождающий ток.

Время срабатывания УЗИП на основе варисторов t A ≤ 25 нс. Используют их в устройствах всех трех классов І, ІІ и ІІІ. Заметим однако, что изготавливать надежные варисторные УЗИП для импульсов 10/350 мкс величиной более 20 кА экономически нецелесообразно. Поэтому не стоит доверять указанному на корпусе устройства І класса значению I imp , превышающему 20 кА.

Высоковольтные лавинные диоды , используемые в качестве нелинейного элемента УЗИП, обладают вольт-амперной характеристикой с резко выраженной нелинейностью. Такое свойство позволяет им ограничивать импульсы перенапряжения с превышающей напряжение лавинного пробоя p-n-перехода амплитудой. Подобные диоды называют также супрессорами или симметричными TVS-диодами. Используются они в УЗИП класса ІІІ со временем срабатывания t A ≤ 5 нс.

Нередко все виды УЗИП не совсем корректно называют грозоразрядниками или ограничителями перенапряжения. Последний термин используют в высоковольтной технике только для варисторных устройств.

В системе электроснабжения помимо коротких импульсов могут также возникать временные перенапряжения длительностью более 10 мс и амплитудой свыше 1,1U n . В случае, если амплитуда временного перенапряжения превысит для установленного УЗИП значение U c , это приведет к выходу устройства из строя с большой вероятностью возгорания. Поэтому последовательно с УЗИП следует устанавливать предохранители типа gG/gL, которые имеют меньшее по сравнению с автоматическими выключателями время срабатывания. Номинал предохранителя указывается в характеристиках УЗИП.

ВЫБОР и УСТАНОВКА УЗИП

Относящиеся к классу I (Типа 1 или класса B) устройства защиты от импульсных перенапряжений в линиях электроснабжения устанавливают на вводе в здание, где проходит граница зон молниезащиты LPZ 0 – LPZ 1. Устройства подобного типа обеспечивают в зоне LPZ 1 уровень защиты U p ≤ 4 кВ. Выбранные УЗИП после вводного автомата монтируются во вводно-распределительном устройстве, главном распределительном щите (ГРЩ) или, при нехватке места, рядом в отдельном щите. В случае установленной системы внешней молниезащиты и, особенно при воздушном вводе в дом линий электроснабжения монтаж внутренней молниезащиты является крайне необходимым.

Выбор параметра I imp для устройств первой линии обороны электрооборудования можно определять исходя из правила, что 50% тока молнии при прямом ударе попадает в дом по внешним токопроводящим коммуникациям. Для загородного дома (ІІІ класс молниезащиты) значение тока разряда молнии принимается равным 100 кА (согласно статистике наблюдений только в 5% случаев разряды молнии превышают это значение).

Для надежного уровня безопасности линий электропитании считают, что весь ток молнии пойдет по силовым кабелям. Таким образом, если в молниеприемник ударил разряд в 100 кА, то 50 кА пройдет по входящим в дом проводам, разделившись по количеству вводов. При прямом ударе в воздушную линию электроснабжения ток приблизительно в равных долях устремится к ТП и в дом. То есть, при двух входящих проводах (система заземления TN-C) на каждом из них можно получить ток 25 кА. Поэтому с учетом возможной неравномерности распределения тока имеем I imp ≤ 30 кА.

Для установленной в доме бытовой техники обеспечиваемого в LPZ 1 уровня защиты недостаточно, поэтому в доме выделяется вторая зона молниезащиты и на границе LPZ 1 - LPZ 2 устанавливаются устройства защиты от импульсных перенапряжений класса II (Типа 2 или класса C). Их монтируют во внутренних распределительных щитах (этажных или других) или в специальных щитах рядом с ними. Установка подобных УЗИП должна обеспечивать в зоне LPZ 1 уровень защиты U p ≤ 2,5 кВ.

Если ГРЩ в доме один или к нему необходимо непосредственно подключит оборудование, которое нуждается в уровне защиты, соответствующем зоне LPZ 2, то в ГРЩ устанавливаются УЗИП классов І и ІІ или готовый модуль І + ІІ. Для правильной очередности срабатывания между устройствами разных классов должно быть образованная проводом электропитания линия задержки длинной не менее 10 метров. Поэтому при установке в одном щите для их согласования необходимо использовать соответствующие дроссели. В готовом модуле такое согласование уже выполнено. С другой стороны, при выходе из строя одного входящего в модуль УЗИП заменять придется весь модуль.

Для еще более чувствительного оборудования (например, компьютеры или серверы, факсовые аппараты и т.д.) выделяется зона молниезащиты LPZ 3. В этом случае на границе LPZ 2 - LPZ 3 устанавливают УЗИП класса III (Типа 3 или класса D), которые обеспечивают уровень защиты U p ≤ 1,5 кВ. Защищаемое оборудования в этом случае не должно размещаться далее 5 метров от защищающего устройства. УЗИП класса III имеют наибольшее разнообразие конструкций: для монтажа в щите на DIN-рейку, для навесного монтажа, для установки в розеточные коробки и кабель-каналы или в виде сетевого адаптера.

Исполнение и схема монтажа УЗИП зависит от того, какая система заземления используется при организации электроснабжения здания – TT, TN-C или TN-S (получаем при разделении на вводе в дом PEN проводника). Поскольку цель данной публикации показать необходимость применения УЗИП для защиты электрооборудования и вкратце рассказать, что они собой представляют и какие имеют важные параметры, мы не будем обсуждать конкретные правила и инструкции их установки.

Если Вы не очень сильны в электротехнике то не рекомендуем самостоятельно монтировать в распределительные щиты дома УЗИП, поскольку эти устройства могут надлежаще выполнять свои функции только при правильной установке. Помимо системы электроснабжения необходимо также устанавливать соответствующие защитные устройства и на линиях слаботочных коммуникаций: спутниковое телевидение, телефонный кабель, витая пара и т.д. Поэтому предоставьте расчет и монтаж внутренней молниезащиты специалистам, проверить компетентность которых Вам помогут публикации сайта.

Похожие статьи