Усилитель на транзисторах: виды, схемы, простые и сложные. Простейшие усилители низкой частоты на транзисторах

02.09.2019

— Сосед запарил по батарее стучать. Сделал музыку громче, чтобы его не слышать.
(Из фольклора аудиофилов).

Эпиграф иронический, но аудиофил совсем не обязательно «больной на всю голову» с физиономией Джоша Эрнеста на брифинге по вопросам отношений с РФ, которого «прёт» оттого, что соседи «счастливы». Кто-то хочет слушать серьезную музыку дома как в зале. Качество аппаратуры для этого нужно такое, какое у любителей децибел громкости как таковых просто не помещается там, где у здравомыслящих людей ум, но у последних оный за разум заходит от цен на подходящие усилители (УМЗЧ, усилитель мощности звуковой частоты). А у кого-то попутно возникает желание приобщиться к полезным и увлекательным сферам деятельности – технике воспроизведения звука и вообще электронике. Которые в век цифровых технологий неразрывно связаны и могут стать высокодоходной и престижной профессией. Оптимальный во всех отношениях первый шаг в этом деле – сделать усилитель своими руками: именно УМЗЧ позволяет с начальной подготовкой на базе школьной физики на одном и том же столе пройти путь от простейших конструкций на полвечера (которые, тем не менее, неплохо «поют») до сложнейших агрегатов, через которые с удовольствием сыграет и хорошая рок-группа. Цель данной публикации – осветить первые этапы этого пути для начинающих и, возможно, сообщить кое-что новое опытным.

Простейшие

Итак, для начала попробуем сделать усилитель звука, который просто работает. Чтобы основательно вникнуть в звукотехнику, придется постепенно освоить довольно много теоретического материала и не забывать по мере продвижения обогащать багаж знаний. Но любая «умность» усваивается легче, когда видишь и щупаешь, как она работает «в железе». В этой статье далее тоже без теории не обойдется – в том, что нужно знать поначалу и что возможно пояснить без формул и графиков. А пока достаточно будет умения и пользоваться мультитестером.

Примечание: если вы до сих пор не паяли электронику, учтите – ее компоненты нельзя перегревать! Паяльник – до 40 Вт (лучше 25 Вт), максимально допустимое время пайки без перерыва – 10 с. Паяемый вывод для теплоотвода удерживается в 0,5-3 см от места пайки со стороны корпуса прибора медицинским пинцетом. Кислотные и др. активные флюсы применять нельзя! Припой – ПОС-61.

Слева на рис. – простейший УМЗЧ, «который просто работает». Его можно собрать как на германиевых, так и на кремниевых транзисторах.

На этой крошке удобно осваивать азы наладки УМЗЧ с непосредственными связями между каскадами, дающими наиболее чистый звук:

  • Перед первым включением питания нагрузку (динамик) отключаем;
  • Вместо R1 впаиваем цепочку из постоянного резистора на 33 кОм и переменного (потенциометра) на 270 кОм, т.е. первый прим. вчетверо меньшего, а второй прим. вдвое большего номинала против исходного по схеме;
  • Подаем питание и, вращая движок потенциометра, в точке, обозначенной крестиком, выставляем указанный ток коллектора VT1;
  • Снимаем питание, выпаиваем временные резисторы и замеряем их общее сопротивление;
  • В качестве R1 ставим резистор номинала из стандартного ряда, ближайшего к измеренному;
  • Заменяем R3 на цепочку постоянный 470 Ом + потенциометр 3,3 кОм;
  • Так же, как по пп. 3-5, в т. а выставляем напряжение, равное половине напряжения питания.

Точка а, откуда снимается сигнал в нагрузку это т. наз. средняя точка усилителя. В УМЗЧ с однополярным питанием в ней выставляют половину его значения, а в УМЗЧ в двухполярным питанием – ноль относительно общего провода. Это называется регулировкой баланса усилителя. В однополярных УМЗЧ с емкостной развязкой нагрузки отключать ее на время наладки не обязательно, но лучше привыкать делать это рефлекторно: разбалансированный 2-полярный усилитель с подключенной нагрузкой способен сжечь свои же мощные и дорогие выходные транзисторы, а то и «новый, хороший» и очень дорогой мощный динамик.

Примечание: компоненты, требующие подбора при наладке устройства в макете, на схемах обозначаются или звездочкой (*), или штрихом-апострофом (‘).

В центре на том же рис. – простой УМЗЧ на транзисторах, развивающий уже мощность до 4-6 Вт на нагрузке 4 Ом. Хотя и работает он, как и предыдущий, в т. наз. классе AB1, не предназначенном для Hi-Fi озвучивания, но, если заменить парой таких усилитель класса D (см. далее) в дешевых китайских компьютерных колонках, их звучание заметно улучшается. Здесь узнаем еще одну хитрость: мощные выходные транзисторы нужно ставить на радиаторы. Компоненты, требующие дополнительного охлаждения, на схемах обводятся пунктиром; правда, далеко не всегда; иногда – с указанием необходимой рассеивающей площади теплоотвода. Наладка этого УМЗЧ – балансировка с помощью R2.

Справа на рис. – еще не монстр на 350 Вт (как был показан в начале статьи), но уже вполне солидный зверюга: простой усилитель на транзисторах мощностью 100 Вт. Музыку через него слушать можно, но не Hi-Fi, класс работы – AB2. Однако для озвучивания площадки для пикника или собрания на открытом воздухе, школьного актового или небольшого торгового зала он вполне пригоден. Любительская рок-группа, имея по такому УМЗЧ на инструмент, может успешно выступать.

В этом УМЗЧ проявляются еще 2 хитрости: во-первых, в очень мощных усилителях каскад раскачки мощного выхода тоже нужно охлаждать, поэтому VT3 ставят на радиатор от 100 кв. см. Для выходных VT4 и VT5 нужны радиаторы от 400 кв. см. Во-вторых, УМЗЧ с двухполярным питанием совсем без нагрузки не балансируются. То один, то другой выходной транзистор уходит в отсечку, а сопряженный в насыщение. Затем, на полном напряжении питания скачки тока при балансировке способны вывести из строя выходные транзисторы. Поэтому для балансировки (R6, догадались?) усилитель запитывают от +/–24 В, а вместо нагрузки включают проволочный резистор 100…200 Ом. Кстати, закорючки в некоторых резисторах на схеме – римские цифры, обозначающие их необходимую мощность рассеяния тепла.

Примечание: источник питания для этого УМЗЧ нужен мощностью от 600 Вт. Конденсаторы сглаживающего фильтра – от 6800 мкФ на 160 В. Параллельно электролитическим конденсаторам ИП включаются керамические по 0,01 мкФ для предотвращения самовозбуждения на ультразвуковых частотах, способного мгновенно сжечь выходные транзисторы.

На полевиках

На след. рис. – еще один вариант достаточно мощного УМЗЧ (30 Вт, а при напряжении питания 35 В – 60 Вт) на мощных полевых транзисторах:

Звук от него уже тянет на требования к Hi-Fi начального уровня (если, разумеется, УМЗЧ работает на соотв. акустические системы, АС). Мощные полевики не требуют большой мощности для раскачки, поэтому и предмощного каскада нет. Еще мощные полевые транзисторы ни при каких неисправностях не сжигают динамики – сами быстрее сгорают. Тоже неприятно, но все-таки дешевле, чем менять дорогую басовую головку громкоговорителя (ГГ). Балансировка и вообще наладка данному УМЗЧ не требуются. Недостаток у него, как у конструкции для начинающих, всего один: мощные полевые транзисторы много дороже биполярных для усилителя с такими же параметрами. Требования к ИП – аналогичные пред. случаю, но мощность его нужна от 450 Вт. Радиаторы – от 200 кв. см.

Примечание: не надо строить мощные УМЗЧ на полевых транзисторах для импульсных источников питания, напр. компьютерных. При попытках «загнать» их в активный режим, необходимый для УМЗЧ, они или просто сгорают, или звук дают слабый, а по качеству «никакой». То же касается мощных высоковольтных биполярных транзисторов, напр. из строчной развертки старых телевизоров.

Сразу вверх

Если вы уже сделали первые шаги, то вполне естественным будет желание построить УМЗЧ класса Hi-Fi, не вдаваясь слишком глубоко в теоретические дебри. Для этого придется расширить приборный парк – нужен осциллограф, генератор звуковых частот (ГЗЧ) и милливольтметр переменного тока с возможностью измерения постоянной составляющей. Прототипом для повторения лучше взять УМЗЧ Е. Гумели, подробно описанный в «Радио» №1 за 1989 г. Для его постройки понадобится немного недорогих доступных компонент, но качество удовлетворяет весьма высоким требованиям: мощность до 60 Вт, полоса 20-20 000 Гц, неравномерность АЧХ 2 дБ, коэффициент нелинейных искажений (КНИ) 0,01%, уровень собственных шумов –86 дБ. Однако наладить усилитель Гумели достаточно сложно; если вы с ним справитесь, можете браться за любой другой. Впрочем, кое-какие из известных ныне обстоятельств намного упрощают налаживание данного УМЗЧ, см. ниже. Имея в виду это и то, что в архивы «Радио» пробраться не всем удается, уместно будет повторить основные моменты.

Схемы простого высококачественного УМЗЧ

Схемы УМЗЧ Гумели и спецификация к ним даны на иллюстрации. Радиаторы выходных транзисторов – от 250 кв. см. для УМЗЧ по рис. 1 и от 150 кв. см. для варианта по рис. 3 (нумерация оригинальная). Транзисторы предвыходного каскада (КТ814/КТ815) устанавливаются на радиаторы, согнутые из алюминиевых пластин 75х35 мм толщиной 3 мм. Заменять КТ814/КТ815 на КТ626/КТ961 не стоит, звук заметно не улучшается, но налаживание серьезно затрудняется.

Этот УМЗЧ очень критичен к электропитанию, топологии монтажа и общей, поэтому налаживать его нужно в конструктивно законченном виде и только со штатным источником питания. При попытке запитать от стабилизированного ИП выходные транзисторы сгорают сразу. Поэтому на рис. даны чертежи оригинальных печатных плат и указания по наладке. К ним можно добавить что, во-первых, если при первом включении заметен «возбуд», с ним борются, меняя индуктивность L1. Во-вторых, выводы устанавливаемых на платы деталей должны быть не длиннее 10 мм. В-третьих, менять топологию монтажа крайне нежелательно, но, если очень надо, на стороне проводников обязательно должен быть рамочный экран (земляная петля, выделена цветом на рис.), а дорожки электропитания должны проходить вне ее.

Примечание: разрывы в дорожках, к которым подключаются базы мощных транзисторов – технологические, для налаживания, после чего запаиваются каплями припоя.

Налаживание данного УМЗЧ много упрощается, а риск столкнуться с «возбудом» в процессе пользования сводится к нулю, если:

  • Минимизировать межблочный монтаж, поместив платы на радиаторах мощных транзисторов.
  • Полностью отказаться от разъемов внутри, выполнив весь монтаж только пайкой. Тогда не нужны будут R12, R13 в мощном варианте или R10 R11 в менее мощном (на схемах они пунктирные).
  • Использовать для внутреннего монтажа аудиопровода из бескислородной меди минимальной длины.

При выполнении этих условий с возбуждением проблем не бывает, а налаживание УМЗЧ сводится к рутинной процедуре, описанной на рис.

Провода для звука

Аудиопровода не досужая выдумка. Необходимость их применения в настоящее время несомненна. В меди с примесью кислорода на гранях кристаллитов металла образуется тончайшая пленочка окисла. Оксиды металлов полупроводники и, если ток в проводе слабый без постоянной составляющей, его форма искажается. По идее, искажения на мириадах кристаллитов должны компенсировать друг друга, но самая малость (похоже, обусловленная квантовыми неопределенностями) остается. Достаточная, чтобы быть замеченной взыскательными слушателями на фоне чистейшего звука современных УМЗЧ.

Производители и торговцы без зазрения совести подсовывают вместо бескислородной обычную электротехническую медь – отличить одну от другой на глаз невозможно. Однако есть сфера применения, где подделка не проходит однозначно: кабель витая пара для компьютерных сетей. Положить сетку с длинными сегментами «леварем», она или вовсе не запустится, или будет постоянно глючить. Дисперсия импульсов, понимаешь ли.

Автор, когда только еще пошли разговоры об аудиопроводах, понял, что, в принципе, это не пустая болтовня, тем более, что бескислородные провода к тому времени уже давно использовались в технике спецназначения, с которой он по роду деятельности был хорошо знаком. Взял тогда и заменил штатный шнур своих наушников ТДС-7 самодельным из «витухи» с гибкими многожильными проводами. Звук, на слух, стабильно улучшился для сквозных аналоговых треков, т.е. на пути от студийного микрофона до диска нигде не подвергавшихся оцифровке. Особенно ярко зазвучали записи на виниле, сделанные по технологии DMM (Direct Meta lMastering, непосредственное нанесение металла). После этого межблочный монтаж всего домашнего аудио был переделан на «витушный». Тогда улучшение звучания стали отмечать и совершенно случайные люди, к музыке равнодушные и заранее не предуведомленные.

Как сделать межблочные провода из витой пары, см. след. видео.

Видео: межблочные провода из витой пары своими руками

К сожалению, гибкая «витуха» скоро исчезла из продажи – плохо держалась в обжимаемых разъемах. Однако, к сведению читателей, только из бескислородной меди делается гибкий «военный» провод МГТФ и МГТФЭ (экранированный). Подделка невозможна, т.к. на обычной меди ленточная фторопластовая изоляция довольно быстро расползается. МГТФ сейчас есть в широкой продаже и стоит много дешевле фирменных, с гарантией, аудиопроводов. Недостаток у него один: его невозможно выполнить расцвеченным, но это можно исправить бирками. Есть также и бескислородные обмоточные провода, см. далее.

Теоретическая интермедия

Как видим, уже на первых порах освоения звукотехники нам пришлось столкнуться с понятием Hi-Fi (High Fidelity), высокая верность воспроизведения звука. Hi-Fi бывают разных уровней, которые ранжируются по след. основным параметрам:

  1. Полосе воспроизводимых частот.
  2. Динамическому диапазону – отношению в децибелах (дБ) максимальной (пиковой) выходной мощности к уровню собственных шумов.
  3. Уровню собственных шумов в дБ.
  4. Коэффициенту нелинейных искажений (КНИ) на номинальной (долговременной) выходной мощности. КНИ на пиковой мощности принимается 1% или 2% в зависимости от методики измерений.
  5. Неравномерности амплитудно-частотной характеристики (АЧХ) в полосе воспроизводимых частот. Для АС – отдельно на низких (НЧ, 20-300 Гц), средних (СЧ, 300-5000 Гц) и высоких (ВЧ, 5000-20 000 Гц) звуковых частотах.

Примечание: отношение абсолютных уровней каких-либо величин I в (дБ) определяется как P(дБ) = 20lg(I1/I2). Если I1

Все тонкости и нюансы Hi-Fi нужно знать, занимаясь проектированием и постройкой АС, а что касается самодельного Hi-Fi УМЗЧ для дома, то, прежде чем переходить к таким, нужно четко уяснить себе требования к их мощности, необходимой для озвучивания данного помещения, динамическому диапазону (динамике), уровню собственных шумов и КНИ. Добиться от УМЗЧ полосы частот 20-20 000 Гц с завалом на краях по 3 дБ и неравномерностью АЧХ на СЧ в 2 дБ на современной элементной базе не составляет больших сложностей.

Громкость

Мощность УМЗЧ не самоцель, она должна обеспечивать оптимальную громкость воспроизведения звука в данном помещении. Определить ее можно по кривым равной громкости, см. рис. Естественных шумов в жилых помещениях тише 20 дБ не бывает; 20 дБ это лесная глушь в полный штиль. Уровень громкости в 20 дБ относительно порога слышимости это порог внятности – шепот разобрать еще можно, но музыка воспринимается только как факт ее наличия. Опытный музыкант может определить, какой инструмент играет, но что именно – нет.

40 дБ – нормальный шум хорошо изолированной городской квартиры в тихом районе или загородного дома – представляет порог разборчивости. Музыку от порога внятности до порога разборчивости можно слушать при наличии глубокой коррекции АЧХ, прежде всего по басам. Для этого в современные УМЗЧ вводят функцию MUTE (приглушка, мутирование, не мутация!), включающую соотв. корректирующие цепи в УМЗЧ.

90 дБ – уровень громкости симфонического оркестра в очень хорошем концертном зале. 110 дБ может выдать оркестр расширенного состава в зале с уникальной акустикой, каких в мире не более 10, это порог восприятия: звуки громче воспринимаются еще как различимый по смыслу с усилием воли, но уже раздражающий шум. Зона громкости в жилых помещениях 20-110 дБ составляет зону полной слышимости, а 40-90 дБ – зону наилучшей слышимости, в которой неподготовленные и неискушенные слушатели вполне воспринимают смысл звука. Если, конечно, он в нем есть.

Мощность

Расчет мощности аппаратуры по заданной громкости в зоне прослушивания едва ли не основная и самая трудная задача электроакустики. Для себя в условиях лучше идти от акустических систем (АС): рассчитать их мощность по упрощенной методике, и принять номинальную (долговременную) мощность УМЗЧ равной пиковой (музыкальной) АС. В таком случае УМЗЧ не добавит заметно своих искажений к таковым АС, они и так основной источник нелинейности в звуковом тракте. Но и делать УМЗЧ слишком мощным не следует: в таком случае уровень его собственных шумов может оказаться выше порога слышимости, т.к. считается он от уровня напряжения выходного сигнала на максимальной мощности. Если считать совсем уж просто, то для комнаты обычной квартиры или дома и АС с нормальной характеристической чувствительностью (звуковой отдачей) можно принять след. значения оптимальной мощности УМЗЧ:

  • До 8 кв. м – 15-20 Вт.
  • 8-12 кв. м – 20-30 Вт.
  • 12-26 кв. м – 30-50 Вт.
  • 26-50 кв. м – 50-60 Вт.
  • 50-70 кв. м – 60-100 Вт.
  • 70-100 кв. м – 100-150 Вт.
  • 100-120 кв. м – 150-200 Вт.
  • Более 120 кв. м – определяется расчетом по данным акустических измерений на месте.

Динамика

Динамический диапазон УМЗЧ определяется по кривым равной громкости и пороговым значениям для разных степеней восприятия:

  1. Симфоническая музыка и джаз с симфоническим сопровождением – 90 дБ (110 дБ – 20 дБ) идеал, 70 дБ (90 дБ – 20 дБ) приемлемо. Звук с динамикой 80-85 дБ в городской квартире не отличит от идеального никакой эксперт.
  2. Прочие серьезные музыкальные жанры – 75 дБ отлично, 80 дБ «выше крыши».
  3. Попса любого рода и саундтреки к фильмам – 66 дБ за глаза хватит, т.к. данные опусы уже при записи сжимаются по уровням до 66 дБ и даже до 40 дБ, чтобы можно было слушать на чем угодно.

Динамический диапазон УМЗЧ, правильно выбранного для данного помещения, считают равным его уровню собственных шумов, взятому со знаком +, это т. наз. отношение сигнал/шум.

КНИ

Нелинейные искажения (НИ) УМЗЧ это составляющие спектра выходного сигнала, которых не было во входном. Теоретически НИ лучше всего «затолкать» под уровень собственных шумов, но технически это очень трудно реализуемо. На практике берут в расчет т. наз. эффект маскировки: на уровнях громкости ниже прим. 30 дБ диапазон воспринимаемых человеческим ухом частот сужается, как и способность различать звуки по частоте. Музыканты слышат ноты, но оценить тембр звука затрудняются. У людей без музыкального слуха эффект маскировки наблюдается уже на 45-40 дБ громкости. Поэтому УМЗЧ с КНИ 0,1% (–60 дБ от уровня громкости в 110 дБ) оценит как Hi-Fi рядовой слушатель, а с КНИ 0,01% (–80 дБ) можно считать не искажающим звук.

Лампы

Последнее утверждение, возможно, вызовет неприятие, вплоть до яростного, у адептов ламповой схемотехники: мол, настоящий звук дают только лампы, причем не просто какие-то, а отдельные типы октальных. Успокойтесь, господа – особенный ламповый звук не фикция. Причина – принципиально различные спектры искажений у электронных ламп и транзисторов. Которые, в свою очередь, обусловлены тем, что в лампе поток электронов движется в вакууме и квантовые эффекты в ней не проявляются. Транзистор же прибор квантовый, там неосновные носители заряда (электроны и дырки) движутся в кристалле, что без квантовых эффектов вообще невозможно. Поэтому спектр ламповых искажений короткий и чистый: в нем четко прослеживаются только гармоники до 3-й – 4-й, а комбинационных составляющих (сумм и разностей частот входного сигнала и их гармоник) очень мало. Поэтому во времена вакуумной схемотехники КНИ называли коэффициентом гармоник (КГ). У транзисторов же спектр искажений (если они измеримы, оговорка случайная, см. ниже) прослеживается вплоть до 15-й и более высоких компонент, и комбинационных частот в нем хоть отбавляй.

На первых порах твердотельной электроники конструкторы транзисторных УМЗЧ брали для них привычный «ламповый» КНИ в 1-2%; звук с ламповым спектром искажений такой величины рядовыми слушателями воспринимается как чистый. Между прочим, и самого понятия Hi-Fiтогда еще не было. Оказалось – звучат тускло и глухо. В процессе развития транзисторной техники и выработалось понимание, что такое Hi-Fi и что для него нужно.

В настоящее время болезни роста транзисторной техники успешно преодолены и побочные частоты на выходе хорошего УМЗЧ с трудом улавливаются специальными методами измерений. А ламповую схемотехнику можно считать перешедшей в разряд искусства. Его основа может быть любой, почему же электронике туда нельзя? Тут уместна будет аналогия с фотографией. Никто не сможет отрицать, что современная цифрозеркалка дает картинку неизмеримо более четкую, подробную, глубокую по диапазону яркостей и цвета, чем фанерный ящичек с гармошкой. Но кто-то крутейшим Никоном «клацает фотки» типа «это мой жирный кошак нажрался как гад и дрыхнет раскинув лапы», а кто-то Сменой-8М на свемовскую ч/б пленку делает снимок, перед которым на престижной выставке толпится народ.

Примечание: и еще раз успокойтесь – не все так плохо. На сегодня у ламповых УМЗЧ малой мощности осталось по крайней мере одно применение, и не последней важности, для которого они технически необходимы.

Опытный стенд

Многие любители аудио, едва научившись паять, тут же «уходят в лампы». Это ни в коем случае не заслуживает порицания, наоборот. Интерес к истокам всегда оправдан и полезен, а электроника стала таковой на лампах. Первые ЭВМ были ламповыми, и бортовая электронная аппаратура первых космических аппаратов была тоже ламповой: транзисторы тогда уже были, но не выдерживали внеземной радиации. Между прочим, тогда под строжайшим секретом создавались и ламповые… микросхемы! На микролампах с холодным катодом. Единственное известное упоминание о них в открытых источниках есть в редкой книге Митрофанова и Пикерсгиля «Современные приемно-усилительные лампы».

Но хватит лирики, к делу. Для любителей повозиться с лампами на рис. – схема стендового лампового УМЗЧ, предназначенного именно для экспериментов: SA1 переключается режим работы выходной лампы, а SA2 – напряжение питания. Схема хорошо известна в РФ, небольшая доработка коснулась только выходного трансформатора: теперь можно не только «гонять» в разных режимах родную 6П7С, но и подбирать для других ламп коэффициент включения экранной сетки в ульралинейном режиме; для подавляющего большинства выходных пентодов и лучевых тетродов он или 0,22-0,25, или 0,42-0,45. Об изготовлении выходного трансформатора см. ниже.

Гитаристам и рокерам

Это тот самый случай, когда без ламп не обойтись. Как известно, электрогитара стала полноценным солирующим инструментом после того, как предварительно усиленный сигнал со звукоснимателя стали пропускать через специальную приставку – фьюзер – преднамеренно искажающую его спектр. Без этого звук струны был слишком резким и коротким, т.к. электромагнитный звукосниматель реагирует только на моды ее механических колебаний в плоскости деки инструмента.

Вскоре выявилось неприятное обстоятельство: звучание электрогитары с фьюзером обретает полную силу и яркость только на больших громкостях. Особенно это проявляется для гитар со звукоснимателем типа хамбакер, дающим самый «злой» звук. А как быть начинающему, вынужденному репетировать дома? Не идти же в зал выступать, не зная точно, как там зазвучит инструмент. И просто любителям рока хочется слушать любимые вещи в полном соку, а рокеры народ в общем-то приличный и неконфликтный. По крайней мере те, кого интересует именно рок-музыка, а не антураж с эпатажем.

Так вот, оказалось, что роковый звук появляется на уровнях громкости, приемлемых для жилых помещений, если УМЗЧ ламповый. Причина – специфическое взаимодействие спектра сигнала с фьюзера с чистым и коротким спектром ламповых гармоник. Тут снова уместна аналогия: ч/б фото может быть намного выразительнее цветного, т.к. оставляет для просмотра только контур и свет.

Тем, кому ламповый усилитель нужен не для экспериментов, а в силу технической необходимости, долго осваивать тонкости ламповой электроники недосуг, они другим увлечены. УМЗЧ в таком случае лучше делать бестрансформаторный. Точнее – с однотактным согласующим выходным трансформатором, работающим без постоянного подмагничивания. Такой подход намного упрощает и ускоряет изготовление самого сложного и ответственного узла лампового УМЗЧ.

«Бестрансформаторный» ламповый выходной каскад УМЗЧ и предварительные усилители к нему

Справа на рис. дана схема бестрансформаторного выходного каскада лампового УМЗЧ, а слева – варианты предварительного усилителя для него. Вверху – с регулятором тембра по классической схеме Баксандала, обеспечивающей достаточно глубокую регулировку, но вносящей небольшие фазовые искажения в сигнал, что может быть существенно при работе УМЗЧ на 2-полосную АС. Внизу – предусилитель с регулировкой тембра попроще, не искажающей сигнал.

Но вернемся к «оконечнику». В ряде зарубежных источников данная схема считается откровением, однако идентичная ей, за исключением емкости электролитических конденсаторов, обнаруживается в советском «Справочнике радиолюбителя» 1966 г. Толстенная книжища на 1060 страниц. Не было тогда интернета и баз данных на дисках.

Там же, справа на рис., коротко, но ясно описаны недостатки этой схемы. Усовершенствованная, из того же источника, дана на след. рис. справа. В ней экранная сетка Л2 запитана от средней точки анодного выпрямителя (анодная обмотка силового трансформатора симметричная), а экранная сетка Л1 через нагрузку. Если вместо высокоомных динамиков включить согласующий трансформатор с обычным динамиков, как в пред. схеме, выходная мощность составить ок. 12 Вт, т.к. активное сопротивление первичной обмотки трансформатора много меньше 800 Ом. КНИ этого оконечного каскада с трансформаторным выходом – прим. 0,5%

Как сделать трансформатор?

Главные враги качества мощного сигнального НЧ (звукового) трансформатора – магнитное поле рассеяния, силовые линии которого замыкаются, обходя магнитопровод (сердечник), вихревые токи в магнитопроводе (токи Фуко) и, в меньшей степени – магнитострикция в сердечнике. Из-за этого явления небрежно собранный трансформатор «поет», гудит или пищит. С токами Фуко борются, уменьшая толщину пластин магнитопровода и дополнительно изолируя их лаком при сборке. Для выходных трансформаторов оптимальная толщина пластин – 0,15 мм, максимально допустимая – 0,25 мм. Брать для выходного трансформатора пластины тоньше не следует: коэффициент заполнения керна (центрального стержня магнитопровода) сталью упадет, сечение магнитопровода для получения заданной мощности придется увеличить, отчего искажения и потери в нем только возрастут.

В сердечнике звукового трансформатора, работающего с постоянным подмагничиванием (напр., анодным током однотактного выходного каскада) должен быть небольшой (определяется расчетом) немагнитный зазор. Наличие немагнитного зазора, с одной стороны, уменьшает искажения сигнала от постоянного подмагничивания; с другой – в магнитопроводе обычного типа увеличивает поле рассеяния и требует сердечника большего сечения. Поэтому немагнитный зазор нужно рассчитывать на оптимум и выполнять как можно точнее.

Для трансформаторов, работающих с подмагничиванием, оптимальный тип сердечника – из пластин Шп (просеченных), поз. 1 на рис. В них немагнитный зазор образуется при просечке керна и потому стабилен; его величина указывается в паспорте на пластины или замеряется набором щупов. Поле рассеяния минимально, т.к. боковые ветви, через которые замыкается магнитный поток, цельные. Из пластин Шп часто собирают и сердечники трансформаторов без подмагничивания, т.к. пластины Шп делают из высококачественной трансформаторной стали. В таком случае сердечник собирают вперекрышку (пластины кладут просечкой то в одну, то в другую сторону), а его сечение увеличивают на 10% против расчетного.

Трансформаторы без подмагничивания лучше мотать на сердечниках УШ (уменьшенной высоты с уширенными окнами), поз. 2. В них уменьшение поля рассеяния достигается за счет уменьшения длины магнитного пути. Поскольку пластины УШ доступнее Шп, из них часто набирают и сердечники трансформаторов с подмагничиванием. Тогда сборку сердечника ведут внакрой: собирают пакет из Ш-пластин, кладут полоску непроводящего немагнитного материала толщиной в величину немагнитного зазора, накрывают ярмом из пакета перемычек и стягивают все вместе обоймой.

Примечание: «звуковые» сигнальные магнитопроводы типа ШЛМ для выходных трансформаторов высококачественных ламповых усилителей мало пригодны, у них большое поле рассеяния.

На поз. 3 дана схема размеров сердечника для расчета трансформатора, на поз. 4 конструкция каркаса обмоток, а на поз. 5 – выкройки его деталей. Что до трансформатора для «бестрансформаторного» выходного каскада, то его лучше делать на ШЛМме вперекрышку, т.к. подмагничивание ничтожно мало (ток подмагничивания равен току экранной сетки). Главная задача тут – сделать обмотки как можно компактнее с целью уменьшения поля рассеяния; их активное сопротивление все равно получится много меньше 800 Ом. Чем больше свободного места останется в окнах, тем лучше получился трансформатор. Поэтому обмотки мотают виток к витку (если нет намоточного станка, это маета ужасная) из как можно более тонкого провода, коэффициент укладки анодной обмотки для механического расчета трансформатора берут 0,6. Обмоточный провод – марок ПЭТВ или ПЭММ, у них жила бескислородная. ПЭТВ-2 или ПЭММ-2 брать не надо, у них от двойной лакировки увеличенный наружный диаметр и поле рассеяния будет больше. Первичную обмотку мотают первой, т.к. именно ее поле рассеяния больше всего влияет на звук.

Железо для этого трансформатора нужно искать с отверстиями в углах пластин и стяжными скобами (см. рис. справа), т.к. «для полного счастья» сборка магнитопровода производится в след. порядке (разумеется, обмотки с выводами и наружной изоляцией должны быть уже на каркасе):

  1. Готовят разбавленный вдвое акриловый лак или, по старинке, шеллак;
  2. Пластины с перемычками быстро покрывают лаком с одной стороны и как можно быстрее, не придавливая сильно, вкладывают в каркас. Первую пластину кладут лакированной стороной внутрь, следующую – нелакированной стороной к лакированной первой и т.д;
  3. Когда окно каркаса заполнится, накладывают скобы и туго стягивают болтами;
  4. Через 1-3 мин, когда выдавливание лака из зазоров видимо прекратится, добавляют пластин снова до заполнения окна;
  5. Повторяют пп. 2-4, пока окно не будет туго набито сталью;
  6. Снова туго стягивают сердечник и сушат на батарее и т.п. 3-5 суток.

Собранный по такой технологии сердечник имеет очень хорошие изоляцию пластин и заполнение сталью. Потерь на магнитострикцию вообще не обнаруживается. Но учтите – для сердечников их пермаллоя данная методика неприменима, т.к. от сильных механических воздействий магнитные свойства пермаллоя необратимо ухудшаются!

На микросхемах

УМЗЧ на интегральных микросхемах (ИМС) делают чаще всего те, кого устраивает качество звука до среднего Hi-Fi, но более привлекает дешевизна, быстрота, простота сборки и полное отсутствие каких-либо наладочных процедур, требующих специальных знаний. Попросту, усилитель на микросхемах – оптимальный вариант для «чайников». Классика жанра здесь – УМЗЧ на ИМС TDA2004, стоящей на серии, дай бог памяти, уже лет 20, слева на рис. Мощность – до 12 Вт на канал, напряжение питания – 3-18 В однополярное. Площадь радиатора – от 200 кв. см. для максимальной мощности. Достоинство – способность работать на очень низкоомную, до 1,6 Ом, нагрузку, что позволяет снимать полную мощность при питании от бортовой сети 12 В, а 7-8 Вт – при 6-вольтовом питании, напр., на мотоцикле. Однако выход TDA2004 в классе В некомплементарный (на транзисторах одинаковой проводимости), поэтому звучок точно не Hi-Fi: КНИ 1%, динамика 45 дБ.

Более современная TDA7261 звук дает не лучше, но мощнее, до 25 Вт, т.к. верхний предел напряжения питания увеличен до 25 В. Нижний, 4,5 В, все еще позволяет запитываться от 6 В бортсети, т.е. TDA7261 можно запускать практически от всех бортсетей, кроме самолетной 27 В. С помощью навесных компонент (обвязки, справа на рис.) TDA7261 может работать в режиме мутирования и с функцией St-By (Stand By, ждать), переводящей УМЗЧ в режим минимального энергопотребления при отсутствии входного сигнала в течение определенного времени. Удобства стоят денег, поэтому для стерео нужна будет пара TDA7261 с радиаторами от 250 кв. см. для каждой.

Примечание: если вас чем-то привлекают усилители с функцией St-By, учтите – ждать от них динамики шире 66 дБ не стоит.

«Сверхэкономична» по питанию TDA7482, слева на рис., работающая в т. наз. классе D. Такие УМЗЧ иногда называют цифровыми усилителями, что неверно. Для настоящей оцифровки с аналогового сигнала снимают отсчеты уровня с частотой квантования, не мене чем вдвое большей наивысшей из воспроизводимых частот, величина каждого отсчета записывается помехоустойчивым кодом и сохраняется для дальнейшего использования. УМЗЧ класса D – импульсные. В них аналог непосредственно преобразуется в последовательность широтно-модулированных импульсов (ШИМ) высокой частоты, которая и подается на динамик через фильтр низких частот (ФНЧ).

Звук класса D с Hi-Fi не имеет ничего общего: КНИ в 2% и динамика в 55 дБ для УМЗЧ класса D считаются очень хорошими показателями. И TDA7482 здесь, надо сказать, выбор не оптимальный: другие фирмы, специализирующиеся на классе D, выпускают ИМС УМЗЧ дешевле и требующие меньшей обвязки, напр., D-УМЗЧ серии Paxx, справа на рис.

Из TDAшек следует отметить 4-канальную TDA7385, см. рис., на которой можно собрать хороший усилитель для колонок до среднего Hi-Fi включительно, с разделением частот на 2 полосы или для системы с сабвуфером. Расфильтровка НЧ и СЧ-ВЧ в том и другом случае делается по входу на слабом сигнале, что упрощает конструкцию фильтров и позволяет глубже разделить полосы. А если акустика сабвуферная, то 2 канала TDA7385 можно выделить под суб-УНЧ мостовой схемы (см. ниже), а остальные 2 задействовать для СЧ-ВЧ.

УМЗЧ для сабвуфера

Сабвуфер, что можно перевести как «подбасовик» или, дословно, «подгавкиватель» воспроизводит частоты до 150-200 Гц, в этом диапазоне человеческие уши практически не способны определить направление на источник звука. В АС с сабвуфером «подбасовый» динамик ставят в отельное акустическое оформление, это и есть сабвуфер как таковой. Сабвуфер размещают, в принципе, как удобнее, а стереоэффект обеспечивается отдельными СЧ-ВЧ каналами со своими малогабаритными АС, к акустическому оформлению которых особо серьезных требований не предъявляется. Знатоки сходятся на том, что стерео лучше все же слушать с полным разделением каналов, но сабвуферные системы существенно экономят средства или труд на басовый тракт и облегчают размещение акустики в малогабаритных помещениях, почему и пользуются популярностью у потребителей с обычным слухом и не особо взыскательных.

«Просачивание» СЧ-ВЧ в сабвуфер, а из него в воздух, сильно портит стерео, но, если резко «обрубить» подбасы, что, кстати, очень сложно и дорого, то возникнет очень неприятный на слух эффект перескока звука. Поэтому расфильтровка каналов в сабвуферных системах производится дважды. На входе электрическими фильтрами выделяются СЧ-ВЧ с басовыми «хвостиками», не перегружающими СЧ-ВЧ тракт, но обеспечивающими плавный переход на подбас. Басы с СЧ «хвостиками» объединяются и подаются на отдельный УМЗЧ для сабвуфера. Дофильтровываются СЧ, чтобы не портилось стерео, в сабвуфере уже акустически: подбасовый динамик, ставят, напр., в перегородку между резонаторными камерами сабвуфера, не выпускающими СЧ наружу, см. справа на рис.

К УМЗЧ для сабвуфера предъявляется ряд специфических требований, из которых «чайники» главным считают возможно большую мощность. Это совершенно неправильно, если, скажем, расчет акустики под комнату дал для одной колонки пиковую мощность W, то мощность сабвуфера нужна 0,8(2W) или 1,6W. Напр., если для комнаты подходят АС S-30, то сабвуфер нужен 1,6х30=48 Вт.

Гораздо важнее обеспечить отсутствие фазовых и переходных искажений: пойдут они – перескок звука обязательно будет. Что касается КНИ, то он допустим до 1% Собственные искажения басов такого уровня не слышны (см. кривые равной громкости), а «хвосты» их спектра в лучше всего слышимой СЧ области не выберутся из сабвуфера наружу.

Во избежание фазовых и переходных искажений усилитель для сабвуфера строят по т. наз. мостовой схеме: выходы 2-х идентичных УМЗЧ включают встречно через динамик; сигналы на входы подаются в противофазе. Отсутствие фазовых и переходных искажений в мостовой схеме обусловлено полной электрической симметрией путей выходного сигнала. Идентичность усилителей, образующих плечи моста, обеспечивается применением спаренных УМЗЧ на ИМС, выполненных на одном кристалле; это, пожалуй, единственный случай, когда усилитель на микросхемах лучше дискретного.

Примечание: мощность мостового УМЗЧ не удваивается, как думают некоторые, она определяется напряжением питания.

Пример схемы мостового УМЗЧ для сабвуфера в комнату до 20 кв. м (без входных фильтров) на ИМС TDA2030 дан на рис. слева. Дополнительная отфильтровка СЧ осуществляется цепями R5C3 и R’5C’3. Площадь радиатора TDA2030 – от 400 кв. см. У мостовых УМЗЧ с открытым выходом есть неприятная особенность: при разбалансе моста в токе нагрузки появляется постоянная составляющая, способная вывести из строя динамик, а схемы защиты на подбасах часто глючат, отключая динамик, когда не надо. Поэтому лучше защитить дорогую НЧ головку «дубово», неполярными батареями электролитических конденсаторов (выделено цветом, а схема одной батареи дана на врезке.

Немного об акустике

Акустическое оформление сабвуфера – особая тема, но раз уж здесь дан чертеж, то нужны и пояснения. Материал корпуса – МДФ 24 мм. Трубы резонаторов – из достаточно прочного не звенящего пластика, напр., полиэтилена. Внутренний диаметр труб – 60 мм, выступы внутрь 113 мм в большой камере и 61 в малой. Под конкретную головку громкоговорителя сабвуфер придется перенастроить по наилучшему басу и, одновременно, по наименьшему влиянию на стереоэффект. Для настройки трубы берут заведомо большей длины и, задвигая-выдвигая, добиваются требуемого звучания. Выступы труб наружу на звук не влияют, их потом отрезают. Настройка труб взаимозависима, так что повозиться придется.

Усилитель для наушников

Усилитель для наушников делают своими руками чаще всего по 2-м причинам. Первая – для слушания «на ходу», т.е. вне дома, когда мощности аудиовыхода плеера или смартфона не хватает для раскачки «пуговок» или «лопухов». Вторая – для высококлассных домашних наушников. Hi-Fi УМЗЧ для обычной жилой комнаты нужен с динамикой до 70-75 дБ, но динамический диапазон лучших современных стереонаушников превышает 100 дБ. Усилитель с такой динамикой стоит дороже некоторых автомобилей, а его мощность будет от 200 Вт в канале, что для обычной квартиры слишком много: прослушивание на сильно заниженной против номинальной мощности портит звук, см. выше. Поэтому имеет смысл сделать маломощный, но с хорошей динамикой отдельный усилитель именно для наушников: цены на бытовые УМЗЧ с таким довеском завышены явно несуразно.

Схема простейшего усилителя для наушников на транзисторах дана на поз. 1 рис. Звук – разве что для китайских «пуговок», работает в классе B. Экономичностью тоже не отличается – 13-мм литиевых батареек хватает на 3-4 часа при полной громкости. На поз. 2 – TDAшная классика для наушников «на ход». Звук, впрочем, дает вполне приличный, до среднего Hi-Fi смотря по параметрам оцифровки трека. Любительским усовершенствованиям обвязки TDA7050 несть числа, но перехода звука на следующий уровень классности пока не добился никто: сама «микруха» не позволяет. TDA7057 (поз. 3) просто функциональнее, можно подключать регулятор громкости на обычном, не сдвоенном, потенциометре.

УМЗЧ для наушников на TDA7350 (поз. 4) рассчитан уже на раскачку хорошей индивидуальной акустики. Именно на этой ИМС собраны усилители для наушников в большинстве бытовых УМЗЧ среднего и высокого класса. УМЗЧ для наушников на KA2206B (поз. 5) считается уже профессиональным: его максимальной мощности в 2,3 Вт хватает и для раскачки таких серьезных изодинамических «лопухов», как ТДС-7 и ТДС-15.

В последнее время конструкторы усилителей мощности низкой частоты всё чаще обращаются к ламповой схемотехнике, которая позволяет при сравнительной простоте конструкции достигать хорошего звучания. Но не следует полностью “списывать” транзисторы, поскольку при определенных обстоятельствах транзисторный УМЗЧ все-таки способен работать довольно неплохо, а часто и лучше ламп… Автору этой статьи довелось перепробовать большое количество УМЗЧ. Один из таких наиболее удачных “биполярных” вариантов и предлагается на суд читателей. В основе идеи хорошей работы лежит условие симметричности обоих плеч УМЗЧ. Когда обе полуволны усиливаемого сигнала претерпевают подобные преобразовательные процессы, можно ожидать удовлетворительной работы УМЗЧ в качественном отношении.
Еще в недалеком прошлом непременным и достаточным условием хорошей работы любого УМЗЧ считалось обязательным введение глубоких ООС. Бытовало мнение о невозможности создания высококачественных УМЗЧ без глубоких общих ООС. К тому же авторы конструкций убедительно уверяли, что, мол, нет необходимости в подборе транзисторов для работы их в парах (плечах), ООС все скомпенсирует и разброс транзисторов по параметрам на качество звуковоспроизведения не влияет!
Эпоха УМЗЧ, собранных на транзисторах одной проводимости, например, популярных КТ808. предполагала включение выходных транзисторов УМЗЧ уже неравноправно, когда один транзистор выходного каскада был включен по схеме с ОЭ, второй же – с ОК. Такое асимметричное включение не способствовало качественному усилению сигнала. С приходом КТ818, КТ819, КТ816. КТ817 и др., казалось бы, проблема линейности УМЗЧ решена. Но перечисленные комплементарные пары транзисторов “по жизни” слишком далеки от истинной комплементарности.
Не будем углубляться в проблемы некомплементарности вышеперечисленных транзисторов, которые весьма широко используются в различных УМЗЧ. Следует лишь подчеркнуть тот факт. что при равных условиях (режимах) этих транзисторов обеспечить их комплементарную работу в двухтактных усилительных каскадах достаточно сложно. Хорошо об этом сказано в книге Н.Е.Сухова .
Я вовсе не отрицаю возможность достижения хороших результатов при создании УМЗЧ на комплементарных транзисторах. Для этого нужен современный подход в схемотехнике таких УМЗЧ, с обязательным тщательным подбором транзисторов для работы в парах (ключах). Доводилось мне конструировать и такие УМЗЧ, которые являются своеобразными продолжениями высококачественного УМЗЧ Н.Е.Сухова , но о них – как нибудь в другой раз. Касаясь симметричности УМЗЧ, как главного условия хорошей его работы – следует сказать следующее. Оказалось, что более высокими качественными параметрами обладает УМЗЧ, собранный по действительно симметричной схеме и непременно на транзисторах одинакового типа (с обязательной подборкой экземпляров). Подбирать же транзисторы намного легче, если они из одной партии. Обычно экземпляры транзисторов из одной партии имеют довольно близкие параметры против “случайно” приобретенных экземпляров. Из опыта можно сказать, что из 20 шт. транзисторов (стандартное количество одной пачки) почти всегда можно отобрать две пары транзисторов для стереокомплекса УМЗЧ. Были случаи и более “удачного улова” – по четыре пары из 20 штук. О подборе транзисторов расскажу несколько позже.
Принципиальная схема УМЗЧ изображена на рис.1. Как видно из схемы, она довольно простая. Симметричность обоих плеч усилителя обеспечена симметричностью включений транзисторов.

Известно, что дифференциальный каскад обладает многими преимуществами перед обычными двухтактными схемами. Не углубляясь в теорию, следует подчеркнуть, что в данной схеме заложено правильное “токовое” управление биполярными транзисторами. Транзисторы дифференциального каскада обладают повышенным выходным сопротивлением (намного большим традиционной “раскачки” по схеме с ОК), поэтому их можно рассматривать как генераторы тока (источники тока). Таким образом реализуется токовый принцип управления выходными транзисторами УМЗЧ. Очень точно сказано о влиянии согласования по сопротивлениям между транзисторными каскадами на уровень нелинейных искажений в : “Известно, что нелинейность входной характеристики транзистора Iб=f(Uбэ) в наибольшей степени проявляется тогда, когда усилительный каскад работает от генератора напряжения, т.е. выходное сопротивление предыдущего каскада меньше входного сопротивления последующего. В этом случае выходной сигнал транзистора – ток коллектора или эмиттера – аппроксимируется экспоненциальной функцией напряжения база эмиттер Uбэ, а коэффициент гармоник порядка 1% достигается при величине этого напряжения, равном всего 1 мВ (!). Это объясняет причины возникновения искажений во многих транзисторных УМЗЧ. Очень жаль. что этому факту практически никто не уделяет должного внимания. Что уж там, транзисторы “умирают” в УМЗЧ (как динозавры?!), словно нет никакого выхода из сложившихся обстоятельств, кроме как применения ламповых схем…
Но прежде чем приступить к намотке трудоемкого выходного трансформатора, стоит все-таки повозиться и с симметричной транзисторной схемой УМЗЧ. Забегая вперед, скажу еще о том, что по аналогичной схемотехнике были собраны и УМЗЧ на полевых транзисторах, об этом поговорим как-нибудь в другой раз.
Еще одна особенность схемы рис.1 – это повышенное (по сравнению с традиционными УМЗЧ) количество источников питания. Не следует этого бояться, поскольку емкости фильтрующих конденсаторов попросту разделяются на два канала в равной степени. А разделение источников питания в каналах УМЗЧ лишь улучшают параметры стереокомплекса в целом. Напряжения источников E1 и E2 не стабилизированы, а в качестве EЗ необходимо использовать стабилизатор напряжения (40 вольт).
Говоря о теоретических проблемах двухтактных схем и транзисторных УМЗЧ вообще, необходимо проанализировать еще один каскад (или несколько таковых каскадов) – фазоинвертор. Продолжительные эксперименты подтверждают факт существенного ухудшения качества звуковоспроизведения из-за этих каскадов. Собрав совершенно симметричную схему, да еще и с кропотливо подобранными деталями, приходится столкнуться с проблемой схем фазоинверторов. Было установлено, что эти каскады способны вносить очень большие искажения (различие формы синусоиды для полуволн можно было наблюдать на экране осциллографа даже без использования каких-либо дополнительных схем). Сказанное в полной мере относится и к простым схемам ламповых вариантов усилителей-фазоинверторов. Вы подбираете номиналы в схеме с тем, чтобы получить равенство амплитуд обеих полуволн (синусоиды) противофазного сигнала по высококлассному цифровому вольтметру, а субъективная экспертиза требует (на слух!) поворота движков подстроечных резисторов в сторону от этого “приборного” способа регулировки уровней.
Всматриваясь в форму синусоиды на экране осциллографа, удается увидеть “интересные” искажения – на одном выходе фазоинвертора они шире (по оси частот), на другом – “тоньше”, т.е. площадь фигуры синусоид различна для прямого и фазоинверсного сигналов. Слух это четко улавливает, приходится “разрегулировать” настройку. Выравнивать же синусоиду в фазоинверсных каскадах глубокими ООС крайне нежелательно. Устранять нужно причины асимметрии в этих каскадах другими схемотехническими путями, в противном случае фазоинверсный каскад может вносить весьма заметные на слух “транзисторные” искажения, уровень которых будет сопоставим с искажениями выходного каскада УМЗЧ (!). Вот так и случается, что фазоинвертор является основным узлом асимметрии для любых двухтактных УМЗЧ (будь-то транзисторных, ламповых или комбинированных схем УМЗЧ), если, конечно же, усилительные элементы в плечах заранее отобраны с близкими параметрами, иначе нет смысла вообще ожидать от таких схем хорошего звучания.
Из самых простых в реализации фазоинверсных схем, которые хорошо работают, являются ламповые варианты. Более простыми их “аналогами” являются полевые транзисторы, которые (только!) при грамотном схемотехническом подходе вполне способны конкурировать с ламповыми усилителями. И если уж аудиофилы не боятся применения согласующих трансформаторов в выходных каскадах, где это “железо” все равно “звучит”, то уж и в предыдущих каскадах можно со спокойной совестью применять трансформаторы. Я имею в виду фазоинверсные каскады, где амплитуда тока (а именно эта составляющая пагубно влияет на “железо”) невелика, а амплитуда напряжения достигает значения всего лишь в несколько вольт.
Бесспорно, что любой трансформатор – это своеобразный шаг назад в схемотехническом отношении в век гигагерцовых Pentium’ов. Но есть несколько “но”, о которых весьма уместно иногда вспомнить. Первое – грамотно изготовленный переходной или согласующий трансформатор никогда не внесет столько нелинейных искажений, сколько могут внести самых разнообразных искажений несколько “неправильных” усилительных каскадов. Второе – трансформаторный фазоинвертор действительно позволяет достигнуть реальной симметрии противофазных сигналов, сигналы с его обмоток по-настоящему близки друг к другу как по форме, так и по амплитуде. К тому же он – пассивный, и его характеристики не зависят от питающих напряжений. И если ваш УМЗЧ реально симметричен (в данном случае имеются в виду его входные импедансы), то асимметрия УМЗЧ будет уже определяться более разбросом параметров радиокомпонентов в плечах УМЗЧ, чем фазоинверсным каскадом. Поэтому не рекомендуется использовать в таком УМЗЧ радиоэлементы с допусками более 5% (исключения лишь составляют цепи генератора тока, питающего дифференциальный каскад). Следует отдавать себе отчет, что при разбросах параметров транзисторов в плечах УМЗЧ более 20% точность резисторов уже теряет свою актуальность. И наоборот, когда используются хорошо подобранные транзисторы, имеет смысл применять резисторы с допуском 1%. Их конечно же, можно и подобрать с помощью хорошего цифрового омметра.

Одна из наиболее удачных схемотехнических разработок фазоинвертора представлена на рис.2.



Кажущаяся слишком простой, она все же требует пристального внимания к себе, поскольку имеет несколько “секретов”. Первый из таких – это правильный выбор транзисторов по параметрам. Транзисторы VT1 и VT2 не должны иметь значительных утечек между электродами (имеется в виду переходы затвор-исток). Кроме того, транзисторы должны иметь близкие параметры, особенно это касается начального тока стока – сюда наиболее подходят экземпляры с Iс.нач. 30-70 мА. Напряжения питания должны быть стабилизированы, правда коэффициент стабилизации блока питания существенной роли не играет, к тому же, отрицательное напряжение можно взять и со стабилизатора УМЗЧ. Чтобы электролитические конденсаторы поменьше вносили своих искажений, они зашунтированы неэлектролитическими – типа К73-17.
Немного подробнее рассмотрим особенности изготовления главного узла в этой схеме – фазорасщепительного (фазоинверсного) трансформатора. От аккуратности его изготовления зависит как индуктивность рассеяния, так и диапазон эффективно воспроизводимых частот, не говоря уже об уровне различных искажений. Так вот, два основных секрета технологического процесса изготовления этого трансформатора таковы. Первое – необходимость отказаться от простой намотки обмоток. Привожу два использованных мною варианта намотки этого трансформатора. Первый – изображен на рис.3, второй – на рис.4. Суть метода такой намотки заключается в следующем. Каждая из обмоток (I, II или III) состоит из нескольких обмоток, содержащих строго одинаковое количество витков. Необходимо избегать какой бы то ни было ошибки в количестве витков, т.е. разницы в витках между обмотками. Поэтому решено было производить намотку трансформатора давно проверенным способом. По рис.3 используется шесть проводов (например, ПЭЛШО-0,25). Заранее рассчитывают необходимую длину обмоточного провода (не всегда же и не у каждого радиолюбителя окажется под рукой шесть бухт провода одного диаметра), складывают шесть проводов вместе и производят намотку всех обмоток одновременно. Далее необходимо лишь найти отводы нужных обмоток и соединить их попарно-последовательно.

По рис.4 использовалось девять проводников для этого варианта. И еще, мотать необходимо так, чтобы провода одного витка не расходились в разные стороны далеко-широко один от другого, а держались общего рулона вместе. Мотать же отдельными проводами недопустимо, трансформатор будет буквально “звенеть” во всем диапазоне звуковых частот, индуктивность рассеяния увеличится, возрастут и искажения УМЗЧ из-за асимметрии сигналов на выходах трансформатора.
Да и ошибиться очень легко можно при отдельных способах намотки симметричных обмоток. А ошибка в несколько витков дает о себе знать несимметричностью противофазных сигналов. Если уж продолжать откровенно, то был изготовлен трансформатор фазоинвертора (в единственном роде, экземпляре) в … 15 жил. Был эксперимент, который вошел в коллекцию прекрасно звучащих конструкций УМЗЧ. Еще раз хочется сказать о том, что не трансформаторы виноваты в плохой работе некоторых схем, а их конструкторы. Во всем мире весьма расширилось производство ламповых УМЗЧ, их подавляющее большинство содержит разделительные трансформаторы (вернее, согласующие), без которых ламповый каскад (типовая схема двухтактного выходного каскада содержит 2-4 лампы) просто невозможно согласовать с низкоомными акустическими системами. Есть, конечно же, и экземпляры “суперламповых” УМЗЧ, где нет выходных трансформаторов. Их место заняли либо мощные комплементарные пары полевых транзисторов или … батарея мощных ламповых триодов, соединенных параллельно. Но эта тема уже выходит за рамки данной статьи. В нашем случае все гораздо проще. Транзистор VT1 (рис.2) МОП-типа, включенный по схеме с общим стоком (истоковый повторитель) работает на генератор тока (источник тока), выполненный на транзисторе VT2. Применять мощные полевые транзисторы типа КП904 не следует, у них повышенные входные и проходные емкости, что не может не сказаться на работе этого каскада.
Еще один камень преткновения, серьезная проблема в создании широкополосного трансформатора ожидает конструктора при выборе магнитопровода. Здесь уместно кое-что добавить к тому, что можно встретить в доступной радиолюбителю литературе. Различные варианты конструкций как у радиолюбителей, так и у профессионалов предлагают использование разных материалов магнитопроводов трансформаторов, которые не доставляли бы хлопот как при их приобретении, так и при их использовании. Суть методов такова.
Если ваш УМЗЧ будет работать на частотах выше 1 кГц, то можно смело использовать ферритовые сердечники. Но отдавать предпочтение следует экземплярам магнитопроводов с наибольшей магнитной проницаемостью, очень хорошо работают сердечники от строчных трансформаторов телевизоров. Следует предостеречь конструкторов от использования сердечников, которые уже находились длительное время в эксплуатации. Известно, что ферритовые изделия теряют с “возрастом” свои параметры, в том числе и начальную магнитную проницаемость, “неповторимая” старость их убивает не меньше, чем, например, магниты длительно эксплуатируемых громкоговорителей, о чем почему-то почти все умалчивают.
Далее о сердечниках – если УМЗЧ используют в качестве басового варианта, то смело можно применять традиционные Ш-образные пластинчатые варианты магнитопроводов. Необходимо подчеркнуть, что экранировка всех таких трансформаторов почти везде была необходимостью и потребностью. Что уж тут поделаешь, за все необходимо расплачиваться. Обычно было достаточным изготовление “кокона” из обычной кровельной жести толщиной 0,5 мм.
На НЧ хорошо работают и тороидальные сердечники. Кстати, их использование упрощает уничтожение всевозможных наводок со стороны сетевых трансформаторов. Здесь сохраняется “обратимость” преимущества тороидального сердечника – в сетевом варианте он отличается малым внешним полем излучения, во входных же (сигнальных) цепях – он малочувствителен к внешним полям. Что же касается широкополосного варианта (20 – 20 000 Гц), то наиболее правильным будет применение двух разных видов сердечников, размещенных рядом, в одном окне каркаса для намотки обмоток трансформатора. При этом устраняется завал как на высоких частотах (здесь работает ферритовый сердечник), так и на низких частотах (здесь работает трансформаторная сталь). Дополнительного улучшения звуковоспроизведения в области 1-15 кГц добиваются покрытием пластин стального сердечника лаком, как это делают в ламповых УМЗЧ. При этом каждая пластина “работает индивидуально” в составе сердечника, чем и достигается уменьшение всевозможных потерь на вихревые токи. Нитролак высыхает быстро, тонким слоем его наносят простым окунанием пластины в посуду с лаком.
Многим может показаться слишком кропотливой такая технология изготовления трансформатора в фазоинверторе, но поверьте на слово – “игра стоит свеч”, ибо “что посеешь, то и пожнешь”. А насчет сложности, “нетехнологичности” можно сказать следующее – за один выходной день удавалось без спешки изготовить два таких трансформатора, да и распаять их обмотки в необходимом порядке, что не скажешь о выходных трансформаторах для ламповых УМЗЧ.
Теперь несколько слов о количестве витков. Теория требует увеличения индуктивности первичной обмотки (I), с ее увеличением расширяется диапазон воспроизводимых частот в сторону более низких частот. Во всех конструкциях вполне достаточной была намотка обмоток до заполнения каркаса, диаметр провода применялся 0,1 – для 15 жил, 0,15 – для 9 жил и 0,2 для 6-жильного варианта. В последнем случае использовался и имеющийся ПЭЛШО 0,25.

Для тех же. кто не переносит трансформаторы:-), есть и бестрансформаторный вариант – рис.5.



Это простейший. но вполне звучащий вариант схемы фазоинверторного каскада, который использовался не только в симметричных схемах УМЗЧ, но и в мощных мостовых УМЗЧ. Простота зачастую обманчива, поэтому ограничу себя в критике подобных схем, но осмелюсь сказать, что площади синусоид отсимметрировать довольно сложно, зачастую необходимо вводить дополнительные цепи смещения и балансировок, а качество звуковоспроизведения при этом оставляет желать лучшего. Несмотря на вносимые трансформаторами фазовые, амплитудно-частотные искажения, они позволяют достигнуть практически линейной АЧХ в области звуковых частот, т.е. во всем диапазоне 20 Гц – 20 000 Гц. От 16 кГц и выше могут сказаться емкости обмоток, но частично уйти в сторону от этой проблемы позволяет дополнительно увеличенная площадь сечения магнитопровода. Правило простое, подобное сетевым трансформаторам: увеличив площадь сечения магнитопровода сердечника трансформатора, например, в два раза. смело уменьшают количество витков обмоток в два раза и т.д.
Расширить область эффективно воспроизводимых частот вниз, т.е. ниже 20 Гц, можно следующим способом. Полевые транзисторы (VT1, VT2 – рис.2) применяют с большими значениями Iс.нач. и увеличивают емкость конденсатора C4 до 4700 мкф. Электролитические конденсаторы работают значительно чище, если к ним приложено прямое поляризующее напряжение в несколько вольт. Очень удобно в этом случае поступать следующим образом. Устанавливают в верхний (по схеме) транзистор VT1 экземпляр с начальным током стока большим, нежели у транзистора VT2. Можно поступить и еще более “эффективно”, применив балансировочный резистор для транзистора VT2, фрагмент схемы с таким резистором показан на рис.6.

Первоначально движок подстроечного резистора R2′ находится в нижнем (по схеме) положении, перемещение его движка вверх вызывает увеличение тока стока транзистора VT2, потенциал на положительной обкладке конденсатора C4 становится более отрицательным. Обратный процесс происходит при противоположном перемещении движка резистора R2. Таким образом можно отрегулировать каскад по наиболее подходящим режимам, особенно, когда нет транзисторов (VT1 и VT2) с близкими значениями Iс.нач., а устанавливать приходится то, что есть под рукой…
Довольно подробно я остановился на такой как будто бы очень простой схеме. Она-то простая, но не примитивная. Есть у нее и неоспоримые преимущества по сравнению с “всепропускающими” гальванически соединенными схемами усилителей-фазоинверторов. Первый такой плюс – это подавление инфранизкочастотных помех (например в ЭПУ), второй же – “отсечка” ультразвуковых помех вроде мощных радиостанций, различных ультразвуковых установок и др. И еще одно положительное свойство такой схемы следует подчеркнуть особо. Речь идет об отсутствии каких-либо проблем при стыковке отличных симметричных схем с асимметричным входом. Стоит взглянуть на рис.5, и сразу становится понятно (если человек имел с этим дело!), что проблема потенциалов здесь просто не решена никак. Частично ее решают заменой электролитического конденсатора на батарею параллельно соединенных неэлектролитических, мол временная задержка подключения АС все решит. Задержка во времени подключения акустических систем к УМЗЧ щелчки и выбросы при включении действительно устраняет, но вопрос возникновения дополнительных искажений изза разных потенциалов и разных выходных импедансов фазоинвертора решить она никак не может. Данная схема усилителя-фазоинвертора (рис.2) успешно использовалась с различными УМЗЧ, в том числе и с ламповыми симметричными.
В последнее время в периодических изданиях можно найти схемы УМЗЧ на мощных КП901 и КП904. Но не упоминают авторы о том, что полевые транзисторы следует отбраковывать на токах “утечки”. Если, к примеру, VT1 и VT2 (в схеме рис.2) однозначно необходимо использовать высококачественные экземпляры, то в каскадах с большими амплитудами напряжений и токов, а главное – там, где входное сопротивление МОП транзистора (его уменьшение) роли не играет, можно применять и худшие экземпляры. Достигнув максимальных значений утечек, МОП транзисторы, как правило, стабильны в будущем и дальнейшего ухудшения их параметров уже не наблюдается со временем (в большинстве случаев).
Число транзисторов с повышенными утечками в цепи затвора, например, в одной пачке (стандарт – 50 шт.) может колебаться от 10 до 20 шт. (а то и более). Отбраковать мощные транзисторы не составляет большого труда – достаточно собрать своеобразный стенд, например, по рис.6 и включить в цепь затворов цифровой амперметр (стрелочные приборы в этом случае слишком чувствительны к перегрузкам и неудобны из-за необходимости многократных переключений с диапазона на диапазон).
Отличными следует считать экземпляры МОП транзисторов (речь идет применительно к схеме рис.2 – VT1, VT2), у которых ток затвора менее 10 мкА, лучшие экземпляры вообще не обнаруживают этого тока (на пределе 100 мкА).
А теперь, когда фазоинвертор уже изготовлен, можно приступать и к схеме рис.1, т.е. вернуться непосредственно к УМЗЧ. Широко распространенные разъемы (гнезда) СШ-3, СШ-5 и им подобные вообще использовать нельзя, как это делают многие конструкторы и делали заводы-изготовители. Контактное сопротивление такого соединения значительно (0,01 – 0,1 Ом!) и еще колеблется в зависимости от протекающего тока (с увеличением тока сопротивление растет!). Поэтому следует применять мощные разъемы (например, от старой военной радиоаппаратуры) с малым сопротивлением контактов. То же касается и контактов реле в блоке защиты АС от возможного появления на выходе УМЗЧ постоянного напряжения. И не надо их охватывать (контактные группы) какими-либо обратными связями для уменьшения искажений. Поверьте на слово, что на слух (субъективная экспертиза) их практически не слышно (при достаточно малых сопротивлениях контактов), чего не скажешь об “электронных” искажениях, вносимых всеми усилительными каскадами, конденсаторами и другими компонентами УМЗЧ, которые непременно вносят яркие краски в общую картину звуковоспроизведения. Свести к минимуму всевозможные искажения можно рациональным использованием усилительных каскадов (особенно это касается усилителей напряжения – чем их меньше, тем лучше качество усиленного сигнала). В данном УМЗЧ всего один каскад усиления напряжения – это транзистор VT3 (левое плечо) и VT4 (правое плечо). Каскад на транзисторах VT6 и VT5 всего лишь согласующие (токовые) эмиттерные повторители. Транзисторы VT3 и VT4 отбирают с h21э более 50, VT6 и VT5 – более 150. В этом случае никаких проблем при работе УМЗЧ на больших мощностях возникать не будет. Напряжение отрицательной обратной связи по постоянному и переменному току поступает на базы транзисторов VT6 и VT5 через резисторы R24 и R23. Глубина этой ОС всего около 20 дБ, поэтому динамические искажения в УМЗЧ отсутствуют, но такой ОС вполне достаточно для поддержания режимов выходных транзисторов VT7 и VT8 в необходимых пределах. УМЗЧ достаточно устойчив к ВЧ самовозбуждению. Простота схемы позволяет его быстро размонтировать, поскольку допускается независимое отключение питания (-40 В) драйвера и оконечных транзисторов (2 x 38 В). Полная симметрия усилителя способствует снижению нелинейных искажений и снижению чувствительности к пульсациям питающего напряжения, а также дополнительному подавлению синфазных помех, поступающих на оба входа УМЗЧ. Недостаток усилителя состоит в значительной зависимости нелинейных искажений от h21э примененных транзисторов, но если транзисторы будут иметь h21 вых = 70 Вт) равно 1,7 В (эффективное значение).
На транзисторах VT1 и VT2 выполнен источник (генератор тока), питающий дифференциальный каскад (драйвер). Величину этого тока 20…25 мА устанавливают подстроечным резистором R3 (470 Ом). Поскольку от этого тока зависит и ток покоя, то и для термостабилизации последнего транзистор VT1 размещен на теплоотводе одного из транзисторов выходного каскада (VT7 или VT8). Увеличение температуры теплоотвода выходного транзистора соответственно передается размещенному на этом теплоотводе транзистору VT1, при нагревании же последнего происходит снижение отрицательного потенциала на базе транзистора VT2. Это призакрывает транзистор VT2, ток через него уменьшается, что соответствует уменьшению тока покоя выходных транзисторов VT7 и VT8. Таким образом и осуществляется стабилизация тока покоя выходных транзисторов при значительном нагревании их теплоотводов. Несмотря на кажущуюся простоту реализации такой термостабилизации, она достаточно эффективна и никаких проблем в надежности УМЗЧ не было. Очень удобно контролировать токи дифференциальных транзисторов (VT3 и VT4) по падению напряжения на резисторах R7 и R15 или R21 и R26. Подстроечный резистор R11 – балансировочный, служит для установки нулевого потенциала на громкоговорителе (на выходе УМЗЧ).

Схема узла защиты громкоговорителей (рис.7) выполнена по традиционной схеме.



Поскольку была выбрана конструкция размещения УМЗЧ в раздельных корпусах, то и узлы защиты акустических систем у каждого УМЗЧ были свои. Схема защиты АС проста и надежна, этот вариант прошел длительную проверку во многих конструкциях и зарекомендовал себя как хороший и надежный, не раз “спасающий” жизнь дорогостоящих громкоговорителей. Удовлетворительной работой схемы можно считать срабатывание реле К1 при подаче постоянного напряжения 5 В между точками А и Б. Очень просто это проверить с помощью регулируемого блока питания (с изменяемым выходным напряжением). В разных конструкциях применялись различные типы реле, так же изменялось и напряжение блока питания этого узла в пределах 30-50 В (для больших значений этого напряжения следует заменить транзисторы VT1 и VT2 на более высоковольтные экземпляры, например КТ503Е и др.)
Предпочтение для использования в блоке защиты следует отдавать экземплярам реле с наиболее сильноточными группами контактов, с большой площадью поверхностей соприкосновения контактов. А вот реле РЭС-9 или РЭС-10 вообще применять не следует – при больших выходных мощностях УМЗЧ они начинают вносить свои “неповторимые” окраски в усиленный сигнал. Блок защиты АС питают от отдельного выпрямителя, причем необходимо исключить какие-либо гальванические соединения этого блока с УМЗЧ, за исключением лишь датчиков выходных напряжений – точки А и Б подключены к выходам УМЗЧ.
Драйверы обоих каналов можно запитать от одного общего стабилизатора напряжения. При этом оба канала УМЗЧ объединяют в один корпус, а блоки питания собраны в другом корпусе. Естественно, здесь широкое поле выбора для каждого конкретного случая, кому что более подходит в конструктивном исполнении. Схема одного из вариантов стабилизатора для питания драйверов изображена на рис.8.


На транзисторе VT1 собран генератор тока, питающий транзистор VT2, необходимое напряжение на выходе стабилизатора устанавливают подстроечным резистором R6. Следует подчеркнуть, что от напряжения этого стабилизатора зависит в первую очередь максимальная выходная мощность УМЗЧ. Но увеличивать напряжение свыше 50 В не рекомендуется из-за возможного выхода из строя транзисторов VT3 и VT4 драйвера. Суммарное напряжение стабилизации стабилитронов должно быть в пределах 27-33 В. Ток через стабилитроны подбирается резистором R4. Резистор R1 ограничительный (по току), предотвращает выход из строя регулирующего транзистора VT2. Последнее вполне вероятно в процессе налаживания, при этом повышение питания драйвера сможет вывести весь УМЗЧ из строя. После налаживания УМЗЧ резистор R1 в стабилизаторе можно замкнуть отрезком провода, а можно этого и не делать, поскольку драйверы потребляют ток всего лишь немногим более 50 мА – влияние резистора R1 на параметры стабилизатора незначительны при малых нагрузочных токах.
При блочной конструкции придется полностью разделять питания обоих УМЗЧ, в том числе и драйверов. Но в любом случае для питания драйвера необходим отдельный выпрямитель со своей обмоткой в трансформаторе. Схема выпрямителя изображена на рис.9.

В каждом канале УМЗЧ используется свой трансформатор питания. Такой вариант конструктивного исполнения имеет несколько преимуществ по сравнению с традиционным использованием одного трансформатора. Первое, что удается, так это уменьшить высоту блока в целом, поскольку размеры (высота) сетевого трансформатора значительно снижается при раздетых питающих трансформаторах для каждого УМЗЧ. Далее, легче производить намотку, поскольку диаметр намоточных проводов без ущерба для мощности УМЗЧ можно снижать в 1,4 раза. В связи с этим и сетевые обмотки можно включать противофазно для уменьшения сетевых наводок (это очень помогает компенсировать излучение полей трансформаторов, особенно при размещении в одном корпусе с УМЗЧ других схем усилителей – блоков тембров, регулировки громкости и т.п.). Разделение питающих цепей выходных транзисторов УМЗЧ позволяет увеличить и качество воспроизводимого сигнала, особенно на низких частотах (переходные искажения в каналах на НЧ также снижаются). Для снижения уровня интермодуляционных искажений, вызываемых сетевым питанием, в трансформаторы введены электростатические экраны (один слой провода, намотанного виток к витку).
Во всех вариантах конструкций УМЗЧ использованы тороидальные магнитопроводы для трансформаторов. Намотка производилась вручную с помощью челноков. Можно порекомендовать и упрощенный вариант конструкции блока питания. Для этого используют фабричный ЛАТР (хорошо подходит девятиамперный экземпляр). Первичная обмотка как самая трудная в процессе намотки – уже готовая, необходимо лишь намотать экранную обмотку и все вторичные и трансформатор прекрасно будет работать. Окно у него достаточно просторное для размещения обмоток для обоих каналов УМЗЧ. Кроме того, при этом можно драйверы и усилителифазоинверторы запитать от общих стабилизаторов, “сэкономив” в этом случае две обмотки. Недостаток такого трансформатора – большая высота (кроме, конечно же, и вышеперечисленных обстоятельств).
Теперь о деталях. Устанавливать низкочастотные диоды (вроде Д242 и им подобных) для питания УМЗЧ не следует – увеличатся искажения на высоких частотах (от 10 кГц и выше), кроме того в схемы выпрямителей были дополнительно внесены керамические конденсаторы, позволяющие снизить интермодуляционные искажения, вызываемые изменением проводимости диодов в момент их коммутации. Таким образом снижается влияние сетевого питания на УМЗЧ при его работе на высоких частотах звукового диапазона. Еще лучше обстоит дело с качеством при шунтировании электролитических конденсаторов в сильноточных выпрямителях (выходные каскады УМЗЧ) неэлектролитическими. При этом на слух и первое и второе дополнение схем выпрямителей достаточно отчетливо воспринималось субъективной экспертизой – проверкой на слух работы УМЗЧ, отмечалась более естественная его работа при воспроизведении нескольких ВЧ-составляющих разных частот.
О транзисторах. Заменять транзисторы VT3 и VT4 худшими по частотным свойствам экземплярами (КТ814, например) не стоит, коэффициент гармоник возрастает при этом не менее, чем в два раза (на ВЧ-участке и того более). На слух это очень хорошо заметно, средние частоты воспроизводятся неестественно. С целью упрощения конструкции УМЗЧ в выходном каскаде использованы составные транзисторы серии КТ827А. И хотя они, в принципе, достаточно надежны, их все же необходимо проверять на максимально выдерживаемое (у каждого экземпляра оно свое) напряжение коллектор-эмиттер (имеется в виду прямое напряжение Uкэmax. для закрытого транзистора). Для этого базу транзистора соединяют с эмиттером через резистор 100 Ом и подают, плавно увеличивая, напряжение: на коллектор – плюс, на эмиттер – минус. Экземпляры, обнаруживающие протекание тока (предел амперметра – 100 мкА) для Uкэ = 100 В не пригодны для данной конструкции. Они могут работать, но это не надолго… Экземпляры же без таких “утечек” работают надежно годами, не создавая никаких проблем. Схема стенда для испытаний изображена на рис.10.


Естественно, что параметры серии КТ827 желают быть лучшими, особенно это касается их частотных свойств. Поэтому их заменяли “составными” транзисторами, собранными на КТ940 и КТ872. Необходимо лишь отобрать КТ872 с возможно большим h21э, поскольку у КТ940 недостаточно велик Iкmax. Такой эквивалент просто отлично работает во всем звуковом диапазоне, а особенно на высоких частотах. Схема включения двух транзисторов вместо одного составного типа КТ827А изображена на рис.11. Транзистор VT1 можно заменить на КТ815Г, a VT2 – практически любым мощным (Pк > 50 Вт и с Uэ > 30.

Резисторы применены типов С2-13 (0,25 Вт), МЛТ. Конденсаторы типов К73-17, К50-35 и др. Налаживание правильно (без ошибок) собранного УМЗЧ заключается в установке тока покоя транзисторов выходного каскада УМЗЧ – VT7 и VT8 в пределах 40-70 мА. Очень удобно контролировать значение тока покоя по падению напряжения на резисторах R27 и R29. Ток покоя задают резистором R3. Близкое к нулевому постоянное выходное напряжение на выходе УМЗЧ устанавливают балансировочным резистором R11 (добиваются разности потенциалов не более 100 мВ).

Л И Т Е Р А Т У Р А

1. Сухов Н.Е. и др. Техника высококачественного звуковоспроизведения – Киев, “Техника”, 1985
2. Сухов Н.Е. УМЗЧ высокой верности. – “Радио”, 1989 – №6, №7.
3. Сухов Н.Е. К вопросу об оценке нелинейных искажений УМЗЧ. – “Радио”, №5. 1989.


Всем Привет! В этой статье я буду подробно описывать как изготовить классный усилитель для дома или авто . Усилитель несложный в сборке и настройке, и имеет хорошее качество звучания. Ниже вашему вниманию представлена принципиальная схема самого усилителя.


Схема выполнена на транзисторах и не имеет дефицитных деталей. Питание усилителя двуполярное +/- 35 вольт, при сопротивлении нагрузки в 4 Ома. При подключении 8-ми Омной нагрузки, питание можно увеличить до +/- 42 вольт.

Резисторы R7, R8, R10, R11, R14 - 0,5 Вт; R12, R13 - 5 Вт; остальные 0.25 Вт.
R15 подстроечный 2-3 кОм.
Транзисторы: Vt1, Vt2, Vt3, Vt5 - 2sc945 (на корпусе пишется обычно c945).
Vt4, Vt7 - BD140 (Vt4 можно заменить нашим Кт814).
Vt6 - BD139.
Vt8 - 2SA1943.
Vt9 - 2SC5200.

ВНИМАНИЕ! У транзисторов c945 есть разная цоколевка: ЭКБ и ЭБК. Поэтому перед впайкой нужно проверять мультиметром.
Светодиод обычный, зеленого цвета, именно ЗЕЛЕНОГО! Он здесь не для красоты! И НЕ должен быть сверхъярким. Ну а остальные детали видно на схеме.

И так, Погнали!

Для изготовления усилителя нам понадобятся инструменты :
-паяльник
-олово
-канифоль (желательно жидкий), но можно обойтись и обычным
-ножницы по металлу
-кусачки
-шило
-медицинский шприц, любой
-сверло 0.8-1 мм
-сверло 1.5 мм
-дрель (лучше какую-нибудь мини дрель)
-наждачная бумага
-и мультиметр.

Материалы:
-односторонняя текстолитовая плата размером 10х6 см
-лист тетрадной бумаги
-ручка
-лак для дерева (желательно темного цвета)
-небольшой контейнер
-пищевая сода
-лимонная кислота
-соль.

Список радиодеталей я перечислять не буду, их видно на схеме.
Шаг 1 Готовим плату
И так, нам нужно изготовить плату. Так как лазерного принтера у меня нет (вообще нет ни каково), плату мы будем изготавливать «по старинке»!
Для начала нужно просверлить отверстия на плате для будущих деталей. У кого есть принтер, просто распечатайте эту картинку:


если нет, то тогда нам надо перенести на бумагу разметку для сверловки. Как это сделать вы поймете на фото ниже:


когда будете переводить, не забудьте про размер платы! (10 на 6 см)



вот как то так!
Отрезаем ножницами по металлу нужный нам размер платы.


Теперь прикладываем листок к вырезанной плате и фиксируем скотчем, чтобы не съехала. Далее берем шило и намечаем (по точкам) где будем сверлить.


Можно конечно обойтись без шила и сверлить сразу, но сверло может съехать!


Теперь можно и начать сверловку. Сверлим дырки 0.8 - 1 мм.Как я говорил выше: лучше использовать мини дрель, так как сверло очень тонкое и легко ломается. Я например использую моторчик от шуруповерта.



Дырки под транзисторы Vt8, Vt9 и под провода сверлим сверлом 1.5 мм. Теперь надо зачистить наждачкой нашу плату.


Вот теперь можно и начать рисовать наши дорожки. Берем шприц, стачиваем иголку, чтоб была не острой, набираем лак и вперед!


Подравнивать косяки лучше когда лак уже застынет.


Шаг 2 Травим плату
Для травления плат я использую самый простой и самый дешевый метод:
100 мл перекиси, 4 ч ложки лимонной кислоты и 2 ч ложки соли.


Размешиваем и погружаем нашу плату.



Далее счищаем лак и получается вот так!


Желательно сразу все дорожки покрыть оловом для удобства пайки деталей.


Шаг 3 Пайка и настройка
Паять удобно будет по этой картинке (вид со стороны деталей)


Для удобства с начало впаиваем все мелкие детали, резисторы и прочее.


А потом уже все остальное.


После пайки плату нужно отмыть от канифоли. Отмыть можно спиртом или ацетоном. На крайняк можно даже бензином.


Теперь можно и пробовать включать! При правильной сборке усилитель работает сразу. При первом включении резистор R15 надо вывернуть в сторону максимального сопротивления (меряем прибором). Колонку не подключать! Выходные транзисторы ОБЯЗАТЕЛЬНО на радиатор, через изолирующие прокладки.

И так: включили усилитель, светодиод должен гореть, меряем мультиметром напряжение на выходе. Постоянки нет, значит все хорошо.
Далее нужно установить ток покоя (75-90mA): для этого замкните вход на землю, нагрузку не подключать! На мультиметре поставьте режим 200mV и подсоедините щупы к коллекторам выходных транзисторов. (на фото отмечено красными точками)


Далее медленным вращением резистора R15 нужно установить 40-45 mV.


Выставили, теперь можно подключить динамик и погонять усилитель на небольшой громкости 10-15 мин. Потом опять нужно будет подкорректировать ток покоя.
Ну вот и все, можно наслаждаться!

Вот видео работы усилителя:

Читатели! Запомните ник этого автора и никогда не повторяйте его схемы.
Модераторы! Прежде чем меня забанить за оскорбления, подумайте, что Вы "подпустили к микрофону" обыкновенного гопника, которого даже близко нельзя подпускать к радиотехнике и, тем более, к обучению начинающих.

Во-первых, при такой схеме включения, через транзистор и динамик пойдет большой постоянный ток, даже если переменный резистор будет в нужном положении, то есть будет слышно музыку. А при большом токе повреждается динамик, то есть, рано или поздно, он сгорит.

Во-вторых, в этой схеме обязательно должен быть ограничитель тока, то есть постоянный резистор, хотя бы на 1 КОм, включенный последовательно с переменным. Любой самоделкин повернет регулятор переменного резистора до упора, у него станет нулевое сопротивление и на базу транзистора пойдет большой ток. В результате сгорит транзистор или динамик.

Переменный конденсатор на входе нужен для защиты источника звука (это должен обьяснить автор, ибо сразу же нашелся читатель, который убрал его просто так, считая себя умнее автора). Без него будут нормально работать только те плееры, в которых на выходе уже стоит подобная защита. А если ее там нет, то выход плеера может повредиться, особенно, как я сказал выше, если выкрутить переменный резистор "в ноль". При этом на выход дорогого ноутбука подастся напряжение с источника питания этой копеечной безделушки и он может сгореть. Самоделкины, очень любят убирать защитные резисторы и конденсаторы, потому-что "работает же!" В результате, с одним источником звука схема может работать, а с другим нет, да еще и может повредиться дорогой телефон или ноутбук.

Переменный резистор, в данной схеме должен быть только подстроечным, то есть регулироваться один раз и закрываться в корпусе, а не выводиться наружу с удобной ручкой. Это не регулятор громкости, а регулятор искажений, то есть им подбирается режим работы транзистора, чтобы были минимальные искажения и чтобы из динамика не шел дым. Поэтому он ни в коем случае не должен быть доступен снаружи. Регулировать громкость, путем изменения режима НЕЛЬЗЯ. За это нужно "убивать". Если очень хочется регулировать громкость, проще включить еще один переменный резистор последовательно с конденсатором и вот его уже можно выводить на корпус усилителя.

Вообще, для простейших схем - и чтобы заработало сразу и чтобы ничего не повредить, нужно покупать микросхему типа TDA (например TDA7052, TDA7056... примеров в интернете множество) , а автор взял случайный транзистор, который завалялся у него в столе. В результате доверчивые любители будут искать именно такой транзистор, хотя коэффициент усиления у него всего 15, а допустимый ток аж 8 ампер (сожгет любой динамик даже не заметив).

Усилитель низкой частоты (УНЧ) является составной частью большинства радиотехнических устройств как то телевизора, плеера, радиоприемника и различных приборов бытового назначения. Рассмотрим две простые схемы двухкаскадного УНЧ на .

Первый вариант УНЧ на транзисторах

В первом варианте усилитель построен на кремниевых транзисторах n-p-n проводимости. Входной сигнал поступает через переменный резистор R1, который в свою очередь является нагрузочным сопротивлением для схемы источника сигнала. подсоединены к коллекторной электроцепи транзистора VT2 усилителя.

Настройка усилителя первого варианта сводится к подбору сопротивлений R2 и R4. Величину сопротивлений нужно подобрать такой, чтобы миллиамперметр, подключенный в коллекторную цепь каждого транзистора, показывал ток в районе 0,5…0,8 мА. По второй схеме необходимо также выставить коллекторный ток второго транзистора путем подбора сопротивления резистора R3.

В первом варианте возможно применить транзисторы марки КТ312, или их зарубежные аналоги, однако при этом необходимо будет выставить правильное смещение напряжения транзисторов путем подбора сопротивлений R2, R4. Во втором варианте в свою очередь, возможно применить кремневые транзисторы марки КТ209, КТ361, или зарубежные аналоги. При этом выставить режимы работы транзисторов можно путем изменения сопротивления R3.

В коллекторную электроцепь транзистора VT2 (обоих усилителей) взамен наушников возможно подключить динамик с высоким сопротивлением. Если же необходимо получить более мощное усиление звука, то можно собрать усилитель на , который обеспечивает усиление до 15 Вт.

Похожие статьи