Управление транзакциями. Свойства транзакций. Способы завершения транзакций Решение проблем: блокировки

29.06.2020

С 1 января этого года закон обязал банки сообщать своим клиентам о каждой совершённой транзакции. При этом способ, которым должен быть информирован клиент, законодательно не закреплён. Банки, заботящиеся о своих клиентах, используют самый удобный и оперативный способ извещения – смс-сообщение. Остальные используют менее затратные для себя средства – оповещение по электронной почте или сообщения в личном кабинете на сайте банка.

Какой бы способ ни выбрал ваш банк, следить за оповещениями следует внимательно, ведь когда дело касается мошеннических операций, буквально каждая минута может сыграть вам на руку или лишить шансов на возврат похищенной суммы.

Нужно иметь в виду, что мошенничеством является любая транзакция с Вашей карточкой, совершаемая не вами. Существует несколько видов мошенничества:

  • Ваша карточка похищена или утеряна и затем используется без вашего разрешения.
  • Вы не получили от эмитента новую карточку (или карточку взамен старой) и не знали о том, что она попала в чужие руки, пока не получите документы о транзакциях, которые не совершали.Ваша личная информация используется другим лицом для подачи заявления на получение карточки. Этот тип мошенничества очень трудно распознать, если только банк-эмитент не получит жалобу от клиента или же счёт вскоре после открытия не попадает под проверку. Если вы не клиент данного банка, вы можете не знать, что под вашим именем кто-то получил карточку, пока не обратитесь за кредитом и вам не будет отказано по причине плохой кредитной истории.
  • Справка о состоянии счёта содержит данные о транзакциях, которые вы не совершали, это может означать, что в обращении находится поддельная карточка с тем же номером, что и ваша.
  • Злоумышленник с поддельными документами, представляясь держателем карточки, получает контроль над счётом держателя, требуя заменить карточку по этому же счёту. Обычно требуют выслать карточку по другому адресу. Вы обычно узнаете об этом, когда получаете справку о состоянии счёта, или когда счета перестают приходить на ваш адрес.
  • Ваша карточка находится у вас, но злоумышленник совершает операции, используя номер карты, например, заказывает товары по почте, телефону или через интернет

Если вы оказались в любой из этих ситуаций, первое, что необходимо сделать – это обратиться в банк. По закону банк должен компенсировать вам пропавшие с карты деньги, если жалоба на незаконную транзакцию поступила в течение первых суток после списания средств.

По словам заместителя руководителя по развитию карточного бизнеса Степана Зайцева в случае, если клиент не заявил о спорной операции в течение суток, он может это сделать и позже. В любом офисе банка можно написать претензионное обращение. Далее рассмотрение будет произведено в порядке, установленном банком. Срок ответа клиенту на его обращение – 30 рабочих дней (до 60 – при участии в операции иностранных банков-эквайреров). Для прояснения всей ситуации банк может запросить у клиента дополнительные документы и сведения.

Существуют различные модели транзакций, которые могут быть классифицированы на основании различных свойств, включающих структуру транзакции, параллельность внутри транзакции, продолжительность и т. д.

В настоящий момент выделяют следующие типы транзакций: плоские или классические транзакции, цепочечные транзакции и вложенные транзакции.

Плоские, или традиционные, транзакции, характеризуются четырьмя классическими свойствами: атомарности, согласованности, изолированности, долговечности (прочности) - ACID (Atomicity, Consistency, Isolation, Durability). Иногда традиционные транзакции называют ACID-транзакциями. Упомянутые выше свойства означают следующее:

· Свойство атомарности (Atomicity) выражается в том, что транзакция должна быть выполнена в целом или не выполнена вовсе.

· Свойство согласованности (Consistency) гарантирует, что по мере выполнения транзакций данные переходят из одного согласованного состояния в другое - транзакция не разрушает взаимной согласованности данных.

· Свойство изолированности (Isolation) означает, что конкурирующие за доступ к базе данных транзакции физически обрабатываются последовательно, изолированно друг от друга, но для пользователей это выглядит так, как будто они выполняются параллельно.

· Свойство долговечности (Durability) трактуется следующим образом: если транзакция завершена успешно, то те изменения в данных, которые были ею произведены, не могут быть потеряны ни при каких обстоятельствах (даже в случае последующих ошибок).

Возможны два варианта завершения транзакции. Если все операторы.выполнены успешно и в процессе выполнения транзакции не произошло никаких сбоев программного или аппаратного обеспечения, транзакция фиксируется.

Фиксация транзакции - это действие, обеспечивающее запись на диск изменений в базе данных, которые были сделаны в процессе выполнения транзакции.

До тех пор пока транзакция не зафиксирована, допустимо аннулирование этих изменений, восстановление базы данных в то состояние, в котором она была на момент начала транзакции. Фиксация транзакции означает, что все результаты выполнения транзакции становятся постоянными. Они станут видимыми другим транзакциям только после того, как текущая транзакция будет зафиксирована. До этого момента все данные, затрагиваемые транзакцией, будут «видны» пользователю в состоянии на начало текущей транзакции.

Если в процессе выполнения транзакции случилось нечто такое, что делает невозможным ее нормальное завершение, база данных должна быть возвращена в исходное состояние. Откат транзакции - это действие, обеспечивающее аннулирование всех изменений данных, которые были сделаны операторами SQL в теле текущей незавершенной транзакции.

Каждый оператор в транзакции выполняет свою часть работы, но для успешного завершения всей работы в целом требуется безусловное завершение всех их операторов. Группирование операторов в транзакции сообщает СУБД, что вся эта группа должна быть выполнена как единое целое, причем такое выполнение должно поддерживаться автоматически.

В стандарте ANSI/ISO SQL определены модель транзакций и функции операторов COMMIT и ROLLBACK. Стандарт определяет, что транзакция начинается с первого SQL-оператора, инициируемого пользователем или содержащегося в программе, изменяющего текущее состояние базы данных. Все последующие SQL-операторы составляют тело транзакции. Транзакция завершается одним из четырех возможных путей (рис. 11.1):

1. оператор COMMIT означает успешное завершение транзакции; его использование делает постоянными изменения, внесенные в базу данных в рамках текущей транзакции;

2. оператор ROLLBACK прерывает транзакцию, отменяя изменения, сделанные в базе данных в рамках этой транзакции; новая транзакция начинается непосредственно после использования ROLLBACK;

3. успешное завершение программы, в которой была инициирована текущая транзакция, означает успешное завершение транзакции (как будто был использован оператор COMMIT);

4. ошибочное завершение программы прерывает транзакцию (как будто был использован оператор ROLLBACK).

В этой модели каждый оператор, который изменяет состояние БД, рассматривается как транзакция, поэтому при успешном завершении этого оператора БД переходит в новое устойчивое состояние.

В первых версиях коммерческих СУБД была реализована модель транзакций ANSI/ISO. В дальнейшем в СУБД SYBASE была реализована расширенная модель транзакций, которая включает еще ряд дополнительных операций. В модели SYBASE используются следующие четыре оператора:

· Оператор BEGIN TRANSACTION сообщает о начале транзакции. В отличие от модели в стандарте ANSI/ISO, где начало транзакции неявно задается первым оператором модификации данных, в модели SYBASE начало транзакции задается явно с помощью оператора начала транзакции.

· Оператор COMMIT TRANSACTION сообщает об успешном завершении транзакции. Он эквивалентен оператору COMMIT в модели стандарта ANSI/ISO. Этот оператор, как и оператор COMMIT, фиксирует все изменения, которые производились в БД в процессе выполнения транзакции.

· Оператор SAVE TRANSACTION создает внутри транзакции точку сохранения, которая соответствует промежуточному состоянию БД, сохраненному на момент выполнения этого оператора. В операторе SAVE TRANSACTION может стоять имя точки сохранения. Поэтому в ходе выполнения транзакции может быть запомнено несколько точек сохранения, соответствующих нескольким промежуточным состояниям.

· Оператор ROLLBACK имеет две модификации. Если этот оператор используется без дополнительного параметра, то он интерпретируется как оператор отката всей транзакции, то есть в этом случае он эквивалентен оператору отката ROLLBACK в модели ANSI/ISO. Если же оператор отката имеет параметр и записан в виде ROLLBACK В, то он интерпретируется как оператор частичного отката транзакции в точку сохранения В.

Рис. 11.1. Модель транзакций ANSI/ISO

Принципы выполнения транзакций в расширенной модели транзакций представлены на рис. 11.2. На рисунке операторы помечены номерами, чтобы нам удобнее было проследить ход выполнения транзакции во всех допустимых случаях.

Рис. 11.2. Примеры выполнения транзакций в расширенной модели

Транзакция начинается явным оператором начала транзакции, который имеет в нашей схеме номер 1. Далее идет оператор 2, который является оператором поиска и не меняет текущее состояние БД, а следующие за ним операторы 3 и 4 переводят базу данных уже в новое состояние. Оператор 5 сохраняет это новое промежуточное состояние БД и помечает его как промежуточное состояние в точке А. Далее следуют операторы 6 и 7, которые переводят базу данных в новое состояние. А оператор 8 сохраняет это состояние как промежуточное состояние в точке В. Оператор 9 выполняет ввод новых данных, а оператор 10 проводит некоторую проверку условия 1; если условие 1 выполнено, то выполняется оператор 11, который проводит откат транзакции в промежуточное состояние В. Это означает, что последствия действий оператора 9 как бы стираются и база данных снова возвращается в промежуточное состояние В, хотя после выполнения оператора 9 она уже находилась в новом состоянии. И после отката транзакции вместо оператора 9, который выполнялся раньше из состояния В БД, выполняется оператор 13 ввода новых данных, и далее управление передается оператору 14. Оператор 14 снова проверяет условие, но уже некоторое повое условие 2; если условие выполнено, то управление передается оператору 15, который выполняет откат транзакции в промежуточное состояние А, то есть все операторы, которые изменяли БД, начиная с 6 и заканчивая 13, считаются невыполненными, то есть результаты их выполнения исчезли и мы снова находимся в состоянии А, как после выполнения оператора 4. Далее управление передается оператору 17, который обновляет содержимое БД, после этого управление передается оператору 18, который связан с проверкой условия 3. Проверка заканчивается либо передачей управления оператору 20, который фиксирует транзакцию, и БД переходит в новое устойчивое состояние, и изменить его в рамках текущей транзакции невозможно. Либо, если управление передано оператору 19, то транзакция откатывается к началу и БД возвращается в свое начальное состояние, а все промежуточные состояния здесь уже проверены, и выполнить операцию отката в эти промежуточные состояния после выполнения оператора 19 невозможно.

Конечно, расширенная модель транзакции, предложенная фирмой SYBASE, поддерживает гораздо более гибкий механизм выполнения транзакций. Точки сохранения позволяют устанавливать маркеры внутри транзакции таким образом, чтобы имелась возможность отмены только части работы, проделанной в транзакции. Целесообразно использовать точки сохранения в длинных и сложных транзакциях, чтобы обеспечить возможность отмены изменения для определенных операторов. Однако это обусловливает дополнительные затраты ресурсов системы - оператор выполняет работу, а изменения затем отменяются; обычно усовершенствования в логике обработки могут оказаться более оптимальным решением.

Журнал транзакций

Реализация в СУБД принципа сохранения промежуточных состояний, подтверждения или отката транзакции обеспечивается специальным механизмом, для поддержки которого создается некоторая системная структура, называемая Журналом транзакций.

Однако назначение журнала транзакций гораздо шире. Он предназначен для обеспечения надежного хранения данных в БД.

А это требование предполагает, в частности, возможность восстановления согласованного состояния базы данных после любого рода аппаратных и программных сбоев. Очевидно, что для выполнения, восстановлений необходима некоторая дополнительная информация. В подавляющем большинстве современных реляционных СУБД такая избыточная дополнительная информация поддерживается в виде журнала изменений базы данных, чаще всего называемого Журналом транзакций.

Итак, общей целью журнализации изменений баз данных является обеспечение возможности восстановления согласованного состояния базы данных после любого сбоя. Поскольку основой поддержания целостного состояния базы данных является механизм транзакций, журнализация и восстановление тесно связаны с понятием транзакции. Общими принципами восстановления являются следующие:

· результаты зафиксированных транзакций должны быть сохранены в восстановленном состоянии базы данных;

· результаты незафиксированных транзакций должны отсутствовать в восстановленном состоянии базы данных.

Это, собственно, и означает, что восстанавливается последнее по времени согласованное состояние базы данных.

Возможны следующие ситуации, при которых требуется производить восстановление состояния базы данных.

· Индивидуальный откат транзакции. Этот откат должен быть применен в следующих случаях:

o стандартной ситуацией отката транзакции является ее явное завершение оператором ROLLBACK;

o аварийное завершение работы прикладной программы, которое логически эквивалентно выполнению оператора ROLLBACK, но физически имеет иной механизм выполнения;

o принудительный откат транзакции в случае взаимной блокировки при параллельном выполнении транзакций. В подобном случае для выхода из тупика данная транзакция может быть выбрана в качестве «жертвы» и принудительно прекращено ее выполнение ядром СУБД.

· Восстановление после внезапной потери содержимого оперативной памяти (мягкий сбой). Такая ситуация может возникнуть в следующих случаях:

o при аварийном выключении электрического питания;

o при возникновении неустранимого сбоя процессора (например, срабатывании контроля оперативной памяти) и т. д. Ситуация характеризуется потерей той части базы данных, которая к моменту сбоя содержалась в буферах оперативной памяти.

· Восстановление после поломки основного внешнего носителя базы данных (жесткий сбой). Эта ситуация при достаточно высокой надежности современных устройств внешней памяти может возникать сравнительно редко, но тем не менее СУБД должна быть в состоянии восстановить базу данных даже и в этом случае. Основой восстановления является архивная копия и журнал изменений базы данных.

Для восстановления согласованного состояния базы данных при индивидуальном откате транзакции нужно устранить последствия операторов модификации базы данных, которые выполнялись в этой транзакции. Для восстановления непротиворечивого состояния БД при мягком сбое необходимо восстановить содержимое БД по содержимому журналов транзакций, хранящихся на дисках. Для восстановления согласованного состояния БД при жестком сбое надо восстановить содержимое БД по архивным копиям и журналам транзакций, которые хранятся на неповрежденных внешних носителях.

Во всех трех случаях основой восстановления является избыточное хранение данных. Эти избыточные данные хранятся в журнале, содержащем последовательность записей об изменении базы данных.

Возможны два основных варианта ведения журнальной информации. В первом варианте для каждой транзакции поддерживается отдельный локальный журнал изменений базы данных этой транзакцией. Такие журналы называются локальными журналами. Они используются для индивидуальных откатов транзакций и могут поддерживаться в оперативной (правильнее сказать, в виртуальной) памяти. Кроме того, поддерживается общий журнал изменений базы данных, используемый для восстановления состояния базы данных после мягких и жестких сбоев.

Этот подход позволяет быстро выполнять индивидуальные откаты транзакций, но приводит к дублированию информации в локальных и общем журналах. Поэтому чаще используется второй вариант - поддержание только общего журнала изменений базы данных, который используется и при выполнении индивидуальных откатов. Далее мы рассматриваем именно этот вариант.

Общая структура журнала условно может быть представлена в виде некоторого последовательного файла, в котором фиксируется каждое изменение БД, которое происходит в ходе выполнения транзакции. Все транзакции имеют свои внутренние номера, поэтому в едином журнале транзакций фиксируются все изменения, проводимые всеми транзакциями.

Каждая запись в журнале транзакций помечается номером транзакции, к которой она относится, и значениями атрибутов, которые она меняет. Кроме того, для каждой транзакции в журнале фиксируется команда начала и завершения транзакции (см. рис. 11.3).

Для большей надежности журнал транзакций часто дублируется системными средствами коммерческих СУБД, именно поэтому объем внешней памяти во много раз превышает реальный объем данных, которые хранятся в хранилище.

Имеются два альтернативных варианта ведения журнала транзакций: протокол с отложенными обновлениями и протокол с немедленными обновлениями.

Ведение журнала по принципу отложенных изменений предполагает следующий механизм выполнения транзакций:

1. Когда транзакция Т1 начинается, в протокол заносится запись

<Т1 Begin transaction>

2. На протяжении выполнения транзакции в протоколе для каждой изменяемой записи записывается новое значение: . Здесь ID_RECORD - уникальный номер записи.

3. Если все действия, из которых состоит транзакция Т1, успешно выполнены, то транзакция частично фиксируется и в протокол заносится <Т1 СОММIТ>.

4. После того как транзакция фиксирована, записи протокола, относящиеся к Т1, используются для внесения соответствующих изменений в БД.

5. Если происходит сбой, то СУБД просматривает протокол и выясняет, какие транзакции необходимо переделать. Транзакцию Т1 необходимо переделать, если протокол содержит обе записи <Т1 BEGIN TRANSACTION и <Т1 СОММIТ>. БД может находиться в несогласованном состоянии, однако все новые значения измененных элементов данных содержатся в протоколе, и это требует повторного выполнения транзакции. Для этого используется некоторая системная процедура REDOQ, которая заменяет все значения элементов данных на--новые, просматривая протокол в прямом порядке.

6. Если в протоколе не содержится команда фиксации транзакции COMMIT, то никаких действий проводить не требуется, а транзакция запускается заново.

Рис. 11.3. Журнал транзакций

Альтернативный механизм с немедленным выполнением предусматривает внесение изменений сразу в БД, а в протокол заносятся не только новые, но и все старые значения изменяемых атрибутов, поэтому каждая запись выглядит <Т1, ID_RECORD, атрибут новое значение старое значение...>. При этом запись в журнал предшествует непосредственному выполнению операции над БД. Когда транзакция фиксируется, то есть встречается команда <Т1 СОММIТ> и она выполняется, то все изменения оказываются уже внесенными в БД и не требуется никаких дальнейших действий по отношению к этой транзакции.

При откате транзакции выполняется системная процедура UNDO(), которая возвращает все старые значения в отмененной транзакции, последовательно проходя по протоколу начиная с команды BEGIN TRANSACTION.

Для восстановления при сбое используется следующий механизм:

· Если транзакция содержит команду начала транзакции, но не содержит команды фиксации с подтверждением ее выполнения, то выполняется последовательность действий как при откате транзакции, то есть восстанавливаются старые значения.

· Если сбой произошел после выполнения последней команды изменения БД, но до выполнения команды фиксации, то команда фиксации выполняется, а с БД никаких изменений не происходит. Работа происходит только на уровне протокола.

· Однако следует отметить, что проблемы восстановления выглядят гораздо сложнее приведенных ранее алгоритмов, с учетом того, что изменения как в журнал, так и в БД заносятся не сразу, а буферируются. Этому посвящен следующий раздел.

Журнализация и буферизация

Журнализация изменений тесно связана не только с управлением транзакциями, но и с буферизацией страниц базы данных в оперативной памяти.

Если бы запись об изменении базы данных, которая должна поступить в журнал при выполнении любой операции модификации базы данных, реально немедленно записывалась бы во внешнюю память, это привело бы к существенному замедлению работы системы. Поэтому записи в журнале тоже буферизуются: при нормальной работе очередная страница выталкивается во внешнюю память журнала только при полном заполнении записями.

Проблема состоит в выработке некоторой общей политики выталкивания, которая обеспечивала бы возможность восстановления состояния базы данных после сбоев.

Проблема не возникает при индивидуальных откатах транзакций, поскольку в этих случаях содержимое оперативной памяти не утрачено и можно пользоваться содержимым как буфера журнала, так и буферов страниц базы данных. Но если произошел мягкий сбой и содержимое буферов утрачено, для проведения восстановления базы данных необходимо иметь некоторое согласованное состояние журнала и базы данных во внешней памяти.

Основным принципом согласованной политики выталкивания буфера журнала и буферов страниц базы данных является то, что запись об изменении объекта базы данных должна попадать во внешнюю память журнала раньше, чем измененный объект оказывается во внешней памяти базы данных. Соответствующий протокол журнализации (и управления буферизацией) называется Write Ahead Log (WAL) - «пиши сначала в журнал» и состоит в том, что если требуется записать во внешнюю память измененный объект базы данных, то перед этим нужно гарантировать запись во внешнюю память журнала транзакций записи о его изменении.

Другими словами, если во внешней памяти базы данных находится некоторый объект базы данных, по отношению к которому выполнена операция модификации, то во внешней памяти журнала обязательно находится запись, соответствующая этой операции. Обратное неверно, то есть если во внешней памяти журнале содержится запись о некоторой операции изменения объекта базы данных, то сам измененный объект может отсутствовать во внешней памяти базы данных.

Дополнительное условие на выталкивание буферов накладывается тем требованием, что каждая успешно завершившаяся транзакция должна быть реально зафиксирована во внешней памяти. Какой бы сбой не произошел, система должна быть в состоянии восстановить состояние базы данных, содержащее результаты всех зафиксированных к моменту сбоя транзакций.

Простым решением было бы выталкивание буфера журнала, за которым следует массовое выталкивание буферов страниц базы данных, изменявшихся данной транзакцией. Довольно часто так и делают, но это вызывает существенные накладные расходы при выполнении операции фиксации транзакции.

Оказывается, что минимальным требованием, гарантирующим возможность восстановления последнего согласованного состояния базы данных, является выталкивание при фиксации транзакции во внешнюю память журнала всех записей об изменении базы данных этой транзакцией. При этом последней записью в журнал, производимой от имени данной транзакции, является специальная запись о конце транзакции.

Рассмотрим теперь, как можно выполнять операции восстановления базы данных в различных ситуациях, если в системе поддерживается общий для всех транзакций журнал с общей буферизацией записей, поддерживаемый в соответствии с протоколом WAL.

Индивидуальный откат транзакции

Для того чтобы можно было выполнить по общему журналу индивидуальный откат транзакции, все записи в журнале по данной транзакции связываются в обратный список. Началом списка для незакончившихся транзакций является запись о последнем изменении базы данных, произведенном данной транзакцией. Для закончившихся транзакций (индивидуальные откаты которых уже невозможны) началом списка является запись о конце транзакции, которая обязательно вытолкнута во внешнюю память журнала, Концом списка всегда служит первая запись об изменении базы данных, произведенном данной транзакцией. Обычно в каждой записи проставляется уникальный идентификатор транзакции, чтобы можно было восстановить прямой список записей об изменениях базы данных данной транзакцией.

Итак, индивидуальный откат транзакции (еще раз подчеркнем, что это возможно только для незакончившихся транзакций) выполняется следующим образом:

· Выбирается очередная запись из списка данной транзакции.

· Выполняется противоположная по смыслу операция: вместо операции INSERT выполняется соответствующая операция DELETE, вместо операции DELETE вы полняется INSERT и вместо прямой операции UPDATE обратная операция UPDATE, восстанавливающая предыдущее состояние объекта базы данных.

· Любая из этих обратных операций также заносится в журнал. Собственно, для индивидуального отката это не нужно, но при выполнении индивидуального отката транзакции может произойти мягкий сбой, при восстановлении после которого потребуется откатить такую транзакцию, для которой не полностью выполнен индивидуальный откат.

· При успешном завершении отката в журнал заносится запись о конце транзакции. С точки зрения журнала такая транзакция является зафиксированной.

Восстановление после мягкого сбоя

К числу основных проблем восстановления после мягкого сбоя относится то, что одна логическая операция изменения базы данных может изменять несколько физических блоков базы данных, например, страницу данных и несколько страниц индексов. Страницы базы данных буферизуются в оперативной памяти и выталкиваются независимо. Несмотря на применение протокола WAL, после мягкого сбоя набор страниц внешней памяти базы данных может оказаться несогласованным, то есть часть страниц внешней памяти соответствует объекту до изменения, часть - после изменения. К такому состоянию объекта неприменимы операции логического уровня.

Состояние внешней памяти базы данных называется физически согласованным, если наборы страниц всех объектов согласованы, то есть соответствуют состоянию объекта либо до его изменения, либо после изменения.

Будем считать, что в журнале отмечаются точки физической согласованности базы данных - моменты времени, в которые во внешней памяти содержатся согласованные результаты операций, завершившихся до соответствующего момента времени, и отсутствуют результаты операций, которые не завершились, а буфер журнала вытолкнут во внешнюю память. Немного позже мы рассмотрим, как можно достичь физической согласованности. Назовем такие точки tpc (time of physical consistency) - точками физического согласования.

Тогда к моменту мягкого сбоя возможны следующие состояния транзакций:

· транзакция успешно завершена, то есть выполнена операция подтверждения транзакции COMMIT и для всех операций транзакции получено подтверждение ее выполнения во внешней памяти;

· транзакция успешно завершена, но для некоторых операций не получено подтверждение их выполнения во внешней памяти;

· транзакция получила и выполнила команду отката ROLLBACK;

· транзакция не завершена.

Физическая согласованность базы данных

Каким же образом можно обеспечить наличие точек физической согласованности базы данных, то есть как восстановить состояние базы данных в момент tpc? Для этого используются два основных подхода: подход, основанный на использовании теневого механизма, и подход, в котором применяется журналиаация постраничных изменений базы данных.

При открытии файла таблица отображения номеров его логических блоков в адреса физических блоков внешней памяти считывается в оперативную память. При модификации любого блока файла во внешней памяти выделяется новый блок. При этом текущая таблица отображения (в оперативной памяти) изменяется, а теневая - сохраняется неизменной. Если во время работы с открытым файлом происходит сбой, во внешней памяти автоматически сохраняется состояние файла до его открытия. Для явного восстановления файла достаточно повторно считать в оперативную память теневую таблицу отображения.

Общая идея теневого механизма показана на рис. 11.4.

Рис. 11.4. Использование теневых таблиц отображения информации

В контексте базы данных теневой механизм используется следующим образом. Периодически выполняются операции установления точки физической согласованности базы данных (checkpoints). Для этого все логические операции завершаются, все буферы оперативной памяти, содержимое которых не соответствует содержимому соответствующих страниц внешней памяти, выталкиваются. Теневая таблица отображения файлов базы данных заменяется на текущую (правильнее сказать, текущая таблица отображения записывается на место теневой).

Восстановление к tpc происходит мгновенно: текущая таблица отображения заменяется на теневую (при восстановлении просто считывается теневая таблица отображения). Все проблемы восстановления решаются, но за счет слишком большого перерасхода внешней памяти. В пределе может потребоваться вдвое больше внешней памяти, чем реально нужно для хранения базы данных. Теневой механизм - это надежное, но слишком грубое средство. Обеспечивается согласованное состояние внешней памяти в один общий для всех объектов момент времени. На самом деле достаточно иметь совокупность согласованных наборов страниц, каждому из которых может соответствовать свои временные отсчеты.

Для выполнения такого более слабого требования наряду с логической журна-лизацией операций изменения базы данных производится журнализация постраничных изменений. Первый этап восстановления после мягкого сбоя состоит в постраничном откате незакончившихся логических операций. Подобно тому как это делается с логическими записями по отношению к транзакциям, последней записью о постраничных изменениях от одной логической операции является запись о конце операции.

В этом подходе имеются два метода решения проблемы. При использовании первого метода поддерживается общий журнал логических и страничных операций. Естественно, наличие двух видов записей, интерпретируемых абсолютно по-разному, усложняет структуру журнала. Кроме того, записи о постраничных изменениях, актуальность которых носит локальный характер, существенно (и не очень осмысленно) увеличивают журнал.

Поэтому все более популярным становится поддержание отдельного (короткого) журнала постраничных изменений. Такая техника применяется, например, в известном продукте Informix Online.

Предположим, что некоторым способом удалось восстановить внешнюю память базы данных к состоянию на момент времени tpc (как это можно сделать - немного позже). Тогда:

· Для транзакции Т1 никаких действий производить не требуется. Она закончилась до момента tpc, и все ее результаты отражены во внешней памяти базы данных.

· Для транзакции Т2 нужно повторно выполнить оставшуюся часть операций (redo). Действительно, во внешней памяти полностью отсутствуют следы операций, которые выполнялись в транзакции Т2 после момента tpc. Следовательно, повторная прямая интерпретация операций Т2 корректна и приведет к логически согласованному состоянию базы данных (поскольку транзакция Т2 успешно завершилась до момента мягкого сбоя, в журнале содержатся записи обо всех изменениях, произведенных этой транзакцией).

· Для транзакции ТЗ нужно выполнить в обратном направлении первую часть операций (undo). Действительно, во внешней памяти базы данных полностью отсутствуют результаты операций ТЗ, которые были выполнены после момента tpc. С другой стороны, во внешней памяти гарантированно присутствуют результаты операций ТЗ, которые были выполнены до момента tpc. Следовательно, обратная интерпретация операций ТЗ корректна и приведет к согласованному состоянию базы данных (поскольку транзакция ТЗ не завершилась к моменту мягкого сбоя, при восстановлении необходимо усхранить все последствия ее выполнения).

· Для транзакции Т4, которая успела начаться после момента tpc и закончиться до момента мягкого сбоя, нужно выполнить полную повторную прямую интерпретацию операций (redo).

· Наконец, для начавшейся после момента tpc и не успевшей завершиться к моменту мягкого сбоя транзакции Т5 никаких действий предпринимать не требуется. Результаты операций этой транзакции полностью отсутствуют во внешней памяти базы данных.

Восстановление после жесткого сбоя

Понятно, что для восстановления последнего согласованного состояния базы данных после жесткого сбоя журнала изменений базы данных явно недостаточно. Основой восстановления в этом случае являются журнал и архивная копия базы данных.

Восстановление начинается с обратного копирования базы данных из архивной копии. Затем для всех закончившихся транзакций выполняется redo, то есть операции повторно выполняются в прямом порядке.

Более точно, происходит следующее:

· по журналу в прямом направлении выполняются все операции;

· для транзакций, которые не закончились к моменту сбоя, выполняется откат.

На самом деле, поскольку жесткий сбой не сопровождается утратой буферов оперативной памяти, можно восстановить базу данных до такого уровня, чтобы можно было продолжить даже выполнение незакончившихся транзакций. Но обычно это не делается, потому что восстановление после жесткого сбоя - это достаточно длительный процесс.

Хотя к ведению журнала предъявляются особые требования по части надежности, в принципе возможна и его утрата. Тогда единственным способом восстановления базы данных является возврат к архивной копии. Конечно, в этом случае не удастся получить последнее согласованное состояние базы данных, но это лучше, чем ничего.

Последний вопрос, который мы коротко рассмотрим, относится к производству архивных копий базы данных. Самый простой способ - архивировать базу данных при переполнении журнала. В журнале вводится так называемая «желтая зона», при достижении которой образование новых транзакций временно блокируется. Когда все транзакции закончатся и, следовательно, база данных придет в согласованное состояние, можно производить ее архивацию, после чего начинать заполнять журнал заново.

Можно выполнять архивацию базы данных реже, чем переполняется журнал. При переполнении журнала и окончании всех начатых транзакций можно архивировать сам журнал. Поскольку такой архивированный журнал, по сути дела, требуется только для воссоздания архивной копии базы данных, журнальная информация при архивации может быть существенно сжата.

Модели транзакций классифицируются на основании различных свойств:

структура транзакции;

параллельность внутри транзакции;

продолжительность.

Типы транзакций:

1. Плоские (классические)

2. Цепочечные

3. Вложенные

Плоские транзакции характеризуются 4 классическими свойствами:

атомарность;

согласованность;

изолированность;

долговечность (прочность).

Иногда данные транзакции называются ACID-транзакциями.

ACID – Atomicity, Consistency, Isolation, Durability.

Упомянутые выше свойства означают следующее:

Атомарность – выражается в том, что транзакция должна быть выполнена в целом или не выполнена вовсе.

Согласованность – гарантирует, что по мере выполнения транзакций, данные переходят из одного согласованного состояния в другое, т. е. транзакция не разрушает взаимной согласованности данных.

Изолированность – означает, что конкурирующие за доступ к БД транзакции физически обрабатываются последовательно, изолированно друг от друга, но для пользователей это выглядит так, как будто они выполняются параллельно.

Долговечность – если транзакция завершена успешно, то те изменения, в данных, которые были ею произведены, не могут быть потеряны ни при каких обстоятельствах.

Варианты завершения транзакций:

1. Если все операторы выполнены успешно и в процессе выполнения транзакции не произошло никаких сбоев программного или аппаратного обеспечения, то транзакция фиксируется.

Фиксация транзакции – это действие, обеспечивающее запись на диск изменений в БД, которые были сделаны в процессе выполнения транзакций. Фиксация транзакций означает, что все результаты ее выполнения становятся постоянными, и станут видимыми другим транзакциям только после того, как текущая транзакция будет зафиксирована.



2. Если в процессе выполнения транзакций случилось нечто такое, что делает невозможным ее нормальное завершение, БД должна быть возвращена в исходное состояние.

Откат транзакции – это действие, обеспечивающее аннулирование всех изменений данных, которые были сделаны операторами SQL в теле текущей незавершенной транзакции. Каждый оператор в транзакции выполняет свою часть работы, но для успешного завершения всей работы в целом, требуется безусловное завершение всех их операторов.

В стандарте ANSI/ISO SQL транзакция завершается одним из 4-х возможных путей (рис. 1):

Рис. 1. Модель транзакций ANSI/ISO

1. оператор COMMIT означает успешное завершение транзакции; его использование делает постоянными изменения, внесенные в БД в рамках текущей транзакции;

2. оператор ROLLBACK прерывает транзакцию, отменяя изменения, сделанные в БД в рамках этой транзакции; новая транзакция начинается непосредственно после использования ROLLBACK;

3. успешное завершение программы, в которой была инициирована текущая транзакция, означает успешное завершение транзакции (как будто был использован оператор COMMIT);

4. ошибочное завершение программы прерывает транзакцию (как будто был использован оператор ROLLBACK).

Журнал транзакций предназначен для обеспечения надежного хранения данных в БД. А это требование предполагает, в частности, возможность восстановления согласованного состояния базы данных после любого рода аппаратных и программных сбоев. Очевидно, что для выполнения восстановлений необходима некоторая дополнительная информация, которая поддерживается в виде журнала изменений базы данных, называемого журналом транзакций.

Восстановление после жесткого сбоя

Основой восстановления последнего согласованного состояния базы данных после жесткого сбоя являются журнал и архивная копия базы данных.

Восстановление начинается с обратного копирования базы данных из архивной копии. Затем для всех закончившихся транзакций выполняется redo, то есть операции повторно выполняются в прямом порядке.

Параллельное выполнение транзакций

Если с БД работают одновременно несколько пользователей, то СУБД должна не только корректно выполнять индивидуальные транзакции и восстанавливать согласованное состояние БД после сбоев, но она призвана обеспечить корректную параллельную работу всех пользователей над одними и теми же данными. По теории каждый пользователь и каждая транзакция должны обладать свойством изолированности, то есть они должны выполняться так, как если бы только один пользователь работал с БД. И средства современных СУБД позволяют изолировать пользователей друг от друга именно таким образом. Однако в этом случае возникают проблемы замедления работы пользователей.

Транзакция - это последовательность операторов манипулирования данными, выполняющаяся как единое целое (принцип "все или ничего") и переводящая базу данных из одного целостного состояния (т.е. состояния, в котором удовлетворены все ограничения целостности, определенные для базы данных) в другое целостное состояние. Для пользователя информационной системы либо транзакция выполняется целиком, либо, если по каким-либо причинам одно из действий транзакции невыполнимо или произошло какое-либо нарушение работы системы, база данных возвращается в исходное состояние, которое было до начала транзакции (происходит откат транзакции).

Транзакции важны как в многопользовательских, так и в однопользовательских системах. В однопользовательских системах транзакции - это логические единицы работы, после выполнения которых база данных остается в целостном состоянии. Транзакции также являются единицами восстановления данных после сбоев - восстанавливаясь, система ликвидирует следы транзакций, не успевших успешно завершиться в результате программного или аппаратного сбоя. В многопользовательских системах, кроме того, транзакции служат для обеспечения изолированной работы отдельных пользователей - клиентам, одновременно работающим с одной базой данных, кажется, что они работают как бы в однопользовательской системе и не мешают друг другу.

Свойства транзакций

Все транзакции должны обладать следующими четырьмя свойствами (известными как свойства АСИД):

Атомарность (Atomicity). Транзакция либо фиксирует результат своей операции, либо возвращает всё на место. Если транзакция выполняется успешно, результат транзакции фиксируется. Если по какой-то причине транзакция не удалась, объекты, над которыми осуществлялась операция, возвращаются в исходное состояние. Например, при переименовании объекта должно произойти стирание старого имени и установка нового, или имя объекта должно остаться неизменным.

Кстати, атомарность (взаимозависимость) является неотъемлемой частью нашей повседневной жизни. К примеру, священник во время проведения церемонии бракосочетания сначала спрашивает жениха и невесту: "Хочешь ли ты взять себе в супруги этого человека?". Только после того как и тот и другая ответят "Да", священник может сказать: "Объявляю вас мужем и женой", и таким образом зафиксировать переход из одного состояния в другое. Другими словами, в рамках транзакции несколько независимых друг от друга участников сделки должны прийти к общему для всех соглашению, прежде чем сделка будет заключена. Если одна из сторон будет против, каждый из участников остаётся при своих.

Согласованность (Consistency). Транзакция вызывает корректную трансформацию системы, при этом сохраняя её состояние. Например, в рамках транзактного добавления одного элемента в двусвязный список, все четыре указателя в ту и в другую сторону обновляются одновременно.

Изолированность (Isolation). Выполняющиеся одновременно транзакции изолированы от воздействия незавершившихся транзакций. Данная характеристика также именуется как сериализуемость (serializability). Например, транзакция, проходящая через двусвязный список, который в это время подвергается изменению предыдущей транзакцией, будет видеть только те изменения, которые уже осуществились до её инициализации. Изменения же, осуществляемые предыдущей транзакцией, после запуска этой транзакции, уже никак не могут повлиять на неё.

Возможность параллельного выполнения конкурирующих транзакций на различных уровнях изолированности позволяет разработчикам приложений повысить эффективность системы. Нижние уровни изолированности дают возможность увеличить количество одновременно выполняющихся транзакций за счет риска получения размытого или несогласованного состояния данных. В то время, когда некоторые транзакции выполняются на высшем уровне изолированности (чистая сериализуемость), совместно выполняющиеся транзакции на нижних уровнях изолированности выполняются параллельно и могут работать с незафиксированными или устаревшими, прочитанными транзакцией ранее, данными. Конечно, транзакции, выполняющиеся на нижних уровнях изолированности, могут произвести в результате работы неправильные данные. Разработчики приложений должны остерегаться распространения таких ошибок при использовании некорректных данных транзакциями высоких уровней изолированности.

Долговечность или устойчивость (Durability). Если транзакция завершилась успешно, её результат будет зафиксирован и сохранён. Более того, в этом случае результат сохранится даже при опасности возникновения сбоя системы.Следует отметить, что свойства АСИД транзакций не всегда выполняются в полном объеме. Особенно это относится к свойству И (изоляция). В идеале, транзакции разных пользователей не должны мешать друг другу, т.е. они должны выполняться так, чтобы у пользователя создавалась иллюзия, что он в системе один. Простейший способ обеспечить абсолютную изолированность состоит в том, чтобы выстроить транзакции в очередь и выполнять их строго одну за другой. Очевидно, при этом теряется эффективность работы системы. Поэтому реально одновременно выполняется несколько транзакций.

Различается несколько уровней изоляции транзакций. На низшем уровне изоляции транзакции могут реально мешать друг другу, на высшем они полностью изолированы. За большую изоляцию транзакций приходится платить большими накладными расходами системы и замедлением работы. Пользователи или администратор системы могут по своему усмотрению задавать различные уровни всех или отдельных транзакций.

Свойство Д (долговечность) также не является абсолютными свойством, т.к. некоторые системы допускают вложенные транзакции. Если транзакция Б запущена внутри транзакции А, и для транзакции Б подана команда COMMIT WORK, то фиксация данных транзакции Б является условной, т.к. внешняя транзакция А может откатиться. Результаты работы внутренней транзакции Б будут окончательно зафиксированы, только если будет зафиксирована внешняя транзакция А.

Начало и завершение

Транзакция обычно начинается автоматически с момента присоединения пользователя к СУБД (обычно, но не всегда: например, Visual FoxPro требует подать явную команду BEGIN TRANSACTION для того, чтобы начать новую транзакцию) и продолжается до тех пор, пока не произойдет одно из следующих событий:

Подана команда COMMIT WORK (зафиксировать транзакцию).

Подана команда ROLLBACK WORK (откатить транзакцию).

Произошло отсоединение пользователя от СУБД.

Произошел сбой системы.

Команда COMMIT WORK завершает текущую транзакцию и автоматически начинает новую транзакцию. При этом гарантируется, что результаты работы завершенной транзакции фиксируются, т.е. сохраняются в базе данных. Команда ROLLBACK WORK приводит к тому, что все изменения, сделанные текущей транзакцией, откатываются, т.е. отменяются так, как будто их вообще не было. При этом автоматически начинается новая транзакция. При отсоединении пользователя от СУБД происходит автоматическая фиксация транзакций.

При сбое системы происходят более сложные процессы. Их суть сводится к тому, что при последующем запуске системы происходит анализ выполнявшихся до момента сбоя транзакций. Те транзакции, для которых была подана команда COMMIT WORK, но результаты работы которых не были занесены в базу данных, выполняются снова (накатываются). Те транзакции, для которых не была подана команда COMMIT WORK, откатываются.

Параллельная работа

Современные СУБД являются многопользовательскими системами, т.е. допускают параллельную одновременную работу большого количества пользователей. При этом пользователи не должны мешать друг другу. Т.к. логической единицей работы для пользователя является транзакция, то работа СУБД должна быть организована так, чтобы у пользователя складывалось впечатление, что их транзакции выполняются независимо от транзакций других пользователей.

Простейший и очевидный способ обеспечить такую иллюзию у пользователя состоит в том, чтобы все поступающие транзакции выстраивать в единую очередь и выполнять строго по очереди. Такой способ не годится по очевидным причинам - теряется преимущество параллельной работы. Таким образом, транзакции необходимо выполнять одновременно, но так, чтобы результат был такой же, как если бы транзакции выполнялись по очереди. Трудность состоит в том, что если не предпринимать никаких специальных мер, то данные, измененные одним пользователем, могут быть изменены транзакцией другого пользователя раньше, чем закончится транзакция первого пользователя. В результате, в конце транзакции первый пользователь увидит не результаты своей работы, а неизвестно что.

Каким образом транзакции различных пользователей могут мешать друг другу? Различают три основные проблемы параллелизма:

Проблема потери результатов обновления.

Проблема незафиксированной зависимости (чтение "грязных" данных, неаккуратное считывание).

Проблема несовместимого анализа.

Одним из способов обеспечения независимой параллельной работы нескольких транзакций является метод блокировок.

Кроме трех проблем параллелизма, принято различать конфликты доступа при параллельной обработке. Транзакции называются конкурирующими, если они пересекаются по времени и обращаются к одним и тем же данным. В результате конкуренции за данные между транзакциями возникают конфликты доступа к данным:

W-W (Запись - Запись). Первая транзакция изменила объект и не закончилась. Вторая транзакция пытается изменить этот объект. Результат - потеря обновления.

R-W (Чтение - Запись). Первая транзакция прочитала объект и не закончилась. Вторая транзакция пытается изменить этот объект. Результат - несовместимый анализ (неповторяемое считывание).

W-R (Запись - Чтение). Первая транзакция изменила объект и не закончилась. Вторая транзакция пытается прочитать этот объект. Результат - чтение "грязных" данных.

Конфликты типа R-R (Чтение - Чтение) отсутствуют, т.к. данные при чтении не изменяются.

Другие проблемы параллелизма являются более сложными, т.к. принципиальное отличие их в том, что они не могут возникать при работе с одним объектом. Для возникновения этих проблем требуется, чтобы транзакции работали с целыми наборами данных.

Решение проблем: блокировки

Основная идея блокировок заключается в том, что если для выполнения некой транзакции необходимо, чтобы некий объект не изменялся без ведома этой транзакции, то этот объект должен быть заблокирован, т.е. доступ к этому объекту со стороны других транзакций ограничивается на время выполнения транзакции, вызвавшей блокировку.

Монопольные блокировки (X-блокировки, eXclusive locks) - блокировки без взаимного доступа (блокировка записи). В отличие от них, разделяемые блокировки (S-блокировки, Shared locks) - блокировки с взаимным доступом (блокировка чтения). Если транзакция A блокирует объект при помощи X-блокировки, то всякий доступ к этому объекту со стороны других транзакций отвергается. Если транзакция A блокирует объект при помощи S-блокировки, то запросы со стороны других транзакций на X-блокировку этого объекта будут отвергнуты, запросы со стороны других транзакций на S-блокировку этого объекта будут приняты.

Тупики

При работе транзакций с блокировками может возникнуть ситуация тупика, т.е. такая ситуация, при которой обе транзакции ожидают друг друга и не могут продолжаться. Понятно, что "нормального" (автоматического) выхода из тупиковой ситуации нет, поэтому такую ситуацию необходимо распознавать и устранять. Методом разрешения тупиковой ситуации является откат одной из транзакций (транзакции-жертвы) так, чтобы другие транзакции продолжили свою работу. После разрешения тупика, транзакцию, выбранную в качестве жертвы, можно повторить заново.

Можно представить два принципиальных подхода к обнаружению тупиковой ситуации и выбору транзакции-жертвы: СУБД не следит за возникновением тупиков. Транзакции сами принимают решение, быть ли им жертвами. Этот подход характерен для так называемых настольных СУБД (FoxPro и т.п.). Этот метод является более простым и не требует дополнительных ресурсов системы. Для транзакций задается время ожидания (или число попыток), в течение которого транзакция пытается установить нужную блокировку. Если за указанное время (или после указанного числа попыток) блокировка не завершается успешно, то транзакция откатывается (или генерируется ошибочная ситуация). За простоту этого метода приходится платить тем, что транзакции-жертвы выбираются, вообще говоря, случайным образом. В результате, из-за одной простой транзакции может откатиться очень дорогая транзакция, на выполнение которой уже потрачено много времени и ресурсов системы.

Второй подход к обнаружению тупиков заключается в том, что за возникновением тупиковой ситуации следит сама СУБД, она же принимает решение, какой транзакцией пожертвовать. Этот способ характерен для промышленных СУБД (ORACLE, MS SQL Server и т.п.). В этом случае система сама следит за возникновением ситуации тупика путем построения (или постоянного поддержания) графа ожидания транзакций (ориентированный двудольный граф, в котором существует два типа вершин - вершины, соответствующие транзакциям, и вершины, соответствующие объектам захвата). Ситуация тупика возникает, если в графе ожидания транзакций имеется хотя бы один цикл. Одну из транзакций, попавших в цикл, необходимо откатить, причем, система сама может выбрать эту транзакцию в соответствии с некими стоимостными соображениями (например, самую короткую, или с минимальным приоритетом и т.п.).

Транзакции в приложениях промышленного масштаба

Транзакция является важнейшей концепцией построения приложения промышленного масштаба. Как уже было сказано, для пользователя, транзакция - это сигнал о том, что некое действие либо осуществилось, либо не осуществилось. С другой стороны, для разработчика, транзакция - это стиль программирования, который позволяет ему создавать самостоятельные модули, способные принимать участие в распределённых вычислениях. Например, клиенту нужно перевести часть денег со сберегательного счёта на текущий чековый счёт. Для данной операции наиболее важным пунктом будет одновременное изменение состояния обоих счетов в случае успешного осуществления транзакции, или сохранение состояния счетов в прежнем виде, если перевод денег не удался. Вряд ли вам понравится, когда с одного счёта деньги уйдут, а до другого не дойдут. И хотя это условие является само собой разумеющимся требованием к приложениям такого назначения, выполнение этой операции в распределённых системах без внедрения каких-либо форм управления и контроля над транзакциями представляется достаточно проблематичным - компьютеры могут выйти из строя, а сообщение где-нибудь потеряться.

Транзакции являются основой распределённых приложений. Более того, именно транзакции обеспечивают помодульное выполнение программы - в чем и заключается суть компонентной технологии в программировании.

Электронная коммерция: обеспечение безопасности транзакций

Операции безналичных расчетов в платежных системах называют транзакциями. Платежные системы поддерживают транзакции различных видов: покупка, снятие наличных в отделении банка, снятие наличных в банкомате, получение информации об остатке на счете клиента и другие.

Транзакции различаются также по способу представления информации о карте в платежную систему. Существуют электронные транзакции (информация о карте считывается с магнитной полосы/чипа) и транзакции голосовой авторизации (paper based).

Обычно процесс покупки в Интернете выглядит следующим образом. Клиент с помощью персонального компьютера (или другого устройства), подключенного к сети Интернет, выбирает интересующие его товары в виртуальной витрине товаров сайта торговой точки. Подтвердив выбор товаров и согласие с их стоимостью, клиент сообщает торговой точке о желании заплатить за покупку с помощью пластиковой карты.

Далее происходит диалог между торговой точкой и владельцем карты, целью которого является получение реквизитов карты покупателя для их представления в сеть в виде стандартного авторизационного запроса. В течение этого диалога торговая точка и покупатель иногда имеют возможность аутентифицировать друг друга, что обеспечивает безопасность транзакции. С самого начала внедрения электронной коммерции стало очевидно, что методы идентификации владельца карты, применяемые в обычных транзакциях, являются неудовлетворительными для транзакций электронной коммерции.

Действительно, при совершении операции покупки в физическом магазине продавец имеет право рассмотреть предъявляемую для расчета пластиковую карту на предмет ее соответствия требованиям платежных систем (в частности, проверить наличие голограммы, специальных секретных символов, сверить подписи на панели и торговом чеке и т. п.). Кроме того, продавец может потребовать от покупателя документ, удостоверяющий его личность. Все это делает мошенничество по поддельной карте достаточно дорогим предприятием. В случае транзакции в электронной коммерции все, что требуется от мошенника, - знание реквизитов карты. Затрат, связанных с изготовлением поддельной физической карты, в этом случае не требуется.

Для пластиковых карт с магнитной полосой самым надежным способом защиты транзакции от мошенничества является использование PIN-кода для идентификации владельца карты его банком-эмитентом. Секретной информацией, которой обладает владелец карты, является PIN-код. Он представляет собой последовательность, состоящую из 4-12 цифр, известную только владельцу карты и его банку-эмитенту. PIN-код применяется всегда при проведении транзакции повышенного риска, например при выдаче владельцу карты наличных в банкоматах. Выдача наличных в банкоматах происходит без присутствия представителя обслуживающего банка (ситуация похожа на транзакцию электронной коммерции). Поэтому обычных реквизитов карты для защиты операции "снятия наличных в банкомате" недостаточно и используется секретная дополнительная информация - PIN-код.

Казалось бы, использование подобного идентификатора могло бы помочь решить проблему безопасности, однако это не так. К сожалению, в приложении к электронной коммерции этот метод в классическом виде неприменим.

Использование PIN-кода должно производиться таким образом, чтобы этот секретный параметр на всех этапах обработки транзакций оставался зашифрованным (он должен быть известен только владельцу карты и банку).

Классическую схему можно было бы реализовать с помощью применения асимметричных алгоритмов с шифрованием PIN-кода владельца карты открытым ключом торговой точки. Однако для представления PIN-кода в платежную сеть его необходимо зашифровать, как это принято во всех платежных системах, симметричным ключом.

Существует другое, неклассическое решение по использованию PIN-кода. Например, можно на компьютере владельца карты шифровать PIN-код плюс некоторые динамически меняющиеся от транзакции к транзакции данные на ключе, известном только эмитенту и владельцу карты. Такой подход потребует решения задачи распределения секретных ключей. Эта задача является весьма непростой (очевидно, что у каждого владельца карты должен быть свой индивидуальный ключ), и если уж она решается, то использовать ее решение имеет смысл для других, более эффективных по сравнению с проверкой PIN-кода методов аутентификации владельца карты.

В результате проведенного анализа платежные системы "сформировали" основные требования к схемам проведения транзакции в электронной коммерции, обеспечивающим необходимый уровень ее безопасности:

1. Аутентификация участников покупки (покупателя, торговой точки и ее обслуживающего банка). Под аутентификацией покупателя (продавца) понимается процедура, доказывающая (на уровне надежности известных криптоалгоритмов) факт того, что данный владелец карты действительно является клиентом некоего эмитента-участника (обслуживающего банка-участника) данной платежной системы. Аутентификация обслуживающего банка доказывает факт того, что банк является участником данной платежной системы.

2. Реквизиты платежной карты (номер карты, срок ее действия, CVC2/CVV2 и т. п.), используемой при проведении транзакции, должны быть конфиденциальными для торговой точки.

3. Невозможность отказа от транзакции для всех участников транзакции, то есть наличие у всех участников неоспоримого доказательства факта совершения покупки (заказа или оплаты).

4. Гарантирование магазину платежа за электронную покупку - наличие у торговой точки доказательства того, что заказ был выполнен.

Транзакции в InterBase

В заключение, я расскажу о двух средах, в которых "живут" транзакции. А именно, о реализации транзакций в InterBase и о сервисе "Java Transaction Service" технологии Enterprise JavaBeans.

Для управления транзакциями в InterBase имеется три выражения:

SET TRANSACTION - Начинает транзакцию и определяет ее поведение.

COMMIT - Сохраняет изменения, внесенные транзакцией, в базе данных и завершает транзакцию.

ROLLBACK - Отменяет изменения, внесенные транзакцией, и завершает транзакцию.

1. Запуск транзакции

Для запуска транзакции нужно выполнить следующую SQL-команду:

SET TRANSACTION

Выражение "SET TRANSACTION"
равносильно выражению
"SET TRANSACTION READ WRITE WAIT ISOLATION LEVEL SNAPSHOT"

Access Mode - определяет тип доступа к данным. Может принимать два значения:

READ ONLY - указывает, что транзакция может только читать данные и не может модифицировать их.

READ WRITE - указывает, что транзакция может читать и модифицировать данные. Это значение принимается по умолчанию.

Isolation Level - определяет порядок взаимодействия данной транзакции с другими в данной базе. Может принимать значения:

SNAPSHOT - значение по умолчанию. Внутри транзакции будут доступны данные в том состоянии, в котором они находились на момент начала транзакции. Если по ходу дела в базе данных появились изменения, внесенные другими завершенными транзакциями, то данная транзакция их не увидит. При попытке модифицировать такие записи возникнет сообщение о конфликте.

SNAPSHOT TABLE STABILITY - предоставляет транзакции исключительный доступ к таблицам, которые она использует. Другие транзакции смогут только читать данные из них.

READ COMMITTED - позволяет транзакции видеть текущее состояние базы.

Конфликты, связанные с блокировкой записей, происходят в двух случаях:

Транзакция пытается модифицировать запись, которая была изменена или удалена уже после ее старта. Транзакция типа READ COMMITTED может вносить изменения в записи, модифицированные другими транзакциями после их завершения.

Транзакция пытается модифицировать таблицу, которая заблокирована другой транзакцией типа SNAPSHOT TABLE STABILITY.

Lock Resolution - определяет ход событий при обнаружении конфликта блокировки. Может принимать два значения:

WAIT - значение по умолчанию. Ожидает разблокировки требуемой записи. После этого пытается продолжить работу.

NO WAIT - немедленно возвращает ошибку блокировки записи.

Table Reservation - позволяет транзакции получить гарантированный доступ необходимого уровня к указанным таблицам. Существует четыре уровня доступа:

PROTECTED READ - запрещает обновление таблицы другими транзакциями, но позволяет им выбирать данные из таблицы.

PROTECTED WRITE - запрещает обновление таблицы другими транзакциями, читать данные из таблицы могут только транзакции типа SNAPSHOT или READ COMMITTED.

SHARED READ - самый либеральный уровень. Читать могут все, модифицировать - транзакции READ WRITE.

SHARED WRITE - транзакции SNAPSHOT или READ COMMITTED READ WRITE могут модифицировать таблицу, остальные - только выбирать данные.

2. Завершение транзакции

Когда все действия, составляющие транзакцию, успешно выполнены или возникла ошибка, транзакция должна быть завершена, для того чтобы база данных находилась в непротиворечивом состоянии. Для этого есть SQL-выражения:

COMMIT - сохраняет внесенные транзакцией изменения в базу данных. Это означает, что транзакция завершена успешно.

ROLLBACK - откат транзакции. Транзакция завершается и никаких изменений в базу данных не вносится. Данная операция выполняется при возникновении ошибки при выполнении операции (например, при невозможности обновить запись).

Java Transaction Service

В качестве координатора транзакций в рамках архитектуры EJB (технология серверных компонентов, Enterprise JavaBeans) используется Java Transaction Service (JTS). В терминологии JTS этот координатор именуется как менеджер транзакций (transaction manager). Участники транзакции, реализующие транзактно-защищённые ресурсы типа релятивных баз данных, называются менеджерами ресурсов (resource managers). Когда приложение инициирует транзакцию, оно создаёт объект, который представляет эту транзакцию. Затем приложение обращается к менеджерам ресурсов, которые должны осуществить операцию. В процессе выполнения транзакции каждый из менеджеров транзакций отслеживает работу каждого из указанных в транзакции менеджеров ресурсов.

Первое обращение приложения к каждому из менеджеров ресурсов определяет текущую транзакцию. Например, если приложение использует релятивную базу данных, оно вызывает интерфейс JDBC (Java Database Connectivity), который связывает транзактный объект с базой данных. С этого момента все вызовы, осуществляющиеся через это соединение, будут выполняться от лица транзакции самой базы данных, до тех пор пока транзакция не завершится.

Приложение фиксирует результат транзакции путём вызова метода xa_commit() и сообщает, что транзакция была успешно завершена. Если же по какой-либо причине приложение не может завершить транзакцию, оно вызывает метод xa_rollback(), отменяющий те изменения, которые были произведены. В случае, если приложение не в состоянии выполнить транзакцию, JTS снимает задачу. Когда транзактная операция завершается успешно, приложение обращается к JTS, чтобы сохранить результат. Затем JTS проходит через двухфазный протокол фиксации транзакций, чтобы передать задание указанным в транзакции менеджерам ресурсов.

Двухфазный протокол фиксации транзакций служит для обеспечения сохранения результата транзакции или отмены задания. В первой фазе JTS устанавливает готовность каждого из менеджеров ресурсов. Если каждый из них подтверждает свою готовность, то во второй фазе JTS передаёт каждому из них сообщение о фиксации результата. Если какой-либо из менеджеров не отвечает на запрос или даёт отрицательный ответ, JTS оповещает остальных менеждеров о том, что транзакция отменяется.


1. Транзакции и блокировки

2. Понятие транзакции

При работе с базами данных не исключены ошибки и сбои. Они могут быть вызваны ошибками пользователей, взаимодействующих с СУБД, или неустойчивой работой компьютеров. Поэтому в СУБД применяют специальные способы отмены действий, вызвавших такие ошибки. Команда SQL, оказывающая действие на содержание и структуру БД, не является необратимой. Пользователь может установить, что произойдет после окончания ее действий: останутся ли внесенные изменения БД или они будут проигнорированы. Для этого последовательность операций над базой данных объединяют в группы - транзакции.

Транзакцией называется последовательность операций, производимых над базой данных и переводящих ее из одного непротиворечивого состояния в другое непротиворечивое состояние.

Транзакция рассматривается как некоторое неделимое действие над БД, осмысленное с точки зрения пользователя, то есть это логическая единица работы системы. Транзакция начинается всякий раз, когда происходит сеанс работы с базой данных.

Примером транзакции может быть перевод денег через банкомат. Сумма 100 т.р. переводится с текущего счета на карт-счет. Программа вычитает сумму с текущего счета, после чего прибавляет ее к карт-счету. Во время работы программы после выполнения первой модификации происходит сбой питания, и увеличения карт-счета не происходит. Для того чтобы избежать подобной ситуации обе команды должны быть объединены в транзакцию. В случае, когда все команды транзакции не выполняются, происходит откат транзакции.

Определим транзакцию по вводу данных о вновь поступивших в библиотеку книгах. Эту операцию можно разбить на 2 последовательные: сначала ввод данных о книге – это новая строка в таблице Книги . Затем необходимо ввести данные обо всех экземплярах книги - это ввод набора новых строк в таблицу Экземпляры. Если эта последовательность действий будет прервана, то база данных не будет соответствовать реальному объекту, поэтому желательно выполнять ее как единую работу над базой данных.

3. Свойства транзакций. Способы завершения транзакций

Существуют различные модели транзакций, которые могут быть классифицированы на основе различных свойств, включающих структуру транзакции, параллельность внутри транзакции, продолжительность и т.д.

В настоящее время выделяют следующие типы транзакций: плоские или классические транзакции, цепочечные транзакции и вложенные транзакции.

Плоские транзакции характеризуются классическими свойствами: атомарности, согласованности, изолированности и долговечности.

· Свойство атомарности выражается в том, что транзакция должна быть выполнена в целом или не выполнена вовсе.

· Свойство согласованности гарантирует, что по мере выполнения транзакции данные переходят из одного согласованного состояния в другое согласованное состояние - транзакция не разрушает взаимной согласованности данных.

· Свойство изолированности означает, что конкурирующие за доступ к БД транзакции физически обрабатываются последовательно, изолированно друг от друга, но для пользователей это выглядит так, как будто они выполняются параллельно.

· Свойство долговечности означают, что если транзакция завершена успешно, то те изменения данных, которые были ею произведены, не могут быть потеряны ни при каких обстоятельствах, даже в случае последующих ошибок.

Возможны 2 варианта завершения транзакции:

· если все операторы выполнены успешно и в процессе транзакции не произошло никаких сбоев программного или аппаратного обеспечения, транзакция фиксируется. (Фиксация – это запись на диск изменений в БД, которые были сделаны в процессе выполнения транзакции). До тех пор, пока транзакция не зафиксирована, эти изменения могут быть аннулированы и база данных может быть возвращена в то состояние, в котором она была на момент начала транзакции. Фиксация транзакции означает, что все результаты выполнения транзакции становятся постоянными. Они станут видимы другим транзакциям только после того, как текущая транзакция будет зафиксирована.

· Если в процессе выполнения транзакции произошел сбой, БД должна быть возвращена в исходное состояние. Откат транзакции – это действие, обеспечивающее аннулирование всех изменений данных, которые были сделаны операторами SQL в теле текущей незавершенной транзакции.

4. Операторы Transact SQL для работы с транзакциями

В стандарте ANSI / ISO определены операторы СOMMIT и ROLLBACK, в стандарте начало транзакции неявно задается первым оператором модификации данных; Оператор COMMIT означает успешное завершение транзакции, результаты транзакции фиксируются во внешней памяти; при завершении транзакции оператором ROLLBACK результаты транзакции отменяются. Успешное завершение программы, в которой была инициирована транзакция, означает успешное завершение транзакции (как если бы был использован оператор COMMIT ), неуспешное завершение – прерывает транзакцию (как будто был использован оператор ROLLBACK ). В этой модели каждый оператор, изменяющий состояние данных, рассматривается как транзакция. Такая модель была реализована в первых версиях коммерческих СУБД. В дальнейшем в СУБД SYBASE была реализована расширенная модель транзакций.

В расширенной модели транзакций (например, в СУБД SQL SERVER) предусмотрен ряд дополнительных операций:

· оператор BEGIN TRANSACTION сообщает о начале транзакции;

· оператор COMMIT TRANSACTION сообщает об успешном завершении транзакции. Этот оператор, также как и COMMIT в модели стандарта ANSI/ISO, фиксирует все изменения, которые производились в БД в процессе выполнения транзакции;

· оператор SAVE TRANSACTION создает внутри транзакции точку сохранения, которая соответствует промежуточному состоянию БД, сохраненному на момент выполнения этого оператора. В операторе SAVE TRANSACTION может стоять имя точки сохранения, поэтому в ходе выполнения транзакции может быть запомнено несколько точек сохранения соответствующих нескольким промежуточным состояниям;

· оператор ROLLBACK имеет 2 модификации. Если он используется без дополнительного параметра, то он интерпретируется как оператор отката всей транзакции, если же он имеет параметр ROLLBACK n , то он интерпретируется как оператор частичного отката транзакции в точку сохранения n.

Точки сохранения целесообразно использовать в длинных и сложных транзакциях, чтобы обеспечить возможность отмены изменений, выполненных определенными операторами.

В большинстве случаев можно установить параметр, называемый AUTOCOMMIT , который будет автоматически запоминать все выполняемые команды, причем действия, которые привели к ошибке, всегда будут автоматически отменены. Обычно этот режим устанавливается с помощью команды типа:

SET AUTOCOMMIT ON ;

а возврат к обычной диалоговой обработке запросов:

SET AUTOCOMMIT OFF ;

Кроме того, имеется возможность установки AUTOCOMMIT , которую СУБД выполнит автоматически при регистрации, Если сеанс пользователя завершился аварийно, – например, произошел сбой системы, то текущая транзакция выполнит автоматический откат изменений. Не рекомендуется организовывать работу так, чтобы одиночные транзакции содержали много команд, тем более не связанных между собой. Это может привести к тому, что при отмене изменений будет выполнено слишком много действий, в том числе и тех, которые являются нужными и ошибки не вызвали. Лучший вариант, когда транзакция состоит из одной команды или нескольких тесно связанных команд.

Триггер выполняется как неявно определенная транзакция, поэтому внутри триггера допускается применение команд управления транзакциями. В частности, при обнаружении нарушения ограничений целостности для прерывания выполнения триггера и отмены всех изменений, которые пытался выполнить пользователь, необходимо использовать команду ROLLBACK TRANSACTION . В случае успешного завершения триггера можно использовать команду COMMIT TRANSACTION .
Выполнение команды ROLLBACK TRANSACTION или COMMIT TRANSACTION не прерывает работу триггера, поэтому следует внимательно отслеживать попытки многократного отката транзакции при выполнении разных условий.

Пример транзакции :

BEGIN TRAN

UPDATE account

SET balance= balance- 100

If @@ error=0

BEGIN

ROLLBACK TRAN

RETURN

END

UPDATE card_account

SET balance=balance+100

WHERE account_number=@s_account

If @@ error=0

BEGIN

ROLLBACK TRAN

RETURN

END

COMMIT TRAN

Команда BEGIN TRAN сообщает серверу о начале транзакции. Это значит, что до получения сервером команды COMMIT TRAN все изменения являются временными. Следовательно, если на сервере произойдет сбой после первого обновления, произойдет откат транзакции. Никакой процесс не сможет получить доступ к данным до тех пор, пока не будет завершена транзакция.

5. Журнал транзакций.

Реализация принципа сохранения промежуточных состояний, подтверждения или отката транзакции обеспечивается специальным механизмом, для поддержки которого создана системная структура, называемая журналом транзакций. Журнал транзакций содержит последовательность записей об изменении БД. Он предназначен для обеспечения надежного хранения данных в БД. Это предполагает возможность восстановления согласованного состояния БД после любого рода аппаратных и программных сбоев. Общие принципы журнализации и восстановления:

· результаты зафиксированных транзакций должны быть сохранены в восстановленном состоянии БД;

· результаты незафиксированных транзакций не должны присутствовать в восстановленном состоянии БД.

Это означает, что восстанавливается последнее по времени согласованное состояние БД.

Возможны следующие ситуации, при которых требуется производить восстановление состояния БД:

· Восстановление после внезапной потери содержимого оперативной памяти (мягкий сбой). Такая ситуация может возникнуть в следующих случаях: при аварийном выключении электропитания или при возникновении неустранимого сбоя процессора. Ситуация характеризуется потерей той части базы данных, которая находилась к моменту сбоя в буферах оперативной памяти.

· Восстановление после поломки основного внешнего носителя БД (жесткий сбой).

Система должна обеспечивать восстановление как после небольших нарушений (например, после неудачно завершенных транзакций), так и после серьезных сбоев, (например сбоев питания, жестких сбоев).

При мягком сбое необходимо восстановить содержимое БД по содержимому журналов транзакций, хранящихся на дисках. При жестком сбое необходимо восстановить содержимое БД по архивным копиям и журналам транзакций, которые хранятся на неповрежденных внешних носителях.

Возможны два основных варианта ведения журнальной информации. В 1-м варианте для каждой транзакции поддерживается отдельный локальный журнал изменений БД этой транзакцией. Такие журналы называют локальными журналами. Они используются для локальных откатов транзакций. Кроме того, поддерживается общий журнал изменений БД, используемый для восстановления БД после мягких и жестких сбоев.

Этот подход позволяет быстро выполнять индивидуальные откаты транзакций, но приводит к дублированию информации в локальных и общем журналах. Поэтому чаще используют второй вариант – поддержание только общего журнала изменений БД, который используется и при выполнении индивидуальных откатов.

Общая структура журнала может быть представлена в виде некоторого последовательного файла, в котором фиксируется каждое изменение БД, происходящее в ходе выполнения транзакции. Все транзакции имеют внутренние номера, поэтому в журнале транзакций фиксируются все изменения, проводимые всеми транзакциями.

Каждая запись в журнале помечается номером транзакции, к которой она относится, и значениями атрибутов, которые она меняет, кроме того, для каждой транзакции в журнале фиксируется команда начала и завершения транзакции.

Для большей надежности журнал транзакций часто дублируется системными средствами СУБД, именно поэтому объем внешней памяти во много раз превышает реальный объем данных в базе.

Имеется 2 варианта ведения журнала транзакций: протокол с отложенными обновлениями и протокол с немедленными обновлениями.

Ведение журнала по принципу отложенных обновлений предполагает следующий механизм выполнения транзакций:

1. Когда транзакция Т1 начинается, в протокол заносится запись

Т1 Begin Transaction

2. На протяжении выполнения транзакции в протоколе для каждой изменяемой записи записывается новое значение

Т1. ID _ RECORD , атрибут, новое значение

(ID _ RECORD – уникальный номер записи)

3. Если все действия, из которых состоит транзакция, успешно выполнены, то транзакции частично фиксируется и в протокол заносится:

T 1 COMMT

4. После того, как транзакция зафиксирована, записи протокола, относящиеся к Т1, используются для внесения изменений в БД.

5. Если происходит сбой, то СУБД просматривает протокол и выясняет, какие транзакции необходимо переделать. Транзакцию Т1 необходимо переделать, если протокол содержит обе записи Т1 Begin Transaction и T 1 COMMT . БД может находиться в несогласованном состоянии, однако все новые значения измененных элементов данных содержатся в протоколе, и это требует повторного выполнения транзакции. Для этого используется системная процедура REDO (), которая заменяет все значения элементов данных на новые, просматривая протокол в прямом порядке.

6. Если в протоколе не содержится команда фиксации транзакции С OMMIT , то никаких действий проводить не требуется, а транзакция запускается заново.

Альтернативный механизм с немедленным выполнением предусматривает внесение изменений сразу в БД, а в протокол заносятся не только новые, но и все старые значения изменяемых атрибутов, поэтому каждая запись выглядит так:

Т1. ID _ RECORD , атрибут, новое значение старое значение

При этом запись в журнал предшествует непосредственному выполнению операции над БД. Когда транзакция фиксируется, то есть встречается команда T1 COMMIT , и она выполняется, то все изменения оказываются уже внесенными в БД и не требуется никаких дальнейших действий по отношению к этой транзакции.

При откате транзакции выполняется системная процедура UNDO() , которая возвращает все старые значения в отмененной транзакции, последовательно проходя по протоколу, начиная с команды BEGIN TRANSACTION.

Для восстановления при сбое используется следующий механизм:

· Если транзакция содержит команду начала транзакции, но не содержит команду фиксации с подтверждением ее выполнения, то выполняется последовательность действий как при откате транзакции, то есть восстанавливаются старые значения.

На самом деле восстановление происходит по более сложным алгоритмам, т.к. изменения, как в журнал, так и в БД заносятся не сразу, а буферизуются. Журнализация изменений тесно связана не только с управлением транзакциями, но и с буферизацией страниц БД в оперативной памяти. Если бы запись об изменении БД, которая должна поступать в журнал при выполнении любой операции модификации БД, на самом деле немедленно записывалась во внешнюю память, это привело бы к существенному замедлению работы системы. Поэтому записи в журнале тоже буферизуются: при нормальной работе очередная страница выталкивается во внешнюю память журнала только при полном заполнении записями.

6. Блокировки.

В многопользовательских системах с одной базой данных одновременно могут работать несколько пользователей или прикладных программ. Одной из основных задач СУБД является обеспечение изолированности пользователей, то есть создание такого режима работы, чтобы каждому из пользователей казалось, что он работает с БД в одиночку. Такую задачу СУБД принято называть параллелизмом транзакций.

При параллельной обработке базы данных возникает три основных проблемы:

§ Пропавшие изменения . Эта ситуация возникает в тех случаях, когда 2 транзакции одновременно изменяют одну и ту же запись в БД. Например, работают 2 оператора на приеме заказов, первый оператор принял заказ на 30 мониторов. Когда он обращался на склад, то там числилось 40 мониторов, и он, получив подтверждение от клиента, оформил продажу 30 мониторов из 40. Параллельно с ним работает второй оператор, который принимает заказ на 20 таких же мониторов, и в свою очередь, обратившись на склад, он получает то же значение 40, и оформляет заказ для своего клиента. Заканчивая работу с данными, он выполняет команду Обновить, которая заносит 20 как остаток мониторов на складе. После этого первый оператор заканчивает работу со своим заказчиком и тоже выполняет команду Обновить , которая заносит остаток 10 как число мониторов, имеющихся на складе. В общей сложности они продали 50 мониторов при имеющихся 40, и при этом на складе будет числиться 10 мониторов.

§ Проблемы промежуточных данных . Связано с возможностью доступа к промежуточным данным. Допустим первый оператор, ведя переговоры со своим заказчиком, ввел заказанные 30 мониторов, но перед окончательным оформлением заказа клиент захотел выяснить еще некоторые характеристики товара. Приложение, с которым работает 1-й оператор, уже изменило остаток мониторов на складе, и там сейчас хранится информация о 10 оставшихся мониторах. В это время второй оператор пытается принять заказ от своего заказчика заказ на 20 мониторов, но его приложение показывает, что на складе осталось всего 10 мониторов и оператор вынужден отказать своему заказчику. В это время заказчик первого оператора принимает решение не покупать мониторы, оператор делает откат транзакции и на складе снова оказывается 40 мониторов. Такая ситуация стала возможной потому, что приложение второго оператора имело доступ к промежуточным данным, которые сформировало первое приложение.

§ Проблемы несогласованных данных. Связана с возможностью изменения данны x , уже прочитаны x другим приложением. Оба оператора начинают работать практически одновременно, получают начальное состояние склада 40 мониторов, а затем первый оператор продает своему заказчику 30 мониторов. Он завершает работу своего приложения, и оно выполняет команду фиксации транзакции COMMIT. Состояние БД непротиворечивое. В этот момент заказчик второго оператора решает сделать заказ и второй оператор, обращаясь повторно к данным, видит, что количество мониторов изменилось. Второй оператор считает, что нарушена целостность транзакции, т.к. в течение выполнения одной работы он получил 2 различных состояния склада. Эта ситуация возникла потому, что приложение 1-го оператора смогло изменить кортеж с данными, который уже прочитало приложение второго оператора.

Обобщая перечисленные проблемы, можно выделить следующие типы конфликтов между двумя параллельными транзакциями:

· W-W – транзакция 2 пытается изменить объект, измененный не закончившейся транзакцией 1;

· R-W – транзакция 2 пытается изменить объект, прочитанный не закончившейся транзакцией 1;

· W-R транзакция 2 пытается читать объект, измененный не закончившейся транзакцией 1;

7. Сериалиация транзакций

Для того чтобы избежать подобных конфликтов, требуется выработать некоторую процедуру согласованного выполнения параллельных транзакций. Эта процедуру должна удовлетворять следующим правилам:

1. В ходе выполнения транзакции пользователь видит только согласованные данные. Пользователь не должен видеть несогласованные промежуточные данные.

2. Когда в БД 2 транзакции выполняются параллельно, результаты выполнения транзакций должны быть такими же, как если бы выполнялась транзакция 1, а затем транзакция 2 или наоборот.

Процедура, обеспечивающая реализацию этих принципов, называется сериализацией транзакций. Она гарантирует, что каждый пользователь, обращаясь к БД, работает с ней так, как будто не существует других пользователей, одновременно обращающихся к тем же данным. Результат совместного выполнения транзакции эквивалентен результату некоторого последовательного выполнения этих же транзакций.

Самым простым выходом было бы последовательное выполнение транзакций, но такой выход неоптимален по времени, существуют более гибкие методы управления параллельным доступом к БД. Наиболее распространенный механизм решения этих проблем блокировка объекта (например, таблицы) на все время действия транзакции. Если транзакция обращается к заблокированному объекту, то она остается в состоянии ожидания до момента разблокировки этого объекта, после чего она может начать его обработку. Однако блокировка создает новые проблемы - задержку выполнения транзакций из-за блокировок.

Итак, блокировки, называемые также синхронизационными захватами объектов, могут быть применены к разному типу объектов. Наибольшим объектом блокировки может быть вся БД, однако этот вид блокировки сделает БД недоступной для всех других приложений, которые работают с данной БД. Следующий тип объекта блокировки – таблицы. Транзакция, которая работает с таблицей, блокирует ее на все время выполнения транзакции. Этот вид блокировки предпочтительнее предыдущего, потому что позволяет параллельно выполнять транзакции, которые работают с другими таблицами.

В ряде СУБД реализована блокировка на уровне страниц. В этом случае СУБД блокирует только отдельные страницы на диске, когда транзакция обращается к ним. Этот вид блокировки еще более мягок, и позволяет разным транзакциям работать с одной и той же таблице, если они обращаются к разным страницам данных.

В некоторых СУБД возможна блокировка на уровне строк, однако такой механизм блокировки требует дополнительных затрат, на свою поддержку. SQL Server стремится установить блокировку на уровне записей, чтобы обеспечить максимальную параллельность в работе. С увеличением количества блокировок строк сервер может перейти к блокировке страниц, если количество записей превышает пороговое значения.

8. Переопределение блокировок на уровне запроса. Типы блокировок

Если после имени таблицы в предложении FROM следует одно из перечисленных ключевых слов, запрос вмешивается в работу диспетчера блокировок и применяется заданный тип блокировки:

· NOLOCK- разрешает грязное чтение;

· PAGLOCK- блокировка на уровне страниц;

· ROWLOCK- блокировка на уровне записей;

· TABLOCK-разделяемая блокировка таблицы;

· TABLOCKX- монопольная блокировка таблицы

В настоящее время проблема блокировок является предметом большого числа исследований.

Различают два базовых типа блокировок (синхронизационных захватов):

Разделяемые (нежесткие) блокировки – это режим означает разделяемый захват объекта и используется для выполнения операции чтения объекта. Объекты, заблокированные таким образом, не изменяются в ходе выполнения транзакции и доступны другим транзакциям, но только в режиме чтения;

Монопольные (жесткие) блокировки – не позволяют вообще никому, кроме владельца этой блокировки, обращаться к данным. Эти блокировки используются для команд, которые изменяют содержание или структуру таблицы и действуют до конца транзакции.

Захваты объектов несколькими транзакциями по чтению совместимы, то есть нескольким транзакциям допускается читать один и тот же объект. Захват объекта одной транзакцией по чтению не совместим с захватом другой транзакцией того же объекта по записи. Захваты одного объекта разными транзакциями по записи не совместимы.

Однако применение разных типов блокировок приводит к проблеме тупиков. Проблема тупиков возникла при рассмотрении выполнения параллельных процессов в операционных средах и также была связана с управлением разделяемыми (совместно используемыми) объектами. Пример тупика: Пусть транзакция А жестко блокирует таблицу 1, а затем жестко блокирует таблицу 2. Транзакция В, наоборот жестко блокирует таблицу 2, а затем жестко блокирует таблицу 1.

Если обе эти транзакции начали работу одновременно, то после выполнения операций модификации первой таблицы они обе окажутся в бесконечном ожидании: транзакция А будет ждать завершения работы транзакции В и разблокировки таблицы 2, а транзакция В будет безрезультатно ждать завершения работы транзакции А и разблокировки таблицы 1.

Ситуации могут быть гораздо более сложными. Количество взаимно заблокированных транзакций может оказаться гораздо больше. Эту ситуацию каждая транзакция обнаружить самостоятельно не может. Ее должна разрешить СУБД. В большинстве коммерческих СУБД существует механизм обнаружения таких тупиковых ситуаций.

Основой обнаружения тупиковых ситуаций является построение (или постоянное поддержание) графа ожидания транзакций. Граф ожидания может представлять собой направленный граф, в вершинах которого расположены имена транзакций. Если транзакция Т1 ждет окончания транзакции Т2, то из вершины Т1 в вершину Т2 идет стрелка. Дополнительно стрелки могут быть помечены именами заблокированных объектов и типом блокировки.

В механизме реализации блокировок используется понятие уровня изоляции блокировки, определяющее, сколько таблиц будет блокировано. Традиционно используется три уровня изоляции:

· Уровень изоляции, называемый повторное чтение, реализует такую стратегию, что внутри данной транзакции все записи, извлеченные с помощью запросов, не могут быть изменены. Эти записи не могут быть изменены до тех пор, пока транзакция не завершиться.

· Уровень изоляции, который называют указатель стабильности, предохраняет каждую запись от изменений на время, когда она считывается, или от чтения на время ее изменения.

· Третий уровень стабильности, называется только чтение. Только чтение блокирует всю таблицу, а, следовательно, не может использоваться с командами модификации. Таким образом, только чтение гарантирует, что вывод запроса будет внутренне согласован с данными таблицы.

Итак, средство управления параллелизмом в СУБД определяет, то в какой степени, одновременно поданные команды будут мешать друг другу. В современных СУБД оно является адаптируемым средством, автоматически находящим оптимальное решение с учетом обеспечения максимальной производительности БД и доступности данных для действующих команд.

9. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Дайте определение транзакции. Приведите примеры транзакций.

2. Перечислите и охарактеризуйте свойства транзакций.

3. Какие возможны варианты завершения транзакций.

4. Какие операторы языка SQL служат для работы с транзакциями в расширенной модели транзакций?

5. Можно ли в триггерах использовать команды управления транзакциями?

6. Для чего предназначен журнал транзакций?

7. В каких случаях выполняется восстановление БД по журналу транзакций?

8. Какие варианты ведения журналов транзакций существуют?

9. В чем заключаются различия вариантов ведения журнала транзакций: протокола с отложенными обновлениями и протокола с немедленными обновлениями.

10. Какие проблемы возникают при параллельной работе пользователей с БД?

11. Какие объекты БД могут быть заблокированы для реализации принципа изолированности пользователей?

12. Возможно ли задание вида блокировки в запросах?

13. Какие виды захвата объектов несколькими транзакциями существуют? Какие из них являются совместимыми?

14. В чем заключается проблема тупиков?

Похожие статьи