Типы сенсорных экранов. Технологии сенсорных экранов

06.07.2019

Развитие сенсорных технологий

Сенсорные технологии активно вторгаются на российский компьютерный рынок. Дебют этих систем состоялся более четырех лет назад, но бурный рост рынка начался только этим летом, когда на станциях Московского метрополитена, в крупных гостиницах и на вокзалах появились сенсорные информационные киоски. Часть из них была установлена в рамках проекта "Городская информационная система Москвы", другая - как проекты отдельных фирм.

У всех этих киосков удобный и действительно дружественный интерфейс, который позволяет даже неискушенному пользователю с легкостью управлять сложной информационной системой.

Достичь такой простоты и удобства позволяют сенсорные экраны. Впервые сенсорная технология появилась более 25 лет назад, когда специалисты американской фирмы ELO TouchSystems разработали электродную резистивную технологию, позволяющую добиться редкого сочетания высокой надежности и гарантированной точности с потрясающей адаптивностью. Эта разработка дала толчок к развитию сенсорных технологий. На рынке стали появляться сенсорные экраны, использующие принцип поверхностных акустических волн (ELO TouchSystems), изменения распределенной емкости (MicroTouch), инфракрасных волн и 4-электродную резистивную технологию (ряд тайваньских фирм).

Рассмотрим особенности различных типов реализации сенсорного интерфейса.

Резистивная 5-электродная технология

Пространство между стеклом и пластиком отделено микроизоляторами ("dots"), запатентованными фирмой ELO TouchSystems, которые равномерно распределены по активной области экрана. Они надежно изолируют проводящие поверхности. При нажатии эти поверхности соприкасаются между собой. Изменение сопротивления регистрируется контроллером и передается в компьютер. Преимуществом AccuTouch является высокая надежность. Экран совершенно не чувствителен к загрязнению и агрессивным средам. Сенсорный экран AccuTouch соединяется с контроллером, который обрабатывает сигналы, поступающие с поверхности экрана, и преобразует их в координаты прикосновения (X и Y), которые передаются на системную шину компьютера и обрабатываются как стандартные сигналы "мыши".

Принцип поверхностных акустических волн (ПАВ)

Экран, основанный на этом принципе (IntelliTouch), выполнен в виде стеклянной панели с пьезоэлектрическими преобразователями, расположенными в углах экрана. Специальный контроллер посылает на них высокочастотный электрический сигнал, который преобразуется в акустические волны. Волны отражаются массивом датчиков, расположенным по краям панели. Приемные датчики собирают отраженные волны и направляют их обратно на преобразователи, которые преобразуют полученные данные в электрический сигнал, анализируемый контроллером. Особенность этой технологии в том, что координата прикосновения вычисляется не только по осям X и Y, но и по оси Z.

Принцип изменения распределенной емкости

Экран выполнен в виде стеклянной панели с нанесенным на нее проводящим слоем, т. е. поверхность экрана представляет собой распределенную емкость, изменяющуюся при прикосновении. Эти изменения регистрируются и обрабатываются контроллером, который затем вычисляет координату прикосновения.

Технология использования инфракрасных волн

Экран выполнен в виде рамки с рядами инфракрасных излучателей, которые создают решетку. Появление постороннего предмета в пределах решетки регистрируется контроллером, обрабатывается и передается в компьютер.

Конструктивно сенсорные экраны выполняются в виде стеклянного основания, повторяющего кривизну поверхности электронно-лучевой трубки или жидкокристаллической матрицы монитора. На рынке присутствуют сферические, FST, цилиндрические и плоские экраны, что позволяет выбрать оптимальный вариант для любого монитора.

Исключение составляют экраны, использующие инфракрасные волны, и "вандалостойкие" экраны SecureTouch фирмы ELO. Первые, как уже говорилось, выполнены в виде рамки, которая надевается на монитор. Вторые устанавливаются перед монитором. Обусловлено это тем, что SecureTouch представляет собой сенсорный экран повышенной прочности. Разработанный на базе технологии ПАВ, SecureTouch способен противостоять грубому воздействию. Он будет продолжать работать, несмотря на царапины, которые испортили бы любой другой сенсорный экран, и способен выдерживать удары тяжелых предметов. Основой SecureTouch является отожженное или отпущенное стекло, толщиной 0,25 или 0,5 дюйма.

Сенсорные экраны этого класса проходят испытания согласно требованиям спецификации UL (UL-1950). На поверхность экрана с высоты 51,5 дюйма (примерно 131 см) несколько раз бросают стальной шар весом один килограмм. SecureTouch выдерживает испытание без повреждений и царапин на поверхности.

В начале этого года появилась еще одна разновидность сенсорного экрана. Это экраны Scribex фирмы ELO. Scribex дает возможность рукописного ввода информации в компьютерную систему. Таким образом решаются насущные проблемы банковских и торговых приложений. Новое решение помогает пользователям избежать трудностей, возникающих при авторизации доступа и заполнении различных документов с клавиатуры. Экраны выполнены по 5-электродной резистивной технологии. Высокое разрешение и большая скорость сканирования позволяют ввести подпись с качеством, достаточным для идентификации ее большинством программ.

Они полностью эмулируют стандартную мышь. Драйвер позволяет установить режимы реакции на нажатие, отжатие, двойное прикосновение и даже правую кнопку мыши. В настоящее время доступны драйверы под DOS, Windows 3.x, Windows 95, Windows NT и ряд UNIX-систем, OS/2, Apple Macintosh.

Выпускается много разновидностей контроллеров сенсорных экранов, отличающихся друг от друга способом связи с компьютером. Контроллеры PC-Bus вставляются в слот расширения системной платы, последовательные - подключаются к последовательному порту. Последние могут быть как внешними, так и внутренними, встраиваемыми непосредственно в монитор. Для работы в портативных ПК выпускается серия PCMCIA-контроллеров.

Технология сенсорного ввода имеет ряд свойств, делающих ее незаменимой во многих приложениях. Первое из них - реализация генетически заложенной установки "прикосновения к интересующему объекту". Для человека естественно прикасаться к предмету для получения дополнительной информации о нем. Это происходит интуитивно и не приводит к внутреннему конфликту, который подчас вызывают традиционные средства ввода. Это свойство идеально решает проблему дружественного интерфейса в справочно-информационных системах, рассчитанных на массовый доступ.

Второе свойство - максимальная защита от ошибок оператора. Многие, наверное, помнят заклеенную клавиатуру на кассовых машинах в магазинах. Нерациональное размещение клавиш и высокие нагрузки приводят к ошибкам ввода. Поэтому кассиры нашли простой выход и закрывали редко используемые клавиши спичечными коробками.

При использовании сенсорного ввода клавиатура на экране монитора формируется программно. Это позволяет не перегружать оператора и выводить только те клавиши, которые используются в данный момент. Кроме того, можно подобрать оптимальные размер и цвет клавиш.

Сенсорный ввод также снижает вероятность взлома и проведения несанкционированных действий в компьютерной системе.

Эти и другие особенности делают сенсорную технологию оптимальной для использования в качестве POS-терминалов, в медицине, в промышленности (терминал контроля процесса), в приложениях массового доступа, в охранном бизнесе (система идентификации и наведения устройств слежения), в финансовых приложениях.

Уже сейчас решения на основе сенсорного ввода успешно используются в различных организациях Москвы, Санкт-Петербурга и многих других городов.

Компания КВАРТА Сенсорные Системы, http://www.quarta.msk.ru/ucc/ -

Экраны современных устройств могут не только выводить изображение, но и позволяют взаимодействовать с устройством посредством сенсоров.

Изначально сенсорные экраны применялись в некоторых карманных компьютерах, а на сегодняшний день сенсорные экраны находят широкое применение в мобильных устройствах, плеерах, фото и видеокамерах, информационных киосках и так далее. При этом в каждом из перечисленных устройств может применяться тот или иной тип сенсорного экрана. В настоящее время разработано несколько типов сенсорных панелей, и, соответственно, каждая из них обладает своими достоинствами и недостатками. В данной статье мы как раз и рассмотрим, какие же бывают типы сенсорных экранов, их достоинства и недостатки, какой тип сенсорного экрана лучше.

Существует четыре основных типа сенсорных экранов: резистивные, емкостные, с определением поверхностно-акустических волн и инфракрасные . В мобильных же устройствах наибольшее распространение получили только два: резистивные и емкостные . Основным их отличием является тот факт, что резистивные экраны распознают нажатие, а емкостные – касание.

Резистивные сенсорные экраны

Данная технология получила наибольшее распространение среди мобильных устройств, что объясняется простотой технологии и низкой себестоимостью производства. Резистивный экран представляет собой LCD дисплей, на который наложены две прозрачные пластины, разделенные слоем диэлектрика. Верхняя пластина гибкая, так как на нее нажимает пользователь, нижняя же жестко закреплена на экране. На обращенные друг другу поверхности нанесены проводники.

Резистивный сенсорный экран

Микроконтроллер подает напряжение последовательно на электроды верхней и нижней пластины. При нажатии на экран гибкий верхний слой прогибается, и его внутренняя проводящая поверхность касается нижнего проводящего слоя, изменяя тем самым сопротивление всей системы. Изменение сопротивления фиксируется микроконтроллером и таким образом определяются координаты точки касания.

Из плюсов резистивных экранов можно отметить простоту и малую стоимость, неплохую чувствительность, а также возможность нажимать на экран как пальцем, так и любым предметом. Из минусов необходимо отметить плохое светопропускание (в результате приходится использовать более яркую подсветку), плохая поддержка множественных нажатий (multi-touch), не могут определять силу нажатия, а также довольно быстрый механический износ, хотя в сравнении со временем жизни телефона, этот недостаток не так уж и важен, так как обычно быстрее телефон выходит из строя, чем сенсорный экран.

Применение : сотовые телефоны, КПК, смартфоны, коммуникаторы, POS-терминалы, TabletPC, медицинское оборудование.

Емкостные сенсорные экраны

Емкостные сенсорные экраны делятся на два типа: поверхностно-емкостные и проекционно-емкостные . Поверхностно-емкостные сенсорные экраны представляют собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие, поверх которого нанесено защитное покрытие. По краям стекла расположены печатные электроды, которые подают на проводящее покрытие низковольтное переменное напряжение.

Поверхностно-емкостной сенсорный экран

При касании экрана образуется импульс тока в точке контакта, величина которого пропорциональна расстоянию из каждого угла экрана до точки касания, таким образом, вычислить координаты места касания контроллеру достаточно просто, сравнить эти токи. Из достоинств поверхностно-емкостных экранов можно отметить: хорошее светопропускание, малое время отклика и большой ресурс касаний. Из недостатков: размещенные по бокам электроды плохо подходят для мобильных устройств, требовательны к внешней температуре, не поддерживают multi-touch, касаться можно пальцами или специальным стилусом, не могут определять силу нажатия.

Применение : информационные киоски в охраняемых помещениях, в некоторых банкоматах.

Проекционно-емкостные сенсорные экраны представляют собой стекло с нанесенными на него горизонтальными ведущими линиями проводящего материала и вертикальными определяющими линиями проводящего материала, разделенные слоем диэлектрика.

Проекционно-емкостной сенсорный экран

Работает такой экран следующим образом: на каждый из электродов в проводящем материале микроконтроллером последовательно подается напряжение и измеряется амплитуда возникающего в результате импульса тока. По мере приближения пальца к экрану емкость электродов, находящихся под пальцем, изменяется, и таким образом контроллер определяет место касания, то есть координаты касания – это пересекающиеся электроды с возросшей емкостью.

Достоинством проекционно-емкостных сенсорных экранов является быстрая скорость отклика на касание, поддержка multi-touch, более точное определение координат по сравнению с резистивными экранами и определение силы нажатия. Поэтому эти экраны в большей степени используются в таких устройствах, как iPhone и iPad. Также стоит отметить большую надежность этих экранов и, как следствие, больший срок работы. Из недостатков можно отметить, что на таких экранах касаться можно только пальцами (рисовать или писать от руки пальцами очень неудобно) или специальным стилусом.

Применение : платежные терминалы, банкоматы, электронные киоски на улицах, touchpads ноутбуков, iPhone, iPad, коммуникаторы и так далее.

Сенсорные экраны ПАВ (поверхностно-акустические волны)

Состав и принцип работы данного типа экранов следующий: по углам экрана размещены пьезоэлементы, которые преобразуют подаваемый на них электрический сигнал в ультразвуковые волны и направляют эти волны вдоль поверхности экрана. Вдоль краев одной стороны экрана распределены отражатели, которые распределяют ультразвуковые волны по всему экрану. На противоположных от отражателей краях экрана расположены сенсоры, которые фокусируют ультразвуковые волны и передают их далее на преобразователь, который в свою очередь преобразует ультразвуковую волну обратно в электрический сигнал. Таким образом, для контроллера экран представляется в виде цифровой матрицы, каждое значение которой соответствует определенной точке поверхности экрана. При касании пальцем экрана в любой точке происходит поглощение волн, и в результате общая картина распространения ультразвуковых волн изменяется и в результате преобразователь выдает более слабый электрический сигнал, который сравнивается с хранящейся в памяти цифровой матрицей экрана, и таким образом вычисляются координаты касания экрана.

Сенсорный экран ПАВ

Из достоинств можно отметить высокую прозрачность, так как экран не содержит проводящих поверхностей, долговечность (до 50 млн. касаний), а также сенсорные экраны ПАВ позволяют определять не только координаты нажатия, но и силу нажатия.

Из недостатков можно отметить более низкую точность определения координат, чем у емкостных, то есть рисовать на таких экранах не получится. Большим недостатком являются сбои в работе при воздействии акустических шумов, вибраций или при загрязнении экрана, т.е. любая грязь на экране блокирует его работу. Также данные экраны корректно работают только с предметами, поглощающими акустические волны.

Применение : сенсорные экраны ПАВ в основном в охраняемых информационных киосках, в образовательных учреждениях, в игровых автоматах и так далее.

Инфракрасные сенсорные экраны

Устройство и принцип работы инфракрасных сенсорных экранов довольно простой. Вдоль двух прилегающих друг к другу сторон сенсорного экрана расположены светодиоды, излучающие инфракрасные лучи. А на противоположной стороне экрана расположены фототранзисторы, которые принимают инфракрасные лучи. Таким образом, весь экран покрыт невидимой сеткой пересекающихся инфракрасных лучей, и если коснуться экрана пальцем, то лучи перекрываются и не попадают на фототранзисторы, что немедленно регистрируется контроллером, и таким образом определяются координаты касания.

Инфракрасный сенсорный экран

Применение : инфракрасные сенсорные экраны используются в основном в информационных киосках, торговых автоматах, в медицинском оборудовании и т.д.

Из достоинств можно отметить высокую прозрачность экрана, долговечность, простоту и ремонтопригодность схемы. Из недостатков: боятся грязи (поэтому используются только в помещении), не могут определять силу нажатия, средняя точность определения координат.

P.S. Итак, мы рассмотрели основные типы наиболее распространенных сенсорных технологий (хотя есть еще и менее распространенные, такие, как оптические, тензометрические, индукционные и так далее). Из всех этих технологий наибольшее распространение в мобильных устройствах получили резистивные и емкостные, так как обладают высокой точностью определения точки касания. Из них наилучшими характеристиками обладают проекционно-емкостные сенсорные экраны.

Текст подготовлен по материалам из открытых источников методистами по Технологии Карабиным А.С., Л.В. Гаврик, С.В. Усачёвым

Сенсорные технологии May 27th, 2011

Удобнее кнопки и колеса

Интересно, догадывались ли Генри Эдвард Робертс и Мартин Купер, создавая первые в мире персональный компьютер и мобильный телефон, о том, что п ройдет каких-то полвека и уже привычное использование коммуникативных устройств - клавиатуры, мышки и джостика - отойдут на второй план?

Сегодня появился совершено иной способ взаимодействия человека и стационарного или портативного компьютера - это сенсорные технологии , которые также нашли активное применение в сенсорных информационных киосках самообслуживания и платежных терминалах и значительно упростили процесс «общения» потребителя с высокотехнологичным оборудованием. Современное сенсорное оборудование стало настолько притягательным и интуитивно понятным, что с ним могут работать даже неподготовленные пользователи.

Сенсорные технологии основаны на воздействии четырех базовых видов волн: резистивных, поверхностно-акустических, поверхностно-емкостных и инфракрасных и позволяют человеку принимать непосредственное (контактное) участие в запросе информации, осуществлении платежей и заказов и.т.д.

Как показывает практика, нашим клиентам важно знать о сенсорных технологиях больше, поэтому на нашем сайте мы публикуем описание базовых сенсорных технологий, которые легли в основу разработки сенсорных экранов :

Резистивная сенсорная технология.

Принцип работы резистивного экрана основан на действии резистивных волн. Такой экран имеет многослойную структуру и состоит из стеклянной панели и гибкой пластиковой мембраны, где н а панель и мембрану нанесено резистивное покрытие.

Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Во время нажатия на мембрану замыкаются резистивные покрытия и специальный контроллер регистрирует изменение сопротивления между электродами, преобразуя это изменение в координаты.

Различают четырех- и пятипроводные резистивные экраны. На мембране пятипроводного

резистивное покрытие заменено проводящим. Это позволяет сохранить работоспособность резистивного экрана даже при порезах на мембране, такой экран считается наиболее надежным.

Резистивные сенсорные экраны зарекомендовали себя в сфере обслуживания в составе POS-терминалов, промышленности, медицине, транспорте.Они обладают максимальной стойкостью к загрязнению, отличаются надежностью и долговечностью. Экран выдерживает 35 миллионов прикосновений к одной точке.

Поверхностно-аккустическая сенсорная технология (ПАВ).

Такие экраны работают на основе технологии поверхностно-акустических волн и представляют собой стеклянную панель, что позволяет получить максимально качественное изображение на сенсорном экране.

Такие экраны построены на принципе использования миниатюрных пьезоэлектрических излучателей звука, не слышимых человеком, установленных в трех углах экрана. Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана, а сам экран представляется для программы управления сенсорными датчиками в виде цифровой матрицы, каждое значение которой соответствует определенной точке экранной поверхности. Специальные отражатели распространяют акустическую волну по всей поверхности экрана. Прикосновение к экрану меняет картину распространения акустических колебаний, что регистрируется датчиками. По изменению характера колебаний можно вычислить координаты возмущений и силу нажатия.

Сенсорный экран, основанный на технологии поверхностно-акустических волн обеспечивает максимальную прозрачность и высокое качество изображения, работоспобен даже при наличии царапин, фиксирует точные координаты и силу прикосновения, имеет антибликовое покрытие. Сенсорный экран может реагирует на прикосновение пальца, руки в перчатке и стилоса.

Инфракрасная сенсорная технология.

Инфракрасные сенсорные панели работают по двум очень сложным методикам.

Первая методика основана на использовании изменения выделенного тепла на поверхности панели. Этот метод не очень практичен, так как требует, чтобы руки были всегда теплыми.

Другая методика подразумевает расположение инфракрасных сенсоров по всему периметру панели, которые улавливают прерывание в потоке световых лучей над поверхностью экрана при прикосновении. Если один из инфракрасных лучей перекрывается попавшим в зону действия лучей посторонним предметом, луч перестает поступать на приемный элемент, что тут же фиксируется микропроцессорным контроллером. Таким образом вычисляется координата касания. Отметим, что не имеет значения, какой из предметов (палец, авторучка, перчатка) помещен в рабочее пространство инфракрасному сенсорного экрана.

Считается, что инфракрасные сенсорные панели имеют самую прочную поверхность, и чаще всего используются в образовательных учреждениях (в качестве интерактивных панелей большого размера), медицинских , правительственных и государственных организациях , игровых автоматах, а также в военных целях.

Емкостная (электростатическая) или поверхностно-емкистная технология.

Существует два варианта емкостных экранов: поверхностно-емкостные и проекционно-емкостные. В обоих случаях управление осуществляется не нажатием, а касанием экрана. В основе технологий лежит способность человека проводить электрический ток.

Емкостный (электростатический) сенсорный экран обладает некоторым электрическим зарядом. Прикасаясь к сенсорному экрану, человек несколько меняет картину заряженности, перенимая часть заряда к точке нажатия. Датчики экрана расположены по всем четырем углам и следят за течением заряда на экране, определяя координаты прикосновения.

Ёмкостные экраны также отличаются надёжностью и высокой степенью прозрачности и долговечностью - возможность до миллиарда нажатий в одно и то же место. Однако, как правило, в работе с таким экраном нельзя пользоваться вспомогательным предметом (стилусом, перчаткой и т.п..) - только пальцем. Хотя уже существуют такие ёмкостные экраны, где возможна работа со специально изготовленного под данный вид экрана стилусом.

Емкостные сенсорные мониторы имеют хорошую прозрачность, долговечны, поэтому интенсивно используются в многолюдных местах: торгово-развлекательных центрах, супермаркетах, авиа- и ж/д кассах, на улице и т.д.

Существует также и другие новейшие сенсорные технологии, например, multi-touch с функцией сенсорных систем ввода, осуществляющая одновременное определение координат двух и более точек касания.

В последнее время начали активно разрабатываться и применяться схемы бесконтактной работы с сенсорным экраном. Современные датчики сенсорных экранов реагируют на тепло, движение рук, и совсем необязательно прикасаться к экрану. Такая система датчиков фиксирует движение пальца на расстоянии до двух сантиметров над поверхностью экрана.

Применение и развитие сенсорных технологий сегодня дает новый импульс развитию медицины, автомобилестроения, образования, банковской сферы, технологии «умный дом», преобразуются игры и развлечения, сервис и торговля и многое другое.

Резистивная технология

Плюс: точность и высокая чувствительность. Минус: невысокая яркость и недопустимость прикосновения острыми предметами.

Мкостная технология

Плюс: большое разрешение, малое время отклика, хорошее качество изображения и большой ресурс. Минус: реагирует только на контакт с пальцем.

Технология ПАВ (поверхностные акустические волны)

Плюс: высокая чувствительность, большая яркость и малая цена. Минус: чувствительность к воздействию внешних факторов, то есть колебания температуры и давления влияют на их работу.

Инфракрасные мониторы

Такая техника является самой надёжной и долговечной. Количество прикосновений, перепады температуры, погодные условия – не влияют на работу экрана. Минус: реагируют на любые прикосновения и на попадание солнечных лучей. Но этот недостаток не имеет особой значимости, стоит лишь установить защитную программу, требующую подтверждения выполнения операции.
Как видим, сенсорные мониторы, хоть и не лишены недостатков - достаточно хороши для определённых целей.

Перспективные конструкции и технологии мониторов

Технология E-Ink

В наше время большинство пользователей ПК все еще предпочитают читать текст на бумаге. Кроме привычки воспринимать информацию с листа бумаги, есть еще и объективные факторы, такие как количество отраженного от дисплея света (характеризуется коэффициентом отражения) и контрастность (отношение интенсивностей отражаемых световых потоков от белых и черных участков изображения).
Даже в последних моделях мониторов коэффициент отражения и контрастность примерно в два раза ниже, чем, скажем, у страницы книги. Вдобавок печатные издания имеют более широкий угол обзора и им можно придать ту форму, которая удобнее для чтения. В общем, читать текст на бумаге, конечно, удобнее (видимо, именно поэтому даже с приходом Интернета бумажные издания продолжают существовать).
Поэтому при производстве мониторов ПК, возможно, получит распространение технология E-Ink (Electronic Ink - "Электронные чернила "), разрабатываемая компаниями Philips, E Ink и лабораторией Bell Labs.
Bell Labs представила общественному вниманию гибкий пластиковый лист, способный отображать простейшие символы графики. Толщина новинки - не более миллиметра, что позволяет сравнивать его с листом бумаги, благо он имеет довольно высокую эластичность и достаточно прочен. Сейчас размеры точки на таком листе не очень маленькие, но в будущем планируется уменьшить его размер до нескольких микрон (как в современных мониторах или даже меньше).
Использование таких технологий позволит производить не просто плоские экраны , но имеющие возможность сворачиваться и/или принимать произвольную форму. Основная проблема в этих технологиях - чем заменить стеклянную подложку? Если применить пластик, то гибкость обеспечена, однако он, в отличие от стекла, пропускает кислород и воду, присутствие которых несовместимо с электролюминесцентными свойствами органических диодов. Так что пока гибкие OLED-дисплеи "живут" не больше двух-трех недель, но исследовательские лаборатории рапортуют, что через несколько лет можно будет начать их массовое производство.
Основной элемент дисплеев, создаваемых E - Ink, - матрица микрокапсул, каждая из которых содержит положительно заряженные частицы белого цвета и отрицательно заряженные - черного. При подведении к капсуле отрицательного заряда белые (положительно заряженные) частицы под действием кулоновских сил отталкиваются и поднимаются в верхнюю часть капсулы, где их видит наблюдатель. А при подведении положительного заряда верх капсулы окрашивается в черный цвет. Такой способ получения изображения обеспечивает высокую контрастность цвета и широкий угол обзора . Кроме того, сейчас разрабатываются технологии, позволяющие использовать в качестве подложки для слоя из таких микрокапсул совершенно произвольные по составу и форме поверхности. Ведутся работы и по созданию цветных дисплеев на основе "электронных чернил", в которых принцип получения цвета будет сходен с используемой в ЖК-мониторах системой красных, желтых и зеленых светофильтров

Количество разнообразных электронных устройств, оснащенных сенсорными дисплеями, увеличивается с каждым годом. Однако не все сенсорные экраны одинаковы. В настоящее время существует несколько вариантов реализации таких решений. В этой статье мы рассмотрим особенности и сферу применения различных технологий, используемых для создания сенсорных дисплеев.

Возможно, в это трудно поверить, но история сенсорных дисплеев началась почти четыре десятилетия тому назад. В далеком 1971 году сотрудник Университета Кентукки Сэм Хёрст (Sam Hurst) сконструировал сенсорную панель, которая была запатентована под названием «илограф» (elograph). Для разработки и продвижения устройств подобного типа Сэм Хёрст основал компанию Elographics. В 1974 году ее сотрудникам удалось создать прототип дисплея, оснащенного прозрачной сенсорной панелью. В 1977 году компания Elographics получила патент на конструкцию пятипроводной резистивной сенсорной панели - решения, которое и спустя более трех десятков лет остается весьма популярным. Компания работает до сих пор, правда уже под другим названием: в 1994 году она была переименована в Elo TouchSystems, а впоследствии вошла в состав холдинга Tyco Electronics.

На этом мы завершим краткий исторический экскурс и перейдем к рассмотрению различных решений, позволяющих реализовать функцию сенсорного ввода.

Резистивная технология

Обзор открывает резистивная технология. По большому счету именно она способствовала нынешней популярности портативных электронных устройств с сенсорными экранами. Даже несмотря на появление более совершенных конструкций, резистивная технология до сих занимает лидирующие позиции на рынке сенсорных панелей. Согласно данным аналитического агентства DisplaySearch, по итогам 2009 года доля сенсорных панелей на базе резистивной технологии в количественном выражении составила 50% от общего объема мировых поставок.

В настоящее время существуют два основных варианта реализации резистивных сенсорных панелей - четырех­ и пятипроводные.

Сначала рассмотрим принцип работы резистивной панели на базе четырехпроводной технологии. Над стеклянной или пластиковой подложкой расположена тонкая, гибкая мембрана, изготовленная из прозрачного материала. Обращенные друг к другу поверхности мембраны и подложки имеют прозрачное покрытие, проводящее электрический ток. Соприкосновению мембраны с подложкой препятствуют миниатюрные изоляторы, находящиеся между ними. К подложке и мембране прикреплены пары металлических электродов, расположенные на противолежащих сторонах (рис. 1). При этом электроды мембраны размещены перпендикулярно электродам подложки.

Рис. 1. Схема устройства четырехпроводной резистивной панели

При нажатии на поверхность сенсорного экрана мембрана в этом месте соприкасается с подложкой, вследствие чего возникает электрический контакт между проводящими слоями (рис. 2). Считывание координат точки нажатия выполняется последовательно. Сначала один из электродов подложки подключается к источнику постоянного тока, а другой заземляется. Электроды мембраны соединяются накоротко (рис. 3), и контроллер измеряет напряжение на них, определяя таким образом одну из координат (в данном случае - горизонтальную). Затем ток подается на электроды мембраны, и контроллер измеряет напряжение на соединенных электродах подложки, фиксируя вторую координату.

Рис. 2. При нажатии мембрана прогибается и замыкается
с подложкой в точке касания

Рис. 3. Считывание горизонтальной (сверху)
и вертикальной координат точки нажатия
с четырехпроводной резистивной панели

В случае пятипроводной панели электроды устанавливаются на каждой из сторон подложки, а пятый подключается к мембране (рис. 4). При нажатии мембрана соприкасается с подложкой; контроллер поочередно подает постоянное напряжение на пары электродов, соответствующих горизонтальной и вертикальной оси (рис. 5). По величине напряжения на электроде, подключенном к мембране, контроллер определяет координаты точки нажатия.

Рис. 4. Схема устройства пятипроводной резистивной панели

Рис. 5. Электрическая схема считывания горизонтальной (сверху)
и вертикальной координат точки нажатия с пятипроводной резистивной панели

Существует также восьмипроводная технология (в этом случае электроды крепятся к каждой из четырех сторон подложки и мембраны), однако используется такое решение довольно редко вследствие более высокой стоимости.

Сенсорные панели на базе резистивной технологии имеют простое устройство и низкую себестоимость - именно этими факторами и обусловлена популярность подобных решений. Кроме того, резистивные панели реагируют исключительно на давление, оказываемое предметом на сенсорную поверхность. Благодаря этому управлять интерфейсом можно при помощи как пальцев (в том числе и в перчатках), так и разнообразных предметов - стилуса, спички и пр. Такие панели отличаются малой задержкой срабатывания (порядка 10 мс) и сохраняют работоспособность даже при наличии разного рода загрязнений на сенсорной поверхности. Отметим также, что возможно изготовление резистивных сенсорных панелей как с глянцевым, так и с матовым покрытием. Первые обеспечивают более высокую четкость изображения, но при этом сильно бликуют, а при нажатии на сенсорную поверхность пальцами к тому же быстро теряют опрятный вид. Матовое покрытие эффективно нейтрализует блики и на нем не так заметны отпечатки пальцев. Правда, изображение в этом случае выглядит менее четким и контрастным.

Если говорить о различиях четырех­ и пятипроводной технологий, то первая выигрывает по себестоимости, а вторая обеспечивает более высокий ресурс (до десятков миллионов нажатий в одной точке). Восьмипроводная технология обеспечивает более высокую точность определения координат точки нажатия, однако, как уже было сказано, производство таких панелей обходится гораздо дороже по сравнению с четырех­ и пятипроводными конструкциями.

Разумеется, у резистивных панелей есть и определенные недостатки. Они в большей степени, чем иные конструкции, подвержены механическим повреждениям - ведь для срабатывания необходимо приложить определенное усилие и здесь легко переборщить. Наиболее уязвимым элементом конструкции является гибкая мембрана, регулярно подвергающаяся деформациям. При нарушении целостности мембраны (появлении надрыва или пореза) панель выходит из строя.

Резистивные панели уступают ряду устройств по точности определения координат точки нажатия и к тому же требуют периодической перекалибровки. Даже лучшие образцы резистивных панелей имеют коэффициент светопропускания порядка 85%, снижая, таким образом, исходные показатели яркости и контрастности изображения. Вследствие наличия между экраном дисплея и наблюдателем нескольких поверхностей (подложка, мембрана и защитный слой), использование резистивной сенсорной панели неизбежно приводит к ухудшению четкости изображения (данный недостаток в большей степени присущ конструкциям с матовым покрытием).

До недавнего времени к недостаткам экранов на базе резистивной технологии относили невозможность восприятия нажатия в нескольких точках одновременно. Однако благодаря новейшим разработкам это ограничение удалось преодолеть. Например, продемонстрированные в ходе форума SID 2010 резистивные сенсорные панели компании Fujitsu Components America способны воспринимать до 32 нажатий в разных точках экрана одновременно.

В настоящее время сенсорные экраны на базе резистивной технологии широко применяются в КПК, мобильных телефонах, портативных медиаплеерах, POS-терминалах, а также в промышленном и медицинском оборудовании.

Емкостная технология

Уже довольно давно ученые выяснили, что с точки зрения электротехники человеческое тело является конденсатором, причем довольно большой емкости. Именно это свойство нашего тела используется в сенсорных экранах на базе емкостной или, как ее еще иногда называют, электростатической технологии.

Сенсорная панель данного типа изготавливается на прозрачной (стеклянной либо пластиковой) подложке. Внешняя поверхность пластины покрыта проводящим слоем, а в каждом из четырех ее углов закреплен электрод, подключенный к контроллеру (рис. 6). В процессе работы контроллер подает на электроды импульсы слабого переменного тока. Если прикоснуться пальцем к поверхности сенсорного экрана (подсоединить конденсатор), возникнет утечка тока. Величина тока утечки обратно пропорциональна расстоянию от точки нажатия до электрода. Сравнивая величины тока утечки через каждый из четырех электродов, контроллер рассчитывает координаты точки нажатия.

Рис. 6. Схема устройства емкостной панели

Вследствие отсутствия гибких мембран емкостные панели обладают более высокой надежностью по сравнению с резистивными (ресурс составляет несколько сотен миллионов нажатий). Кроме того, благодаря меньшему количеству оптических элементов емкостные панели обладают более высоким коэффициентом светопропускания (порядка 90%). Основным недостатком панелей этого типа является необходимость обеспечения электрического контакта между поверхностью и телом человека. Например, если нажать на такой экран стилусом из диэлектрического материала или же пальцем в перчатке, то работать он не будет. Кроме того, нормальная работа емкостной панели может быть нарушена при загрязнении поверхности веществами, проводящими электрический ток.

В настоящее время сенсорные панели на базе емкостной технологии используются в дисплеях информационных киосков и банкоматов, а также в промышленном оборудовании.

Проекционно-емкостная технология

На данный момент это решение занимает второе место в рейтинге популярности сенсорных технологий, уступая лишь резистивным панелям. Конструктивно панель на базе проекционно­емкостной технологии представляет собой две стеклянные пластины, между которыми находится сетка тонких электродов (рис. 7). В процессе работы контроллер посылает короткие импульсы по каждому из электродов. При нахождении пальца вблизи сенсорной поверхности возникает эффект, аналогичный подключению конденсатора большой емкости (роль которого в данном случае выполняет тело человека) к расположенным поблизости электродам. Измеряя величину падения напряжения (возникающего вследствие утечки тока через конденсатор), контроллер определяет координаты точки касания.

Рис. 7. Схема устройства проекционно-емкостной панели

Сенсорные панели на базе проекционно­емкостной технологии имеют целый ряд достоинств, которые способствовали значительному росту их популярности в последние годы. В частности, они долговечны, обладают высоким показателем светопропускания (порядка 90%), стойкостью к загрязнениям и механическим повреждениям рабочей поверхности, способны функционировать в широком диапазоне температур.

Проекционно-емкостная технология способна обеспечить очень высокую точность определения координат точки нажатия, однако здесь необходимо иметь в виду то, что данный параметр напрямую зависит от толщины защитного слоя. Чем он толще, тем меньше точность, и наоборот.

Кроме того, сенсорные панели такого типа позволяют воспринимать нажатия в нескольких точках экрана одновременно. В зависимости от настроек контроллера панель может реагировать не только на прикосновение, но и на поднесенный к рабочей поверхности палец. Соответственно возможно управление рукой в перчатке.

Основной недостаток проекционно­емкостных панелей - сложность электронных компонентов для обработки информации о нажатиях, а следовательно, довольно высокая стоимость производства. Кроме того, себестоимость проекционно­емкостных панелей заметно растет по мере увеличения размера и разрешающей способности экрана. Перечисленные факторы препятствуют распространению сенсорных панелей данного типа в недорогих устройствах, а также в аппаратах с экранами большого размера.

Проекционно-емкостные панели хорошо справляются с определением точечных нажатий, однако не лучшим образом подходят для реализации функций, связанных с перетаскиванием объектов графического интерфейса или рисованием на экране. Как и в случае резистивных панелей, устройства данного типа нуждаются в периодической перекалибровке.

В настоящее время сенсорные панели на базе проекционно­емкостной технологии используются в сотовых телефонах, цифровых медиапле-ерах, информационных киосках и тачпэдах (touchpad) портативных ПК. Популярность этого решения быстро растет. Так, согласно данным агентства DisplaySearch, в минувшем году доля сенсорных панелей на базе проекционно­емкостной технологии составила 31% от общего количества поставленных изделий.

Оптические технологии

Отдельную группу сенсорных экранов составляют устройства на базе оптических технологий. Популярность подобных решений пока невысока: по результатам прошлого года доля оптических сенсорных панелей составила всего 3% от общего объема мировых поставок. Впрочем, потенциал подобных устройств раскрыт еще не до конца.

ИК-сенсор с массивом неподвижных оптопар

Принцип работы данного решения довольно прост. В модуле, обрамляющем экран, с двух сторон расположены линейки ИК-светодиодов с фокусирующими линзами, а на противоположных сторонах - линейки фотодиодов либо фототранзисторов (рис. 8). При включении светодиодов над поверхностью экрана формируется невидимая сетка, образованная ИК-лучами. Когда какой­либо предмет приближается к поверхности экрана, он перекрывает пересекающиеся в данной точке лучи. Отсутствие луча фиксируется светочувствительными элементами оптопар, по изменению состояния которых контроллер определяет координаты точки касания.

Рис. 8. Схема устройства ИК-сенсора с массивом неподвижных оптопар

Подобные сенсоры применяются преимущественно в дисплейных панелях с большим размером экрана. Дело в том, что разрешающая способность таких сенсоров ограничена физическими размерами элементов оптопар и параметрами фокусирующих линз. Как правило, шаг оптической сетки составляет порядка 2-3 мм, и даже при установке на 32-дюймовый дисплей разрешение сенсора подобной конструкции не превысит 320x240 точек.

Однако у ИК-сенсоров с массивом неподвижных оптопар есть и неоспоримые преимущества. Поскольку между экраном дисплея и наблюдателем отсутствуют какие­либо помехи (стекло, дополнительные проводники и т.п.), установка подобного сенсора не влияет на такие показатели, как яркость, контрастность, четкость и точность цветопередачи. Кроме того, сенсор подобного типа можно изготовить в виде съемного модуля, прикрепляемого к любой дисплейной панели с экраном соответствующего размера (в отличие от емкостных и резистивных панелей, которые, как правило, объединены в единый модуль с дисплеем).

По вполне понятным причинам ИК-сенсор с неподвижными элементами не требует калибровки. Кроме того, для управления элементами интерфейса можно использовать пальцы и любые подходящие по размеру предметы.

Из недостатков можно отметить довольно высокую стоимость подобных устройств, а также необходимость регулярно проводить чистку оптических элементов от пыли и грязи для обеспечения стабильности их работы. Нормальному функционированию сенсорного экрана такого типа могут воспрепятствовать прямые солнечные лучи, попадающие на фотоэлементы.

Есть и еще один нюанс. У многих моделей ИК-сенсоров плоскость, в которой лежат элементы оптопар, находится на некотором расстоянии от поверхности экрана. Как следствие, при использовании предмета, расположенного не строго перпендикулярно относительно плоскости экрана, возникают ошибки в определении координат.

В настоящее время ЖК- и плазменные панели с ИК-сенсорами используются в презентационном оборудовании, в образовательных учреждениях, ситуационных центрах и т.д.

ИК-сенсор с механизмом развертки луча

Развитием идеи бесконтактной регистрации прикосновений посредством ИК-лучей стала ИК-технология с подвижным лучом. Вместо массива оптопар используется один источник ИК-излучения (светодиод либо полупроводниковый лазер) и механизм развертки, который обеспечивает движение луча, с высокой скоростью сканирующего рабочую поверхность. При отсутствии препятствия луч рассеивается. Если же на пути луча встречается какое­либо препятствие, то луч отражается от него и улавливается фотодиодом. По изменению состояния фотодиода контроллер фиксирует касание в соответствующей точке.

В отличие от ИК-сенсоров с неподвижными оптопарами, описанную конструкцию можно реализовать в виде очень компактного модуля - что, в свою очередь, позволяет без проблем применять ее в портативных устройствах. Уникальной особенностью данной технологии является возможность использования ее с проецируемыми изображениями, причем размер рабочей области может варьироваться в довольно широких пределах. Благодаря отсутствию помех работа оптического сенсора не влияет на характеристики изображения. Кроме того, себестоимость таких сенсоров невелика.

Из недостатков отметим не очень высокую разрешающую способность, ограниченные возможности по распознаванию нескольких прикосновений одновременно и довольно большую погрешность определения координат точки касания по краям экрана, где угол падения луча минимален.

Первыми коммерческими устройствами, в которых использовались оптические сенсоры с механизмом развертки, были виртуальные клавиатуры (рис. 9). Устройство размером с зажигалку позволяет заменить аппаратную клавиатуру при работе с портативным или карманным ПК. В последнее время повышенный интерес к подобным сенсорам проявляют разработчики мультимедиапроекторов, а также портативных устройств со встроенными проекторами (рис. 10).

Рис. 9. Беспроводная виртуальная клавиатура для КПК
и мобильных телефонов

Рис. 10. ИК-сенcор с механизмом развертки
луча позволяет реализовать функцию сенсорного ввода
для проецируемых изображений

ИК-сенсор NextWindow

Данная технология была разработана компанией NextWindow и применяется в выпускаемых ею сенсорных панелях. В отличие от пары описанных выше решений, где сенсорная поверхность является виртуальной, технология NextWindow предусматривает использование в этом качестве физического объекта - стеклянной либо пластиковой пластины. С трех сторон в торцах пластины установлены источники ИК-излучения (линейки светодиодов), а в двух верхних углах находятся оптические сенсоры, работающие в ИК-диапазоне (рис. 11).

Рис. 11. Схема устройства ИК-сенсора NextWindow

При касании поверхности пальцем или каким­либо предметом меняется картина распространения ИК-излучения. Эти изменения фиксируются оптическими сенсорами, по изменению показаний которых контроллер рассчитывает координаты точки касания.

Достоинствами данного решения являются высокий коэффициент светопропускания панели (более 92%), возможность регистрации прикосновений в двух точках одновременно и высокая разрешающая способность. Сенсоры этого типа отличаются высокой стабильностью работы и не требуют периодической калибровки в процессе эксплуатации.

Из недостатков можно отметить довольно сложную конструкцию контроллера и соответственно не самую низкую себестоимость подобных устройств.

Сенсорные панели данной конструкции наилучшим образом подходят для оснащения дисплеев с большим размером экрана (от 20 дюймов по диагонали и более). На базе технологии NextWindow выпускаются как дисплейные панели с интегрированным сенсорным экраном, так и съемные модули.

Оптические сенсоры на базе видеокамер

В устройствах, изображение на экране которых формируется методом обратной проекции, может быть использован оптический сенсор на базе цифровой видеокамеры. В простейшем случае применяется одна видеокамера, работающая в ИК-диапазоне (рис. 12). Изображение на экране в данном случае не является помехой, поскольку оно проецируется в видимом диапазоне и камера его просто воспринимает.

Рис. 12. Схема устройства оптического сенсора с видеокамерой в устройствах,
изображение на экране которых формируется методом обратной проекции

Внутренняя поверхность экрана подсвечивается ИК-лучами. При отсутствии каких­либо предметов на поверхности экрана ИК-лучи беспрепятственно проходят сквозь стекло. В случае касания поверхности лучи отражаются от появившегося препятствия и видеокамера фиксирует пятно (или несколько пятен) на однородном фоне. Полученное изображение обрабатывается программным обеспечением, которое вычисляет координаты точек касания.

В составе такого сенсора может быть и несколько видеокамер - это позволяет повысить его надежность и реализовать дополнительные возможности. Например, в устройстве Microsoft Surface (рис. 13) для обслуживания сенсора подобного типа установлено сразу пять видеокамер. Помимо регистрации прикосновений и жестов они обеспечивают работу системы распознавания объектов. Для этого на нижнюю сторону предметов, используемых с данным устройством, наносятся миниатюрные черно­белые метки, напоминающие обозначения цифр на костяшках домино. По этим меткам программное обеспечение может определить тип объекта и автоматически выполнить ассоциированное с ним действие - открыть документ с описанием, запустить какое­либо приложение и т.д.

Рис. 13. В устройстве Microsoft Surface функция
сенсорного ввода реализована при помощи видеокамер,
установленных внутри корпуса

Оптический сенсор с видеокамерой не оказывает какого-либо влияния на качество изображения на экране. В числе других достоинств данного решения - возможность обработки нескольких касаний одновременно; использование как пальцев, так и различных предметов (причем в любых сочетаниях) для работы с графическим интерфейсом. Разрешающая способность такого сенсора может варьироваться в широких пределах в зависимости от разрешения применяемой видеокамеры и оптической системы. Кроме того, один и тот же сенсор с минимальной модернизацией можно использовать для работы с экранами различного размера.

Из­за высокой стоимости и больших габаритов оптические сенсоры на базе видеокамеры непригодны для применения в портативных устройствах. Система требует тщательной калибровки после монтажа и регулярной подстройки для обеспечения приемлемой точности.

Как уже было упомянуто, оптические сенсоры на базе видеокамеры пригодны для использования исключительно в дисплеях с обратной проекцией изображения, и это в значительной степени ограничивает сферу их применения. В настоящее время данный класс устройств является весьма немногочисленным: спрос на проекционные телевизоры стремительно сокращается, а аппараты вроде Microsoft Surface и вовсе производятся в микроскопическом количестве.

Технологии на базе свойств акустических волн

Пока что ни одна из технологий, использующих для реализации функции сенсорного ввода свойства акустических волн, не получила широкого распространения. Тем не менее подобные решения интересны не только оригинальным принципом работы, но и рядом важных достоинств.

Технология поверхностно-акустических волн

Как следует из названия, работа данного решения базируется на особенностях распространения поверхностно-акустических волн (ПАВ). Сенсорная панель на базе ПАВ представляет собой стеклянную пластину, которая монтируется перед экраном дисплея с небольшим зазором. В углах пластины установлены пьезоэлектрические преобразователи (ПЭП) и принимающие датчики, по краям - отражатели (рис. 14). В процессе работы контроллер подает высокочастотный электрический сигнал на пьезоэлектрические преобразователи, которые, в свою очередь, возбуждают в стеклянной пластине поверхностно-акустические волны ультразвукового диапазона (частотой порядка нескольких мегагерц). Эти волны равномерно распределяются отражателями по толще пластины и затем улавливаются принимающими датчиками, которые преобразуют их в электрический сигнал, считываемый контроллером. При прикосновении к сенсорной поверхности часть энергии поверхностно-акустических волн поглощается (палец или иной предмет в данном случае выступает в роли демпфера, препятствующего свободному распространению волн). По изменению сигналов, считываемых принимающими датчиками, контроллер определяет координаты точки касания.

Рис. 14. Схема устройства сенсорной панели на базе технологии ПАВ

Сенсорные панели на базе технологии ПАВ отличаются надежностью (они выдерживают десятки миллионов нажатий в одной точке), высоким показателем светопропускания (более 90%) и восприимчивостью к нажатиям, выполненным как пальцами, так и различными предметами. В некоторых вариантах реализации данная технология позволяет определять не только координаты, но и силу нажатия.

Из недостатков сенсорных панелей этого типа необходимо отметить чувствительность к загрязнению рабочей поверхности (грязь влияет на распространение акустических волн) и не очень высокую точность определения координат точки нажатия. Также возможны нарушения в работе сенсорной панели в условиях сильного шума и вибраций, что в значительной мере ограничивает возможности по использованию устройств данного типа вне помещений.

Существует несколько вариантов реализации сенсорных панелей на базе ПАВ - IntelliTouch, SecureTouch, iTouch и др. Основной сферой применения сенсорных панелей на базе технологии ПАВ в настоящее время являются информационные киоски, терминалы и т.д. В силу технических особенностей данного решения его целесообразно использовать в дисплеях с большим размером экрана (19 дюймов и более).

Технология распознавания акустических импульсов

Технология распознавания акустических импульсов (Acoustic Pulse Recognition, APR), созданная специалистами компании Elo TouchSystems, является дальнейшим развитием идеи, использованной в панелях на базе ПАВ. Впрочем, принцип работы сенсорных панелей на базе технологии APR существенно отличается от устройств на базе ПАВ.

Сенсорная поверхность представляет собой стеклянную пластину. На ее сторонах установлены четыре пьезоэлектрических преобразователя, конвертирующих распространяющиеся по толще стекла звуковые волны в электрический сигнал (рис. 15).

Рис. 15. Схема устройства сенсорной панели на базе технологии APR

Принцип работы панели APR основан на том, что звук, возникающий при прикосновении к каждой из точек сенсорной поверхности, уникален. При прикосновении к сенсорной поверхности возникает звуковой импульс, распространяющийся по стеклянной панели. Достигнув края панели, импульс воздействует на ПЭП, который преобразует его в электрический сигнал и передает в контроллер. Последний сравнивает поступающие с датчиков сигналы с сохраненными в памяти эталонными сигналами, зафиксированными при прикосновениях к различным точкам панели. При несовпадении звуковой картины с хранящимися в памяти эталонами контроллер не регистрирует нажатие - таким образом реализована эффективная система фильтрации внешних шумов и вибраций.

Сенсорные панели на базе технологии APR обеспечивают более высокую (по сравнению с устройствами на базе ПАВ) точность определения координат точки касания и гораздо меньше подвержены влиянию посторонних шумов и вибраций. Нажатия можно производить как пальцами, так и различными предметами. Такие панели обладают высоким показателем светопропускания (более 90%) и сохраняют работоспособность при наличии царапин и загрязнений на сенсорной поверхности. Сенсорные панели на базе технологии APR обеспечивают высокую стабильность работы и не требуют перекалибровки в процессе эксплуатации. Данное решение отличается хорошей масштабируемостью: его можно использовать в дисплейных панелях как с малым, так и с большим размером экрана.

Сегодня основной сферой применения технологии APR являются цифровые киоски и POS-терминалы. Поставки коммерческих решений с сенсорными дисплеями на базе технологии APR начались сравнительно недавно - в конце 2006 года.

Ультразвуковая технология

Для работы с сенсорным экраном этого типа используется специальное перо, в котором размещены генератор, излучатель ультразвуковых волн и миниатюрный источник питания. На рамке дисплея вблизи от верхних углов экрана смонтированы два датчика, реагирующих на ультразвук (рис. 16). При прикосновении наконечника пера к поверхности экрана срабатывает выключатель, и перо начинает излучать ультразвуковые волны. Контроллер фиксирует время срабатывания каждого из датчиков и по разнице этих значений вычисляет координаты точки касания.

Рис. 16. Схема устройства дисплея с ультразвуковым сенсором

Основными достоинствами этого решения являются простота реализации (не требуется вносить изменения в конструкцию дисплейной панели), низкая себестоимость, а также отсутствие помех, влияющих на качество изображения. Подобная конструкция обладает хорошей масштабируемостью: сенсор такого типа можно использовать с экранами различных размеров (требуется лишь внесение незначительных изменений в программу контроллера).

Основным недостатком является необходимость применения специального пера. Кроме того, данное решение обеспечивает не очень высокую точность определения координат точки нажатия (±0,5 мм) и требует дополнительного пространства для размещения датчиков на рамке вокруг экрана. Таким образом, ультразвуковой сенсор практически непригоден для использования в портативных устройствах.

В качестве примера серийного устройства, оснащенного ультразвуковой системой сенсорного ввода, можно привести выпущенный в начале 2006 года 17-дюймовый ЖК-монитор Samsung SyncMaster 720TD (рис. 17). Датчики сенсора в этой модели были выполнены в виде шайб цилиндрической формы, расположенных в верхних углах рамки монитора.

Рис. 17. ЖК-монитор SyncMaster 720TD оснащен системой
сенсорного ввода на базе ультразвуковой технологии

Технология электромагнитного резонанса

В заключение стоит упомянуть технологию электромагнитного резонанса, разработанную компанией Wacom для использования в графических планшетах (дигитайзерах). В 1998 году в продуктовой линейке компании появилась первая модель ЖК-дисплея со встроенным графическим планшетом - Cintiq 18sx. В настоящее время компания Wacom выпускает две серии дисплеев с сенсорным экраном - Cintiq и PL (рис. 18).

Рис. 18. ЖК-дисплей Wacom серии Cintiq, оснащенный
встроенным графическим планшетом

Сенсорные панели, созданные на базе технологии электромагнитного резонанса, обеспечивают очень высокую точность позиционирования, а также позволяют получать дополнительную информацию от встроенных датчиков пера - таким образом можно фиксировать силу нажатия, угол наклона, тип наконечника и пр.

Данная конструкция позволяет отслеживать местоположение пера даже в том случае, когда его наконечник находится на расстоянии 1-2 см от рабочей поверхности. Благодаря этому сенсорную панель можно установить под модулем ЖК-дисплея - не ухудшая, таким образом, оптические характеристики дисплея.

Увы, есть и целый ряд недостатков. Сенсорные панели на базе технологии электромагнитного резонанса работают только со специальным пером и требуют периодической калибровки в процессе эксплуатации. Кроме того, в силу сложности конструкции такие изделия довольно дороги в производстве, причем цена значительно возрастает по мере увеличения размера экрана.

Сенсорные панели на базе данной технологии потребляют много электроэнергии и являются источником электромагнитных помех, которые могут нарушить нормальную работу расположенного поблизости беспроводного оборудования (мобильных телефонов, точек доступа и пр.).

Судя по всему, в ближайшие годы технология электромагнитного резонанса так и останется решением, ориентированным главным образом на немногочисленный сегмент дорогих сенсорных дисплеев, используемых для работы с профессиональными приложениями (графическими редакторами, системами 3D-моделирования, САПР и т.д.).

Похожие статьи