Срок службы солнечных панелей. Сколько служат солнечные батареи и как продлить этот срок. Срок службы и окупаемость солнечных панелей

24.06.2020

У желающих приобрести солнечную батарею одним из первых возникает вопрос о сроке ее эксплуатации.

Попробуем разобраться.

Главной составляющей солнечной батареи является фотоэлектрический элемент. Такие элементы уже более пятидесяти лет используются в фототехнике. К примеру, если взять старый фотоаппарат, то даже если он неисправен, можно убедиться в том, что фотоэлемент в рабочем состоянии. Более того, фотоэлементы солнечных батарей герметично ламинируются на закаленном стекле, что повышает их прочность и долговечность, поскольку доступ влаги к кремниевым пластинам затруднен. Следовательно, при любой погоде солнечная батарея не потеряет свой работоспособности.

На сегодняшний день солнечные батареи прошли и проходят множество испытаний. И на основании практики применения можно с уверенностью сказать, что солнечная батарея может прослужить более двадцати лет. Станции, вырабатывающие солнечную энергию в США и Европе после 25-летней работы снизили свою модульную мощность всего на десять процентов. Исходя из этого можно сделать вывод о возможности функционирования солнечной батареи до 30-ти лет и более.

Конкретизация:
— как правило работает до 20 лет и более;
модули из аморфного кремния первого поколения тонкопленочных технологий — от 7 лет и более, второго поколения — до 20 лет.
Следует отметить, что сегодняшний рынок фотоэлектрических модулей состоит из кристаллических кремниевых модулей.

Срок службы компонентов солнечной батареи

Если говорить от сроке службы других составляющих системы, то для аккумуляторной батареи установлен срок службы 2 — 15 лет, а для силовой электроники 5 — 12 лет.

Большая часть производителей гарантирует бесперебойную работу своих модулей от 10 до 25 лет. Снижение мощности модулей гарантируется не более чем на десять процентов. В случае механических повреждений гарантия от 1 до 5 лет.

В связи с длительным периодом эксплуатации более уверенно заявлять о сроке службы кристаллических модулей. Производители устанавливают для них срок службы 30 лет. Непосредственно для солнечных элементов, которые используются в солнечных модулях установлен неограниченный срок службы. Однако после длительной эксплуатации (десятки лет) падает выработка модулей. Это происходит в результате:

  • постепенного разрушения герметизационной пленки модуля;
  • разрушения задней поверхности модуля и постепенного замутнения прослойки, которая расположена между солнечными элементами и стеклом.

Указанные разрушения происходят постепенно и в результате многолетней эксплуатации.

Измерения модулей, реально работающих с 80-х годов, показывают на то, что их производительность уменьшилась на 10% и не более. Немалое количество данных модулей продолжают функционировать в соответствии с установленными параметрами (деградация отсутствует). Исходя из этого можно с уверенностью сказать о сроке службы модулей до 20 лет и более и вероятнее всего они будут обеспечивать хороший результат работы и после 30-ти лет работы.

Перед установкой автономного энергоснабжения возникают обычно два вопроса: «Сколько прослужит система?» и «За какой период она окупится?». Ведь именно от ответов на эти вопросы и зависит целесообразность расходов на приобретение и монтаж автономного контура. Срок службы солнечных панелей различен. Он зависит прежде всего от типа самих панелей.

Сроки службы

Как показали практические испытания, ресурс гелиопанелей составляет не менее 20 лет. После определенного количества времени (15-20 лет, в зависимости от типа и особенностей фотоячеек) наблюдается некоторое снижение мощности, которое и продолжается в дальнейшем. Как правило, батареи на монокристаллах работают до 30 лет, на поликристаллах – 20-25 лет. Тонкопленочные батареи последних поколение также служат порядка 20 лет.

Стандартная гарантия для большинства производителей солнечных панелей варьируется в достаточно значительных пределах – от 10 до 25 лет. Связан такой разброс с особенностями самих фотоячеек, их типом (поли-, моно-), классом («A», «B», «C»), качеством защитного лицевого покрытия и т.д.

Производители гарантируют, что в течение этого срока мощность их продукции снизится не более, чем на 10%. Падение мощности на более значительную величину чревато критическим снижением выработки всей системы, поскольку для солнечных электростанций очень важен каждый ватт произведенной энергии. Батареи из аморфного кремния, как правило, теряют 10-40% мощности в первые сезоны, после чего их выработка «замирает» на этом уровне.

Что влияет на срок службы

Стандартный расчетный срок использования кристаллических солнечных панелей – 30 лет. Чтобы выяснить скорость реального старения элементов, проводятся целые серии разного рода тестов. Они показывают, что сами фотоячейки имеют очень большой ресурс, их деградация после нескольких десятилетий использования минимальна.
Падение же производительности солнечных батарей связано с тремя факторами:

  • разрушение герметизирующей модуль пленки;
  • замутнение пленочной прослойки между фотоячейками и защитным стеклом;
  • разрушение тыльной пленки солнечной батареи.

Для герметизации солнечных панелей (равно как и в качестве пленочной прослойки) применяется пленка EVA (ethylene vinyl acetate, так называемая «этиленвинилацетатная»). Тыльная же сторона панели обычно представляет собой поливинилфосфатную пленку.

Такая пленочная защита необходима для предохранения фотоячеек и паяных соединений панели от действий влаги. Под действием УФ-лучей солнечного спектра пленки постепенно разрушаются, они теряют свою эластичность и легче поддаются механическим воздействиям. Как следствие, ухудшается герметичность и влага начинает активнее просачиваться внутрь панели.

Кроме того, EVA-пленка между стеклом и фотоячейками теряет и свою оптическую прозрачность, что приводит к уменьшению поглощения солнечных лучей. А из-за микрокапель влаги паяные соединения постепенно начинают корродировать, что приводит к увеличению сопротивления контакта, его перегреву и последующему разрушению.

Как правило, производители гарантируют ухудшение работы своих солнечных батарей не более, чем на 20% за 25 лет. Однако это относится только к зарекомендовавшим себя фирмам, которые тщательно следят за качеством продукции. Менее добросовестные компании при сборке панелей экономят на всем, чтобы выставить как можно более низкую итоговую цену продукта.

Такая экономия приводит к тому, что для герметизации используются некачественные (или неподходящие для специфичных условий солнечных батарей) материалы. Как следствие, разрушение контактов может наблюдаться уже на следующий сезон, что приводит к резкому падению мощности (вплоть до 30-40%). Особенно часто подобное явление можно наблюдать на дешевых садовых светильниках с фотобатареями.

Дополнительные факторы

На срок службы влияет и качество самой EVA-пленки, равно как и защитного ламинирующего покрытия. Некачественное покрытие дает ощутимую усадку уже в первый же сезон. Это приводит к практически полной разгерметизации панели, резкому снижению КПД и выходу изделия из строя.

Еще один аспект – толщина соединительных проводников и токопроводящих шин. Она должна быть достаточной для пропускания токов именно той мощности, которая заявлена в паспорте солнечной панели. Причем толщина шины должна быть больше, чем у проводников, соединяющих между собой фотоячейки. Если шина будет слишком тонкой (что нередко встречается в дешевых панелях малоизвестных фирм), то в скором времени она выйдет из строя.

Также влияет на срок работы и качество паяных соединений. Плохо выполненная пайка разрушается очень быстро и без воздействия коррозии, так как такие контакты сами по себе сильно перегреваются. Поэтому надежность паяных соединений – непременное условие длительной работоспособности.

Период окупаемости

Сроки окупаемости солнечных панелей зависят от нескольких факторов:

  • Тип оборудования (поли- или моноячейки, одно- или многослойная структура солнечной батареи). От этого зависят первоначальные расходы, так как стоимость солнечных панелей разных типов варьируется довольно сильно.
  • Количество устанавливаемых панелей. Именно поэтому очень важно заранее провести точный расчет всей системы.
  • Географическая широта, точнее, величина инсоляции: чем больше солнца попадает на рабочую поверхность модуля, тем больше он вырабатывает энергии и тем быстрее «отбивает» затраты.
  • Расценки на энергоресурсы в регионе. От стоимости киловатт-часа электроэнергии будет зависеть разница в стоимости выработанной солнцем энергии и энергии, полученной из центральной электросети. Иными словами, насколько выгоднее вырабатывать «солнечное электричество».

В среднем для частного дома сроки окупаемости составляют 2,5-3,5 года в среднеевропейских странах и 1,5-2 года в южноевропейских. Для России этот показатель варьируется в средних пределах от 2-х до 5-ти лет. Однако нужно помнить, что с совершенствованием технологий изготовления повышается КПД (энерговыработка) панелей, а значит, постепенно снижается и срок окупаемости.

В сети набрел на диссертацию Зезина Дениса Анатольевича от 2014 года на тему

ДЕГРАДАЦИОННЫЕ ПРОЦЕССЫ В ТОНКОПЛЁНОЧНЫХ СОЛНЕЧНЫХ ЭЛЕМЕНТАХ

Вашему вниманию представлена последняя глава, где оценена продолжительность жизненного цикла солнечной электростанции и некоторые выводы.

[...]Далее было проведено моделирование простой солнечной станции. При создании макета станции требовалось получить заданную мощность (от 1 до100МВт) при использовании типового модуля (60 монокристаллических пластин, спаянных в виде двух лент по 30 элементов), мощностью 150 Вт (15 В, 10 А). При этом максимальное напряжение по постоянному току не должно превышать 1кВ (использовались требования правил эксплуатации энергоустановок в Евросоюзе).

Для того чтобы удовлетворить этим требованиям, солнечные модули соединялись последовательно до получения максимально возможного напряжения, недостающая мощность вырабатывалась аналогичными цепочками модулей, соединёнными параллельно, за счёт вырабатываемого тока.

Безотказная работа модулей определяется надёжностью самих солнечные ячеек, а также паяных соединений, обеспечивающих электрический контакт между ячейками. При соединении модулей в цепочки необходимо использовать штекеры, поскольку внешние выводы, в отличие от паяных соединений, находятся в непосредственном контакте с окружающей средой. Кроме того, каждая такая цепочка снабжается инвертором, который необходим для преобразования постоянного тока в переменный. По этим причинам безотказная работа солнечной электростанции также зависит от надёжности штекеров и инверторов.

При расчётах надёжности предполагалось, что все необходимые электротехнические соединения и оборудование (паяные соединения, штекеры и инверторы) подчиняются экспоненциальному закону распределения. То есть, их отказы рассматривались только как внезапные, интенсивность которых не меняется со временем.

Средние время наработки на отказ для каждого элемента модели были выбраны близкими к реальным : паяное соединение - 105 [ч] (~10 лет), штекер и инвертор – 5*104 [ч] (~5 лет).

На рисунках представлены результаты моделирования. На этих графиках можно заметить, что благодаря большому количеству включённых параллельно цепочек модулей, вероятность безотказной работы солнечной электростанции, близкая к 100%, имеет место на более длительном промежутке времени. Затем наблюдается стремительное снижение вероятности безотказной работы, пропорциональное количеству элементов. Подобное поведение системы напоминает интегральные схемы с резервированием.

Вероятность безотказной работы стандартного модуля и солнечных электростанций

Вероятность безотказной работы солнечных электростанций разной мощности

Одна из особенностей солнечных электростанций – требование большого количества свободной площади. При этом возможности транспорта ограничивают размер одного фотоэлектрического модуля. Как следствие для постройки электростанции мощностью, например, в 100 МВт из стандартных модулей мощностью, скажем, 100 Вт необходимо сформировать миллион соединений. Кроме того, каждый солнечный модуль также состоит из 20-60 солнечных элементов, которые тоже необходимо соединить. Потребность современных солнечных электростанций в большом количестве соединений напоминает аналогичную потребность электроники при переходе от навесного монтажа к интегральным технологиям.

В качестве мер для повышения надёжности можно предложить использование «умных модулей» - устройств, которые по своему прямому назначению выполняют ту же функцию, что и солнечные модули, однако они снабжены дополнительной электроникой, которая обеспечивает закорачивание вышедших из строя элементов. Подобная система необходима, поскольку один вышедший из строя элемент отключает всю цепочку модулей. Безусловно, на крупных электростанциях большое количество параллельных соединений позволяет отсрочить момент выхода электростанции, но потери мощности будут накапливаться. Подобные системы сейчас только разрабатываются в разрезе обеспечения работы батареи в условиях частичного затенения (например ), поскольку плохо освещённая оказывается фактически не работающей. Подобные разработки могут оказаться полезными и для обеспечения надёжности солнечных батарей.

Дерек Маркхэм, специалист в вопросах солнечной энергетики сайта CleanTechnica, дает ответ на вопрос, который интересует подавляющее большинство из тех, кто планирует обзавестись собственной солнечной установкой – сколько длится цикл жизни солнечных панелей ? Или, другими словами - сколько ими можно пользоваться ?

Когда мы принимаем решение об установке солнечной системы, то наиболее распространенными вопросом обычно является "сколько стоят солнечные панели?» Или «Во сколько обходятся солнечные батареи?». Это естественно, ведь для многих из нас собственная солнечная электростанция - это не только вопрос экологии и уменьшения вредных выбросов в атмосферу, но также и финансовый вопрос, который, в конце концов, сводится к разговору о нашем кошельке, пишет Ecotown .

Большинство солнечных модулей, которые используются в домашних электростанциях имеют гарантию около 25 или 30 лет. Это значит, что они гарантированно прослужат десятки лет - в отличие от большинства другой техники, которую мы часто покупаем. Кроме того, окончание гарантийного срока солнечной панели не значит, что она сразу после этого "умрет" и потребуется ее замена. Она так же будет продолжать свою работу, просто ее эффективность будет несколько снижаться с каждым годом. На самом деле, некоторые старые модели солнечных панелей уже более 40 лет производят электроэнергию и «умирать» никак не собираются. При этом ожидаемый период их службы составляет еще десятки лет.

Несколько лет назад Национальная Лаборатория Возобновляемой Энергии (National Renewable Energy Laboratory - NREL) провела исследования темпов "фотовольтаической деградации" на выборке из 2 000 солнечных электростанций. По результатам исследования, в среднем в год солнечная панель теряет около половины процента (0.5%) эффективности своей работы. Это значит, что по окончании 25-летнего гарантийного периода Ваша солнечная панель будет работать с все еще высоким уровнем эффективности - 88% от первоначального. Однако, далеко не каждая панель уменьшать свою эффективность на 0.5% ежегодно. Как свидетельствуют показатели некоторых солнечных модулей, работающих уже более 30 лет под солнечными лучами, их эффективность превышает ту, что указывалась в их документации.

Эти десятки лет жизни солнечных панелей делают экономику солнечных электростанций даже лучше, поскольку большинство систем окупятся за первые десять лет и будут продолжать поставлять своим владельца чистую энергию еще многие годы, поэтому вопрос "сколько служат солнечные панели " может быть просто не совсем корректным.

Очевидно, более правильным был бы вопрос "Каковы ожидаемые затраты на поддержание и замену частей солнечной электростанции ", поскольку солнечные панели нужно будет заменять в ближайшее время, однако ситуация с инвертором (устройством, преобразующим прямой ток от панелей в переменный, который можно передавать в общую сеть) совсем другое. Среднее время работы инвертора - 10-15 лет. Однако его эффективность не снижается постепенно, как в солнечной панели. Однажды он просто перестает работать. Обычно именно так происходит с так называемыми центральными инверторами. Однако в то же время есть хорошая альтернатива - микро-инверторы, которые можно устанавливать на каждой отдельной солнечной панели. Их срок службы должен быть выше чем у традиционных инверторов и может доходить до 25 лет.

Даже с учетом замены инвертора (или нескольких, если используются микро-инверторы) и реалий украинской экономики, инвестиция в солнечную систему - это один из самых выгодных объектов для капиталовложений.

Справка . Солнечная панель - несколько объединённых в модуль фотоэлектрических преобразователей (фотоэлементов) - полупроводниковых устройств, прямо преобразующих солнечную энергию в электричество с постоянным током, в отличие, например, от солнечных коллекторов , которые производят нагрев жидкого теплоносителя.

Использование энергии солнца - это альтернатива невосполняемым источникам энергии. Современные технологии позволяют использовать солнечные батареи для уличного освещения, отопления и освещения небольших домов. Сегодня уже не редкость солнечные батареи для дачи, которые позволяют в летний период обеспечить хозяйство электроэнергией.

Солнечные батареи

Устройство, которое представляет собой большое количество фотоэлектрических преобразователей, соединенных в единую систему, и есть солнечная батарея.

Для солнечной батареи важно наличие прямых солнечных лучей, энергия которых преобразуется в электрический ток.

Устанавливаются батареи в тех районах, где солнечные дни составляют большую часть года. Правда, на эффективность работы солнечных батарей влияет еще и географическая широта. Ведь чем дальше от полюса, тем мощнее солнечные лучи. Но даже в средней полосе России зимой солнечные батареи снижают потребление электроэнергии из общих сетей, а летом появляется возможность даже продавать ее излишки.

Солнечные батареи бывают монокристаллические, поликристаллические и тонкопленочные.

Направленные в разные стороны кристаллы в поликристаллических батареях позволяют снизить зависимость от прямых солнечных лучей. Такие батареи сегодня наиболее распространены, их используют для освещения общественных зданий и частных домов. Часто уже встречается и именно поликристаллического типа.

Солнечные батареи для дачи

Еще совсем недавно главным аргументом против установки была их стоимость. Сегодня эту продукцию начинает выпускать отечественная промышленность, цены на нее становятся ниже, выбор - шире, а сервисное обслуживание - доступнее.

Современные технологии вполне способны справиться с освещением участка и обеспечить работу бытовых приборов. Правда, при этом нужна аккумуляторная а еще контроллер заряда и инвертор, который преобразует постоянный ток в переменный.

Сегодня можно приобрести готовый комплект солнечной миниэлектростанции для дачи или небольшого дома с автономностью работы в течение 24 часов. Мощность такой электростанции - 235 Вт при мощности аккумуляторной батареи 2,4 кВт*ч.

Аккумуляторы для солнечных батарей

Аккумуляторные батареи являются важной частью оборудования современной гелиосистемы.

В яркие солнечные дни солнечные батареи вырабатывают значительно больше электрической энергии, чем потребляют электроприборы, а ночью, когда особенно важно освещение, не работают вообще. Значит, необходимо накапливать и хранить электроэнергию для последующего ее использования.

Аккумуляторная и предназначена для равномерного и бесперебойного электроснабжения.

Также аккумуляторные перекрывают пиковые нагрузки, слишком большие для фотомодулей, используют накопленную энергию в темное время суток, компенсируют разницу выработанной и потребленной энергии в пасмурную погоду.

Способы подключения АКБ

Чаще всего одного аккумулятора не хватает для полноценной работы солнечной электростанции, и приходится использовать несколько однотипных батарей. Специалисты считают, что они вообще должны быть из одной партии.

Для повышения общей емкости системы используются три способа соединения (коммутации) АКБ.

При параллельном соединении складываются емкости всех батарей, а общее напряжение равно напряжению в одном устройстве.

Последовательное соединение, напротив, позволяет просуммировать все напряжения, а емкость остается равной емкости одной батареи в схеме.

Самым производительным является комбинированное последовательно-параллельное соединение, при котором суммируются как напряжения, так и емкости.

Правда, при таком соединении АКБ подвержены разбалансировке, то есть суммарное напряжение будет постоянным расчетным, а вот для каждого отдельного аккумулятора его показания будут меняться. Такое явление приводит к тому, что часть батарей недозаряжается, а часть заряжается выше нормы, и ресурс вырабатывается преждевременно.

Поэтому в комплект каждой гелиосистемы обязательно входит контроллер заряда солнечных батарей и перемычки, с помощью которых соединяют средние точки для самовыравнивания напряжения в АКБ.

Особенности аккумуляторных батарей для гелиосистем

Аккумуляторная батарея для солнечной батареи должна удовлетворять целому ряду требований. Она должна выдерживать большое количество циклов заряда/разряда. При этом саморазряд должен быть минимальным, а величина зарядного тока - большой, диапазон рабочих температур - широким.

Сегодня производители уже выпускают специальные аккумуляторные батареи, так называемые солнечные аккумуляторы, которые этим требованиям полностью отвечают.

Комплект солнечных батарей с такими устройствами и контроллером заряда позволяет накапливать энергию и хранить ее с максимальной эффективностью. А сетевой инвертор - преобразовать ее для подключения бытовых приборов и освещения.

Критерии выбора

Выбирать нужно по нескольким параметрам.

Самый важный из них - это емкость. Исходя из необходимого энергопотребления рассчитывается расчетный показатель емкости, увеличивается на 35-50%, и уже по нему подбирается одно или несколько устройств для параллельного подключения. АКБ с достаточной емкостью держит энергию до 4 суток.

Длительность разрядки и зарядки. Из двух устройств с одинаковым номиналом емкости предпочтительнее то, для которого требуется меньший интервал времени для зарядки.

Емкость свинцового аккумулятора зависит от массы свинца в нем, поэтому чем больше масса АКБ, тем выше его реальная емкость. При выборе нужно обращать внимание на вес и габариты устройства.

Производители задают для своей продукции диапазон рабочих температур и периодичность обслуживания, на эти показатели тоже следует обращать внимание.

В сопроводительных документах всегда указывается срок использования АКБ, количество разрядочных циклов (чем больше этот показатель при прочих равных условиях, тем лучше) и величина саморазряда в месяц.

При расчете параметров аккумуляторной батареи нужно учитывать потери энергии при ее хранении и преобразовании. Эффективность современных устройств для гелиосистем составляет примерно 85%.

Виды аккумуляторов для солнечных батарей

Привычные автомобильные аккумуляторы не рассчитаны на большое количество циклов и отличаются значительным саморазрядом. Для гелиостанций используются совершенно другие устройства.

1. AGM-аккумуляторы, в конструкции которых между абсорбирующими стекломатами находится в связанном состоянии электролит. Такое устройство может эксплуатироваться в любом положении, при низкой цене и глубине заряда около 80% выдерживают до 500 циклов и отличаются высоким уровнем заряда.

Срок из эксплуатации не так велик - 5 лет, и диапазон рабочих температур ограничен 15-25 °С, но они быстро заряжаются - требуется меньше 8 часов на полное восстановление, могут транспортироваться в заряженном состоянии и эксплуатироваться в помещении с недостаточной вентиляцией.

AGM-аккумуляторы быстро выходят из строя из-за перезаряда, но недозаряд переносят вполне удовлетворительно.

2. Гелевая батарея для солнечной батареи тоже может работать в любом положении. Желеобразный гелевый электролит удерживается в порах силикагеля, который служит разделителем для пластин. Неоспоримое достоинство такой конструкции - электроды не осыпаются, потому что все свободное пространство заполнено гелем, а значит, исключена возможность короткого замыкания. Кроме того, они выдерживают полную разрядку и значительное число циклов, примерно в полтора раза больше, чем у аналогичных AGM-аккумуляторов. Но и цена их заметно выше.

Несмотря на цену, гелевые аккумуляторы экономичней, не нуждаются в обслуживании, могут в полностью разряженном состоянии без ущерба находиться несколько дней, потери энергии в них незначительны из-за малого саморазряда.

3. OPzS аккумуляторы, так называемые заливные устройства с жидким электролитом, не требующие обслуживания, разработаны специально для разрядки малыми токами. Они выдерживают очень большое количество глубоких циклов, используются, как правило, в мощных дорогих солнечных системах, и сами стоят достаточно дорого.

Контроллер заряда солнечных батарей

Электронные устройства предназначены для контроля и регулировки уровня заряда на аккумуляторе. Именно они предохраняют АКБ как от полной разрядки, так и от излишней зарядки.

Контроллеры заряда - очень важные элементы солнечных батарей. Они обеспечивают многостадийный заряд АКБ, автоматическое отключение при полном заряде батареи и при минимальном заряде - нагрузок, подключение фотомодулей, когда батарею нужно зарядить, и переподключение нагрузок после зарядки.

Самый дешевый и примитивный вид контроллеров типа On/Off отключает солнечные батареи от АКБ, когда напряжение достигает предельного значения, не давая аккумуляторам зарядиться полностью и тем самым сокращая их ресурс.

PWM-контроллеры, работающие по ШИМ (широтно-импульсная модуляция) - технологии, экономичны и эффективны в районах с высокой активностью солнца. Они прекращают заряд, позволяя аккумулятору при этом полностью зарядиться. Устанавливаются такие устройства в маломощных, до 2 кВт, системах с аккумулятором малой емкости.

МРРТ-контроллеры управляют максимальными энергетическими пиками. Они наиболее эффективны в гелиосистемах, но и значительно дороже устройств других моделей.

Производители аккумуляторов для солнечных батарей

На российском рынке не так много производителей этого вида продукции.

Компания CSB Battery Co., Ltd (Тайвань) предлагает свинцово-кислотные АКБ, изготовленные по со сроком службы до 10 лет, рассчитанные на напряжение 12 В, емкостью от 26 до 100 А*ч по цене от 2,6 до 8,2 тыс. рублей.

Примерно такие же аккумуляторы выпускает Shandong Sacred Sun Power Sources Co., Ltd (Китай).

HAZE Battery Company Ltd (Великобритания) поставляет гелевые АКБ со сроком службы до 12 лет, рабочим напряжение 12 В, емкостью от 15 до 230 А*ч и диапазоном температур от -20 до +50 °С по ценам от 7 до 28 тыс. рублей.

SSKGroup (Россия-Бельгия) выпускает надежные гелевые аккумуляторные батареи для солнечных батарей с пламегасителем со сроком службы 15 лет, емкостью от 100 до 180 А*ч по ценам от 11 до 19 тыс.рублей.

Производители солнечных батарей

Основными производителями солнечных батарей долгое время были Япония, Германия, США и Китай. Российские солнечные батареи собираются из материалов, произведенных в этих странах. Самые популярные отечественные солнечные батареи с доступной ценой изготавливаются из поликристаллического кремния, произведенного в Германии и США.

Сегодня российские производители не только производят солнечные модули, но и разрабатывают новые, как, например, «Квант» в Москве.

Краснодарская компания «Солнечный ветер» производит не только модули, но и готовые домашние гелиостанции. Проектирует готовые гелиосистемы и «СоларИннТех» из Зеленограда.

На отечественном рынке все больше оборудования для гелиосистем, включая готовые типовые проекты. Но при некоторых инженерных навыках и усидчивости можно самостоятельно рассчитать систему для конкретных условий эксплуатации и подобрать необходимое оборудование: солнечные батареи, аккумуляторы, контроллеры разных производителей в широком ценовом диапазоне. При этом можно сэкономить на некоторых составляющих, собрав их самостоятельно из подручных материалов, например, контроллер.

Похожие статьи