Солнечные батареи высшего качества – чёрные, монокристалл! Опыт использования солнечных батарей в Московской области с цифрами - koyger

16.09.2019

Невысокий КПД солнечных батарей – один из основных недостатков современных гелиосистем. На сегодняшний день один квадратный метр фотоэлемента способен вырабатывать около 15-20 % от мощности падающего на него излучения.

Такая выработка требует установку батарей больших размеров для полноценного электроснабжения. Более того, чтобы достичь необходимого выходного напряжения, соединяются между собой последовательно или параллельно. Их площадь при этом может достигать от нескольких квадратных метров.

КПД солнечных панелей зависит от целого ряда причин:

  • материал фотоэлемента;
  • плотность солнечного потока;
  • время года;
  • температура;
  • и др.

Давайте подробнее поговорим о каждом факторе.

Материал фотоэлемента

Делятся на три вида, в зависимости от метода образования атома кремния:

  • поликристаллические;
  • монокристаллические;
  • панели из аморфного кремния.

Поликристаллические панели изготовлены из чистого кремния и отличаются сравнительно высоким КПД – 14-17%.

Монокристаллические панели менее эффективны в преобразовании солнечной энергии. Их коэффициент полезного действия около 10-12 %. Но невысокие энергозатраты на изготовление таких преобразователей делает их более доступными.

Панели из аморфного кремния (или тонкопленочные) просты и недороги в производстве, как следствие, доступны по цене. Однако, эффективность их значительно ниже, чем у предыдущих двух видов – 5-6%. К тому же элементы тонкопленочных преобразователей из кремния со временем утрачивают свои свойства.

Тонкопленочные батареи также изготавливают с нанесением частиц меди, индия, галлия и селена. Это немного увеличивает их производительность.

Работа в любую погоду

График зависимости мощности от погодных условий Данный показатель зависит от географического расположения панели: чем ближе к экватору, тем выше плотность солнечного излучения.

Зимой производительность фотоэлементов может снизиться от 2 до 8 раз. Это объясняется, прежде всего, скоплением на них снега, сокращением продолжительности и количества солнечных дней.

Важно помнить: в зимнее время следить за наклоном панелей т. к. солнце находится ниже обычного.

Условия эффективной работы

Чтобы батарея работала эффективно, нужно учесть несколько нюансов:

  • угол наклона батареи к солнцу;
  • температуру;
  • отсутствие тени.

Угол между рабочей поверхностью преобразователя и солнечными лучами должен быть близок к прямому. В таком случае эффективность фотоэлементов при прочих равных условиях будет максимальна. Чтобы увеличить КПД дополнительно к ним устанавливают систему слежения за солнцем, которая меняет наклон относительно положения светила. Но подобное встречается нечасто из-за дороговизны оборудования.

Самые эффективные солнечные батареи для дома сегодня — это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии. Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие естьсамые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества? » Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»? Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

  • Sharp . Показатель эффективности у моделей данной фирмы составляет 44,4 %. Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции. Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.
  • Панели от испанского исследовательского института (IES) . Эффективность их работы составляет 32,6 %. Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД. Но все остается стандартно: высокая эффективность — соответствующая цена, низкая эффективность — стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи. Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix , продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power , существующая на рынке уже довольно давно. В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.
  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % - продукт от Q-Cells . Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.
  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью. 16,1 % нам дают устройства от First Solar , их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие. First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.
  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole . Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареидля дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь. При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность - ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.

Кристаллическая решетка перовскита CH3NH3PbI3

Wikimedia Commons

Американские исследователи показали, что в солнечных элементах на основе перовскитов носители заряда, обладающие избыточной энергией, способны преодолевать значительное расстояние, прежде чем рассеют ее в виде тепла. Это означает, что реализовать фотоэлектрические элементы на горячих носителях, для которых теоретический предел КПД вдвое выше, чем у обычных кремниевых, на практике вполне возможно. Исследование опубликовано в журнале Science .

В самых распространенных на сегодняшний день солнечных элементах, использующих в качестве полупроводника кремний, теоретически возможный коэффициент полезного действия едва превышает 30 процентов. Это связано с тем, что кремниевые элементы способны использовать спектр солнечного света только частично. Фотоны, обладающие энергией ниже пороговой, просто не поглощаются, а обладающие слишком высокой приводят к образованию в фотоэлементе так называемых горячих носителей заряда (например, электронов). Время жизни последних составляет около пикосекунды (10 -12 секунды), потом они «остывают», то есть рассеивают избыточную энергию в виде тепла. Если бы горячие носители удавалось собирать, это повысило бы теоретический предел КПД до 66 процентов, то есть вдвое. Несмотря на то что в некоторых экспериментах небольшое сохранение энергии удавалось наблюдать , элементы на горячих носителях пока остаются скорее гипотетическими.

Ученые из Университета Пердью и Национальной лаборатории возобновляемой энергетики (США) внесли вклад в изучение нового перспективного класса фотоэлектрических элементов на основе перовскитов и продемонстрировали, что в таких элементах горячие носители не только обладают повышенным временем жизни (до 100 пикосекунд), но и способны «пробегать» значительные дистанции в несколько сотен нанометров (что сопоставимо с толщиной слоя полупроводника).

Металлорганические перовскиты получили свое название благодаря кристаллической структуре. Она по сути повторяет структуру природного минерала - перовскита, или титаната кальция. Химически они представляют собой смешанные галогениды свинца и органических катионов. Авторы работы использовали распространенный перовскит на основе иодида свинца и метиламмония. Исходя из того, что в перовскитах время жизни горячих носителей существенно увеличено по сравнению с другими полупроводниками, авторы решили выяснить, на какое расстояние могут переноситься горячие носители за время их остывания. С использованием ультраскоростной микроскопии исследователям удалось непосредственно пронаблюдать транспорт горячих носителей в тонких пленках перовскита с высоким пространственным и временным разрешением.


Транспорт горячих носителей в полупроводнике в течение первой пикосекунды после возбуждения

Guo et al / Science 2017

Оказалось, что медленное остывание в перовскитах сопряжено с дальностью пробега, которая составила до 600 нанометров. Это означает, что носители заряда с избыточной энергией теоретически способны преодолевать слой полупроводника и достигать электрода, то есть их возможно собирать (правда, как это реализовать технически, авторы работы не обсуждают). Таким образом, солнечные элементы на горячих носителях, возможно, удастся воплотить в жизнь, взяв за основу перовскиты.

К настоящему времени максимальный КПД, доходящий до 46%, был зарегистрирован для многослойных многокомпонентных фотоэлектрических элементов, в состав которых входит арсенид галлия, индий, германий со включениями фосфора. Такие полупроводники используют свет более эффективно, поглощая различные части спектра. Производство их очень дорого, поэтому такие элементы используются только в космической промышленности. Ранее мы писали также про элементы на основе теллурида кадмия, которые можно производить в виде гибких и тонких пленок. Несмотря на то, что общий вклад в производство электроэнергии солнечной энергетики пока не превышает 1%, темпы роста можно назвать взрывными. Особенно заинтересованы в использовании возобновляемой энергии солнца такие страны как Индия и Китай. Компания Google в конце 2016 года заявила, что в этом году собирается полностью перейти на возобновляемую энергетику.

В настоящее время в быту используются в основном кремниевые фотоэлементы, реальный КПД которых составляет 10–20 процентов. Элементы на основе перовскитов появились менее 10 лет назад и сразу вызвали к себе заслуженный интерес (о них мы уже писали ). КПД таких элементов быстро увеличивается и практически доведен до 25 процентов, что сопоставимо с лучшими образцами кремниевых фотоэлементов. К тому же они очень просты в производстве. Несмотря на технологический успех, физические принципы работы перовскитовых элементов относительно мало изучены, поэтому обсуждаемая работа ученых из США вносит важный вклад в фундаментальные основы фотовольтаики и, конечно, влечет за собой перспективу дальнейшего увеличения КПД солнечных элементов.

Дарья Спасская

Достигнуть впечатляющих для сегмента фотоэлектрических элементов успехов удалось стартапу Инновационного парка EPFL в Германии.

Согласно опубликованной пресс-службой учебного заведения информации, команде студентов Института Фраунгофера во главе с руководителем проекта Лораном Кулотом удалось модернизировать применяемые в космической сфере технологии, существенно удешевив производство и повысив эффективность солнечных батарей. Показатели КПД прототипа будущей массовой фотоэлектрической панели, которую создатели рассчитывают превратить в серийный продукт после разрешения технологических вопросов и поиска инвесторов, вдвое превышают стандартные для отрасли. Напомним, что КПД имеющихся в продаже солнечных батарей в большинстве случаев достигает 15-20%, что является пределом для применяемых сегодня технологий «улавливания» солнечных лучей с последующим преобразованием этой энергии в электрическую. Полученные в ходе тестирования панели-прототипа результаты показали эффективность выработки электроэнергии на уровне 36,4%, что в случае перехода на массовый выпуск источников преобразования энергии Солнца в электричество позволит достичь выдающегося показателя — 30-32%.

Создатели принципиально нового и сверхэффективного типа солнечной батареи рассказали о примененной ими методике повышения КПД батареи, для чего специалисты EPFL воспользовались оптическими линзами. Применяемые в космосе панели для преобразования солнечной энергии в электрическую изготавливаются с применением сверхдорогих материалов, помогающих улучшить свойства «улавливания» лучей Солнца в специальных мини-ячейках. Немецкие специалисты из независимой лаборатории Института Фраунгофера применили этот же принцип, максимально уменьшив площадь очень дорогого слоя высокопроизводительных ячеек. Вместо «растянутого» на всю площадь панели слоя фотоэлементов из дорогостоящих материалов разработчики взяли маленький кусочек высокопроизводительных ячеек, сконцентрировав на нем весь поступающий на поверхность элемента солнечный свет. Верхний слой поверхности батареи состоит из микроскопических линз, установленных на механической основе, при помощи маленьких сервомоторов смещающей фокусируемый свет точно на фотоподложку в зависимости от расположения земного светила.

Такая методика обеспечивает максимальную эффективность преобразования энергии на протяжении всего светового дня при сохранении низкой стоимости производства. Цена выпуска вдвое более эффективных солнечных элементов после налаживания серийного производства основанных на разработанных специалистами EPFL принципах батарей превысит себестоимость имеющихся на рынке только панелей на 10-15% при стопроцентном наращивании показателя КПД. Говорить о сроках выпуска перспективной разработки в массовых масштабах создатели очень дешевого в сравнении с выпускающимися для применения в космосе образцами решения говорят пока неохотно, ссылаясь на необходимости отработки технологического базиса для налаживания крупносерийного выпуска недорогих в изготовлении, но крайне эффективных солнечных панелей с КПД 36%. Ожидается, что первые мелкосерийные образцы таких элементов появятся не раньше, чем через 2-3 года, когда себестоимость выпуска фотоэлектрических панелей сможет установить новый ценовой рекорд. Сегодня приобретение и установка подобных батарей на загородных участках для вырабатывания электрической энергии «из воздуха» обходится многократно дороже подключения к электросетям — окупать дорогостоящую покупку приходится в буквальном смысле десятилетия.

По этой причине активно продвигаемые на Западе «солнечные плантации» из сотен и тысяч отдельных фотоэлементов продолжают субсидироваться за счет государственных программ стимулирования сферы альтернативной энергетики. Только за счет вложения миллиардов долларов и евро в развитие этой области Европе и США удалось добиться внушительных и внушающих оптимизм экономических показателей, на бумаге выглядящих настоящим прорывом в сфере получения экологически чистой электроэнергии. На деле каждый выработанный из Солнца Киловатт обходится значительно дороже, чем разведка, добыча и последующее извлечение из недр земли углеводородов, продолжающих составлять основу общемировой энергетики. Единственной альтернативой «бесплатной» электроэнергии остается атомная энергетика, категорически вычеркнутая Евросоюзом и большинством других мировых держав из списка доступных источников электричества. Причиной становится опасность повторения трагических событий 1986-го и 2011 годов в советском Чернобыле и японской Фукусиме, когда на эксплуатируемых СССР и Японией соответственно атомных электростанциях фиксировались радиационные аварии предельного по Международной шкале ядерных событий седьмого уровня.

Именно поэтому Запад продолжает рассматривать солнечную энергетику в качестве самого перспективного направления при формировании базы для создания «энергетического задела» будущим поколениям, которым очень скоро придется столкнуться с полным отсутствием легкоизвлекаемых запасов углеводородов — нефти, газа и угля. Уже сегодня запасы расположенных на доступной для современных буровых установок глубине энергетических ресурсов эксперты называют «близкими к истощению», что вынуждает ученых и исследователей энергично перебирать новые варианты для сохранения текущего уровня потребления электричества мировой промышленностью. Потенциально выгодными с технологической точки зрения пока остаются только два направления — ядерная энергетика и фотоэлементы, преобразующие «добирающийся» по поверхности планеты свет галактического светила в нужную для жизнедеятельности человека электрическую энергию. Искусственный отказ от атома оставляет западным державам, в первую очередь Евросоюзу и Соединенным Штатам Америки, только один путь для дальнейшего развития и модернизации собственной энергетики.

По мнению главного операционного директора стартапа EPFL Флориана Герлиха, созданные немецкими специалистами батареи позволят снизить цену за вырабатываемый Киловатт-час электроэнергии для потребителей до приемлемого уровня, когда покупка дорогой солнечной панели даже без привлечения государственных субсидий окупится после непродолжительной эксплуатации. Увеличение КПД до 36% — многообещающий прорыв, способный «встряхнуть» мировую энергетическую систему в рамках общемирового проекта по поиску наиболее выгодных с финансовой точки зрения и показателей экологичности способов получения электричества. На последнее, например, активно «переезжают» выпускаемые крупнейшими автоконцернами автомобили, доля которых с установленными под капотом электродвигателями к 2030-2035 годам достигнет, по предварительным подсчетам экспертов, серьезных 10-12% в масштабе всего автопарка на планете. Активное содействие этому окажут и разработки ученых, на протяжении последних десятилетий продолжающих биться за каждый процент эффективности выработки электроэнергии, добиваясь достижения предельно допустимых значений в гонке за «бесплатными» киловаттами.

Я кричу и плачу, наверное так нужно было начать видео, но многие начинают сразу думать не в ту сторону. Да про КПД солнечных панелей очень много материала. Да так много, что каждый ищет солнечную панель с КПД 30 -50% и не важно сколько они стоят. Стоп, что? Вы реально из тех людей что думают, что на сегодняшний день КПД у панелей то, что есть в открытом доступе это мало. Реально 22 -28% это разве мало?

А хотите пример того, что реально имеет низкий КПД, и речь тут пойдет про солнечные панели 1990 года выпуска с КПД около 10%, и знаете, теперь я точно могу сказать с уверенностью, что та сказка, которой все кто в этом не понимают разносят по интернету, это откровенная неправда. И чтобы такое с уверенностью сказать мне потребовалось купить 2 панели за свои деньги, установить их в работу, и около года пронаблюдать за ними при разных вариантах подключения.

Что же вердикт готов.

КПД старших солнечных панелей более раннего производства до 2010 года, ощутимо ниже КПД современных панелей, и тут даже речь идет не об удешевлении последних, а именно о технологии производства. Мы не будем затрагивать тот факт, что современные более тонкие, имеют новое поглощающее покрытие, которое более эффективное, чем у старых панелей, и меньше выгорает. Нет мы просто поговорим про КПД.

Для начала, что такое КПД — коэффициент полезного действия.

Итак, простым языком, это как эффективно солнечные панели работают в настоящее время, но не в будущем, так как чем дальше и дольше работает солнечная панель, тем КПД становится все ниже. А если вытягивать и нагружать солнечные панели коротким замыканием, спиралькой, либо лампами ИК, как некоторые это делают. КПД солнечных панелей будет таять просто в несколько раз быстрее.

Так вот, подобной информации реально нет хоть и такой черновой, тем более с таким износом солнечные панели проблемно найти в нашей стране. И что мы в итоге получаем?

Все просто, когда солнце есть, солнечные панели выдают почти всю свою мощность, да просело рабочее и холостое напряжение. Да немного просел ток, порядка на 0.5 — 1А. И можно было бы на этом закончить учитывая слова большинства блогеров, а нет, просело у нас и КПД, теперь солнечные панели меньше выдают как по напряжению, так и по току, в облачную погоду или на отражённом свете. Вот это и есть падение КПД или износ панели. Вроде и работает, а вроде и при плохой погоде нет.

Думаете все, но не тут то было, я уже привык рассказывать все или почти все, даже если в меня летят в настоящем времени тапки, а в будущем их собирают говоря, а че ты типа не знал:) Я вам поведаю еще одну проблему изношенных солнечных панелей.

А именно! Дело все в том, что из-за износа солнечной панели и сильно пострадавшего и выгоревшего абсорбирующего и светопоглощающего покрытия, кстати, это покрытие некоторые люди кто не в теме, называют рассеивающим покрытием или еще как. Но правильно абсорбирующего и светопоглощающего, его задача защитить кремниевую пластину, и структуру самого элемента, и более эффективно поглощать солнечный свет! От большей части КПД зависит от этого тонкого слоя.

Так вот, когда оно разрушается и выгорает, солнечные элементы начинают сильней греться, и мощность их падает. Эффект очень похож на полу пробитый или перегретый полупроводник, который вроде работает, но греется и его характеристики падают. Так вот, так как солнечный элемент — это тот же проводник с п-н переходом, только большего размера все правила по электроники также подходят и для солнечного элемента.

Да и самое важное, объединять старые солнечные и новые нельзя, ибо когда выдаваемая мощность на слабых упадет, а на новых еще будет идти, старые панели будут на себя тянуть часть мощности как нагрузка, тем самым вместо работы будут греть улицу!

Вот такие дела. И теперь я буду чаще про это говорить, чтобы у большинства как сказочников, так и людей, которые не в теме, отложилась более грамотная информация. А если есть реальные наблюдения, то значит и есть информация, как продлить срок жизни солнечных элементов.

Похожие статьи