Схемы мощных генераторов высокой частоты. Стабильный генератор вч

19.07.2019

Генератор – это автоколебательная система, формирующая импульсы электрического тока, в которой транзистор играет роль коммутирующего элемента. Изначально, с момента изобретения, транзистор позиционировался как усилительный элемент. Презентация первого транзистора произошла в 1947 году. Презентация полевого транзистора произошла несколько позже – в 1953 г. В генераторах импульсов он играет роль переключателя и только в генераторах переменного тока он реализует свои усилительные свойства, одновременно участвуя в создании положительной обратной связи для поддержки колебательного процесса.

Наглядная иллюстрация деления частотного диапазона

Классификация

Транзисторные генераторы имеют несколько классификаций:

  • по диапазону частот выходного сигнала;
  • по типу выходного сигнала;
  • по принципу действия.

Диапазон частот – величина субъективная, но для стандартизации принято такое деление частотного диапазона:

  • от 30 Гц до 300 кГц – низкая частота (НЧ);
  • от 300 кГц до 3 МГц – средняя частота (СЧ);
  • от 3 МГц до 300 МГц – высокая частота (ВЧ);
  • выше 300 МГц – сверхвысокая частота (СВЧ).

Таково деление частотного диапазона в области радиоволн. Существует звуковой диапазон частот (ЗЧ) – от 16 Гц до 22 кГц. Таким образом, желая подчеркнуть диапазон частот генератора, его называют, например ВЧ или НЧ генератором. Частоты звукового диапазона в свою очередь также подразделяются на ВЧ, СЧ и НЧ.

По типу выходного сигнала генераторы могут быть:

  • синусоидальные – для генерации синусоидальных сигналов;
  • функциональные – для автоколебания сигналов специальной формы. Частный случай – генератор прямоугольных импульсов ;
  • генераторы шума – генераторы широкого спектра частот, у которых в заданном диапазоне частот спектр сигнала равномерный от нижнего до верхнего участка частотной характеристики.

По принципу действия генераторов:

  • RC-генераторы;
  • LC-генераторы;
  • Блокинг-генераторы – формирователь коротких импульсов.

Ввиду принципиальных ограничений обычно RC-генераторы используются в НЧ и звуковом диапазоне, а LC-генераторы в ВЧ диапазоне частот.

Схемотехника генераторов

RC и LC генераторы синусоидальные

Наиболее просто реализуется генератор на транзисторе в схеме емкостной трехточки – генератор Колпитца (рис. ниже).

Схема генератора на транзисторе (генератор Колпитца)

В схеме Колпитца элементы (C1), (C2), (L) являются частотозадающими. Остальные элементы представляют собой стандартную обвязку транзистора для обеспечения необходимого режима работы по постоянному току. Такой же простой схемотехникой обладает генератор, собранный по схеме индуктивной трехточки – генератор Хартли (рис. ниже).

Схема трехточечного генератора с индуктивной связью (генератор Хартли)

В этой схеме частота генератора определяется параллельным контуром, в который входят элементы (C), (La), (Lb). Конденсатор (С) необходим для образования положительной обратной связи по переменному току.

Практическая реализация такого генератора более затруднительна, поскольку требует наличия индуктивности с отводом.

И тот и другой генераторы автоколебания находят преимущественно применение в СЧ и ВЧ диапазонах в качестве генераторов несущих частот, в частотозадающих цепях гетеродинов и так далее. Регенераторы радиоприемников также основаны на генераторах колебаний. Указанное применение требует высокой стабильности частоты, поэтому практически всегда схема дополняется кварцевым резонатором колебаний.

Задающий генератор тока на основе кварцевого резонатора имеет автоколебания с очень высокой точностью установки значения частоты ВЧ генератора. Миллиардные доли процента далеко не предел. Регенераторы радиостанций используют только кварцевую стабилизацию частоты.

Работа генераторов в области низкочастотного тока и звуковой частоты связана с трудностями реализации высоких значений индуктивности. Если быть точнее, то в габаритах необходимой катушки индуктивности.

Схема генератора Пирса является модификацией схемы Колпитца, реализованной без применения индуктивности (рис. ниже).

Схема генератора Пирса без применения индуктивности

В схеме Пирса индуктивность заменена кварцевым резонатором, что позволило избавиться от трудоемкой и громоздкой катушки индуктивности и, в то же время, ограничило верхний диапазон колебаний.

Конденсатор (С3) не пропускает постоянную составляющую базового смещения транзистора на кварцевый резонатор. Такой генератор может формировать колебания до 25 МГц, в том числе и звуковой частоты.

Работа всех вышеперечисленных генераторов основана на резонансных свойствах колебательной системы, составленной из емкости и индуктивности. Соответственно, частота колебаний определяется номиналами этих элементов.

RC генераторы тока используют принцип фазового сдвига в резистивно-емкостной цепи. Наиболее часто применяется схема с фазосдвигающей цепочкой (рис. ниже).

Схема RC генератора с фазосдвигающей цепочкой

Элементы (R1), (R2), (C1), (C2), (C3) выполняют сдвиг фазы для получения положительной обратной связи, необходимой для возникновения автоколебаний. Генерация возникает на частотах, для которых фазовый сдвиг оптимален (180 гр). Фазосдвигающая цепь вносит сильное ослабление сигнала, поэтому такая схема имеет повышенные требования к коэффициенту усиления транзистора. Менее требовательна к параметрам транзистора схема с мостом Вина (рис. ниже).

Схема RC генератора с мостом Вина

Двойной Т-образный мост Вина состоит из элементов (C1), (C2), (R3) и (R1), (R2), (C3) и представляет собой узкополосный заграждающий фильтр, настроенный на частоту генерации. Для всех остальных частот транзистор охвачен глубокой отрицательной связью.

Функциональные генераторы тока

Функциональные генераторы предназначены для формирования последовательности импульсов определенной формы (форму описывает некая функция – отсюда и название). Наиболее часто встречаются генераторы прямоугольных (если отношение длительности импульса к периоду колебаний составляет ½, то такая последовательность называется «меандр»), треугольных и пилообразных импульсов. Самый простой генератор прямоугольных импульсов – мультивибратор, подается как первая схема начинающих радиолюбителей для сборки своими руками (рис. ниже).

Схема мультивибратора – генератора прямоугольных импульсов

Особенностью мультивибратора является то, что в нем можно использовать практически любые транзисторы. Длительность импульсов и пауз между ними определяется номиналами конденсаторов и резисторов в базовых цепях транзисторов (Rb1), Cb1) и (Rb2), (Cb2).

Частота автоколебания тока может изменяться от единиц герц до десятков килогерц. ВЧ автоколебания на мультивибраторе реализовать невозможно.

Генераторы треугольных (пилообразных) импульсов, как правило, строятся на основе генераторов прямоугольных импульсов (задающий генератор) путем добавления корректирующей цепочки (рис. ниже).

Схема генератора треугольных импульсов

Форма импульсов, близкая к треугольной, определяется напряжением заряда-разряда на обкладках конденсатора С.

Блокинг-генератор

Предназначение блокинг-генераторов состоит в формировании мощных импульсов тока, имеющих крутые фронты и малую скважность. Длительность пауз между импульсами намного больше длительности самих импульсов. Блокинг-генераторы находят применение в формирователях импульсов, сравнивающих устройствах, но основная область применения – задающий генератор строчной развертки в устройствах отображения информации на основе электронно-лучевых трубок. Также блокинг-генераторы с успехом применяются в устройствах преобразования электроэнергии.

Генераторы на полевых транзисторах

Особенностью полевых транзисторов является очень высокое входное сопротивление, порядок которого соизмерим с сопротивлением электронных ламп. Перечисленные выше схемотехнические решения универсальны, просто они адаптированы под использование различных типов активных элементов. Генераторы Колпитца, Хартли и другие, выполненные на полевом транзисторе, отличаются только номиналами элементов.

Частотозадающие цепи имеют те же соотношения. Для генерирования ВЧ колебаний несколько предпочтительнее простой генератор, выполненный на полевом транзисторе по схеме индуктивной трехточки. Дело в том, что полевой транзистор, имея высокое входное сопротивление, практически не оказывает шунтирующее действие на индуктивность, а, следовательно, работать высокочастотный генератор будет стабильнее.

Генераторы шума

Особенностью генераторов шума является равномерность частотной характеристики в определенном диапазоне, то есть амплитуда колебаний всех частот, входящих в заданный диапазон, является одинаковой. Генераторы шума находят применение в измерительной аппаратуре для оценки частотных характеристик проверяемого тракта. Генераторы шума звукового диапазона часто дополняются корректором частотной характеристики с целью адаптации под субъективную громкость для человеческого слуха. Такой шум называется «серым».

Видео

До сих пор существует несколько областей, в которых применение транзисторов затруднено. Это мощные генераторы СВЧ диапазона в радиолокации, и там, где требуется получение особо мощных импульсов высокой частоты. Пока еще не разработаны мощные транзисторы СВЧ диапазона. Во всех других областях подавляющее большинство генераторов выполняется исключительно на транзисторах. Причин этому несколько. Во-первых, габариты. Во-вторых, потребляемая мощность. В-третьих, надежность. Вдобавок ко всему, транзисторы из-за особенностей своей структуры очень просто поддаются миниатюризации.

Предлагаемые генераторы высокой частоты предназначены для получения электрических колебаний в диапазоне частот от десятков кГц до десятков и даже сотен МГц. Такие генераторы, как правило, выполняют с использованием LC-колебательных контуров или кварцевых резонаторов, являющихся частотозадающими элементами. Принципиально схемы от этого существенно не изменяются, поэтому ниже будут рассмотрены LC-генераторы высокой частоты. Отметим, что в случае необходимости колебательные контуры в некоторых схемах генераторов (см., например, рис. 12.4, 12.5) могут быть без проблем заменены кварцевыми резонаторами.

Генераторы высокой частоты (рис. 12.1, 12.2) выполнены по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Они различаются наличием эмиттерной RC-цепочки, задающей режим работы транзистора (рис. 12.2) по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности (рис. 12.1, 12.2) делают отвод (обычно от ее 1/3... 1/5 части, считая от заземленного вывода). Нестабильность работы генераторов высокой частоты на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации «плавает». Для ослабления влияния транзистора на рабочую частоту генерации следует максимально ослабить связь колебательного контура с транзистором, до минимума уменьшив переходные емкости. Кроме того, на частоту генерации заметно влияет и изменение сопротивления нагрузки. Поэтому крайне необходимо между генератором и сопротивлением нагрузки включить эмиттерный (истоковый) повторитель.

Для питания генераторов следует использовать стабильные источники питания с малыми пульсациями напряжения.

Генераторы, выполненные на полевых транзисторах (рис. 12.3), обладают лучшими характеристиками.

Генераторы высокой частоты, собранные по схеме «емкостной трехточки» на биполярном и полевом транзисторах, показаны на рис. 12.4 и 12.5. Принципиально по своим характеристикам схемы «индуктивной» и «емкостной» трехточек не отличаются, однако в схеме «емкостной трехточки» не нужно делать лишний вывод у катушки индуктивности.

Во многих схемах генераторов (рис. 12.1 — 12.5 и другие схемы) выходной сигнал может сниматься непосредственно с колебательного контура через конденсатор небольшой емкости или через согласующую катушку индуктивной связи, а также с неза-земленных по переменному току электродов активного элемента (транзистора). При этом следует учитывать, что дополнительная нагрузка колебательного контура меняет его характеристики и рабочую частоту. Иногда это свойство используют «во благо» — для целей измерения различных физико-химических величин, контроля технологических параметров.

На рис. 12.6 показана схема несколько видоизмененного варианта ВЧ генератора — «емкостной трехточки». Глубину положительной обратной связи и оптимальные условия для возбуждения генератора подбирают с помощью емкостных элементов схемы.

Схема генератора, показанная на рис. 12.7, работоспособна в широком диапазоне значений индуктивности катушки колебательного контура (от 200 мкГн до 2 Гн) [Р 7/90-68]. Такой генератор можно использовать в качестве широкодиапазонного высокочастотного генератора сигналов или в качестве измерительного преобразователя электрических и неэлектрических величин в частоту, а также в схеме измерения индуктивностей.

Генераторы на активных элементах с N-образной ВАХ (туннельные диоды, лямбда-диоды и их аналоги) содержат обычно источник тока, активный элемент и частотозадающий элемент (LC-контур) с параллельным или последовательным включением. На рис. 12.8 показана схема ВЧ генератора на элементе с лям-бдаобразной вольт-амперной характеристикой. Управление его частотой осуществляется за счет изменения динамической емкости транзисторов при изменении протекающего через них тока.

Светодиод НИ стабилизирует рабочую точку и индицирует включенное состояние генератора.

Генератор на аналоге лямбда-диода, выполненный на полевых транзисторах, и со стабилизацией рабочей точки аналогом стабилитрона — светодиодом, показан на рис. 12.9. Устройство работает до частоты 1 МГц и выше при использовании указанных на схеме транзисторов.

На рис. 12.10 в порядке сопоставления схем по степени их сложности приведена практическая схема ВЧ генератора на туннельном диоде. В качестве полупроводникового низковольтного стабилизатора напряжения использован прямосме-щенный переход высокочастотного германиевого диода. Этот генератор потенциально способен работать в области наиболее высоких частот — до нескольких ГГц.

Высокочастотный генератор частоты , по схеме очень напоминающий рис. 12.7, но выполненный с использованием полевого транзистора, показан на рис. 12.11 [Рл 7/97-34].

Прототипом RC-генератора, показанного на рис. 11.18 является схема генератора на рис. 12.12 .

Этот генератор отличает высокая стабильность частоты, способность работать в широком диапазоне изменения параметров частотозадающих элементов. Для снижения влияния нагрузки на рабочую частоту генератора в схему введен дополнительный каскад — эмиттерный повторитель, выполненный на биполярном транзисторе VT3. Генератор способен работать до частот свыше 150 МГц.

Из числа всевозможных схем генераторов особо следует выделить генераторы с ударным возбуждением. Их работа основана на периодическом возбуждении колебательного контура (либо иного резонирующего элемента) мощным коротким импульсом тока. В результате «электронного удара» в возбужденном таким образом колебательном контуре возникают постепенно затухающие по амплитуде периодические колебания синусоидальной формы. Затухание колебаний по амплитуде обусловлено необратимыми потерями энергии в колебательном контуре. Скорость затухания колебаний определяется добротностью (качеством) колебательного контура. Выходной высокочастотный сигнал будет стабилен по амплитуде, если импульсы возбуждения следуют с высокой частотой. Этот тип генераторов является наиболее древним в ряду рассматриваемых и известен с XIX века.

Практическая схема генератора высокочастотных колебаний ударного возбуждения показана на рис. 12.13 [Р 9/76-52; 3/77-53]. Импульсы ударного возбуждения подаются на колебательный контур L1C1 через диод VD1 от низкочастотного генератора, например, мультивибратора, или иного генератора прямоугольных импульсов (ГПИ), рассмотренных ранее в главах 7 и 8. Большим преимуществом генераторов ударного возбуждения является то, что они работают с использованием колебательных контуров практически любого вида и любой резонансной частоты.

Еще один вид генераторов — генераторы шума, схемы которых показаны на рис. 12.14 и 12.15.

Такие генераторы широко используют для настройки различных радиоэлектронных схем. Генерируемые такими устройствами сигналы занимают исключительно широкую полосу частот — от единиц Гц до сотен МГц. Для генерации шума используют обратносмещенные переходы полупроводниковых приборов, работающих в граничных условиях лавинного пробоя. Для этого могут быть использованы переходы транзисторов (рис. 12.14) [Рл 2/98-37] или стабилитроны (рис. 12.15) [Р 1/69-37]. Чтобы настроить режим, при котором напряжение генерируемых шумов максимально, регулируют рабочий ток через активный элемент (рис. 12.15).

Отметим, что для генерации шума можно использовать и резисторы, совмещенные с многокаскадными усилителями низкой частоты, сверхрегенеративные приемники и др. элементы. Для получения максимальной амплитуды шумового напряжения необходим, как правило, индивидуальный подбор наиболее шумящего элемента.

Для того чтобы создать узкополосные генераторы шума, на выходе схемы генератора может быть включен LC- или RC-фильтр.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год

Генератор — это устройство, которое преобразует один вид энергии в другой вид энергии. В нашем случае генератор частот — это устройство, которое преобразует энергию источника питания в периодические колебания различной формы. Или простыми словами — это электротехнический прибор, который может выдавать различные по форме периодические сигналы.

Описание генератора частот

На моем рабочем столе не так давно прямиком из Китая появился вот такой генератор частоты:

Сзади него находятся вот такие выводы:

Давайте же более подробно разберем для чего они нужны. Итак USB — это просто питание, которое подается на генератор частоты. Один конец шнура втыкаем в этот разъем


а другой в блок питания, который шел в комплекте


Также в комплекте шли высокочастотные


Втыкаем в розетку блок питания и кнопочкой POWER запускаем генератор частот


Буковкой «F» принято обозначать частоту , от англ. frequency — частота. Hz — это Герцы (Hertz) — показывает количество колебаний в секунду. Следовательно и приставки «кило, мега, гига» могут также присутствовать перед Герцами. Что это за приставки, думаю, стыдно не знать. Снизу FUNCtion — функция (гребаная алгебра…) , WAVE — волна, в данном случае, форма сигнала. Представленный в данной статье генератор может формировать три формы сигналов — это синусоида (SIN), прямоугольная (SQR) и треугольная (TRI) форма. Почему такие интересные названия форм сигналов вы поймете далее.

Панель управления генератора частоты выглядит следующим образом:


Здесь мы с вами видим кнопку включения POWER, квадратную желтую кнопку WAVE, с помощью которой мы выбираем форму сигнала: синусоида, прямоугольный или пилообразный. SEL — переключение между режимами задания частоты и формой сигнала. ОК — без комментариев. Верхняя крутилка предназначена для установки частоты, средняя для среза сигнала, и нижняя для изменения величины амплитуды сигнала. Итак, теперь обо всем по порядку.

Какие сигналы умеет выдавать генератор

Для пробы вбиваем частоту 50 Герц


Цепляем кабель генератора частоты к выходу OUT, а зажимы кабеля цепляем к щупам осциллографа.


На осциллограмме наблюдаем вот такую картину:



Чистейшая синусоида 50 Герц!

Переключаем форму волны на треугольную


Вуаля!


Знаете кто это?

Так… Причем здесь Спанчбоб? На английском языке он пишется как Spanch Bob Square Pants — что в переводе Спанч Боб Квадратные штаны. Square — (с англ. квадрат, прямоугольник). Чтобы не запутаться в генераторе частоты или в другой какой-либо технике, вспомните СпанчБоба. SQR — прямоугольная форма сигнала.


А вот собственно и она на осциллограмме


Крутилкой OFFSET можно срезать форму сигнала сверху, снизу и сверху и снизу одновременно.



Скважность и коэффициент заполнения

Есть в электронике такой параметр, как скважность . Это параметр применяется к прямоугольной форме сигналов.

где S — скважность

T — период импульса, с

t — длительность импульса, с


Величина D (Duty) , обратная величине S, называется коэффициентом заполнения

Иллюстрация сигналов с различным коэффициентом заполнения

Вот так выглядит сигнал с коэффициентом заполнения 50%. У этого сигнала длительность импульса ровно в два раза меньше его периода, следовательно S=2, а D=50%. Такой сигнал прямоугольной формы называют


Меняем коэффициент заполнения D на 20%



то же самое, но на 80%



Выход TTL генератора частоты

Также в этом генераторе есть такие примочки, как выход TTL . TTL по-русски звучит, как транзисторно-транзисторная логика. Короче говоря — этот выход предназначен для тактирования импульсов на логические микросхемы. Еще более понятным языком — задает рабочую частоту для различных микросхем, чтобы они работали и выполняли свои функции. Здесь выходит прямоугольная форма сигнала амплитудой более 3 Вольт


и частотой в 1 килогерц.


Режим частотомера и счетчика импульсов

Теперь о примочках, которые китайский производители затолкали в этот генератор. Есть один интересный вывод — Ext.IN. Думаю, нетрудно догадаться. что IN — это вход. В этом генераторе частоты встроен частотомер и счетчик периодов сигнала. Для этих функций как раз и используется вывод Ext IN.


Я хочу измерить частоту электрического тока в розетке. Если вы помните, там переменный ток, который имеет частоту 50 Герц. Так ли это? Сейчас узнаем. Напряжение для входа Ext.IN должно быть от 0,5 и до 20 Вольт. В розетке же 220 Вольт, чтобы его убавить, используем . На выходе я получил напряжение в 2 Вольта. Чтобы вы увидели, что есть напряжение на вторичной обмотке трансформатора, я туда поставил светодиод. Цепляемся за выводы вторичной обмотки крокодильчиками нашего генератора частоты


И начинаем производить замеры. Опа на! Ровно 50 герц;-).



Характеристики генератора

Вот характеристики генератора частоты, кому интересно:

1. Signal Output function

waveforms Sine wave, Square wave and Triangle wave

amplitude ≥10Vp-p(signal output, no load)

impedance 50Ω±10%(signal output)

DC offset ±2.5V(no load)

Display LCD160

Resolution 0.01Hz

Frequency Stability ±1×10 -6

Frequency accuracy ±5×10 -6

Sine wave distortion ≤0.8% (reference frequency is 1kHz)

Trinagle linearity ≥98% (0.01Hz~10kHz)

Rise and fall time of square wave ≤100ns

Square Wave Duty range 1%~99%

2. TTL Output function

Frequency range 0.01Hz ~ 2MHz

Amplitude >3Vp-p

Fan Out >20 TTL loads

3. COUNTER function

Counter Range 0-4294967295

Frequency Meter Range 1Hz~60MHz

Input Voltage Range 0.5Vp-p~20Vp-p

Storage and transferred: 10 set of parameters with storage and recall functions.

Заключение

В заключении хотелось бы сказать пару слов. Как же правильно выбрать генератор частоты? Здесь, конечно, все зависит от функционала, а точнее от того, какую максимальную частоту может выдать генератор. Чем большую частоту может выдавать генератор, тем он дороже. Начинающему электронщику, думаю, 2 Мегагерца сигналов синуса, треугольного и прямоугольного хватит по самое не балуйся, да еще и частотомер+счетчик.

Стоит ли его брать? Думаю, нет. Лучше взять какой-нибудь один, но подороже. У меня сейчас вот такой генератор частоты


Где купить генератор частот

Я бы посоветовал Алиэкспресс. Здесь действительно можно подобрать приличный генератор.

Начиная от простых дешевых


Заканчивая полупрофессиональными


Выбирайте на ваш вкус и цвет!

Радиолюбителям необходимо получать различные радиосигналы. Для этого необходимо наличие нч и вч генератора. Зачастую такой тип приборов называют генератор на транзисторе за его конструктивную особенность.

Дополнительная информация. Генератор тока – это автоколебательное устройство, созданное и используемое для появления электрической энергии в сети или преобразования одного вида энергии в другой с заданной эффективностью.

Автоколебательные транзисторные приборы

Генератор на транзисторе разделяют на несколько видов:

  • по частотному диапазону выдаваемого сигнала;
  • по типу выдаваемого сигнала;
  • по алгоритму действия.

Частотный диапазон принято подразделять на следующие группы:

  • 30 Гц-300 кГц – низкий диапазон, обозначается нч;
  • 300 кГц-3 МГц – средний диапазон, обозначается сч;
  • 3-300 МГц – высокий диапазон, обозначается вч;
  • более 300 МГц – сверхвысокий диапазон, обозначается свч.

Так подразделяют диапазоны радиолюбители. Для звуковых частот используют промежуток 16 Гц-22 кГц и тоже делят его на низкие, средние и высокие группы. Эти частоты присутствуют в любом бытовом приёмнике звука.

Следующее разделение – по виду выдаваемого сигнала:

  • синусоидальный – происходит выдача сигнала по синусоиде;
  • функциональный – на выходе у сигналов появляется специально заданная форма, например, прямоугольная или треугольная;
  • генератор шума – на выходе наблюдается равномерный диапазон частот; диапазоны могут быть различны, в зависимости от нужд потребителя.

Транзисторные усилители различаются по алгоритму действия:

  • RC – основная область применения – низкий диапазон и звуковые частоты;
  • LC – основная область применения – высокие частоты;
  • Блокинг-генератор – используется для производства сигналов-импульсов с большой скважностью.

Изображение на электрических схемах

Для начала рассмотрим получение синусоидального типа сигнала. Самый известный генератор на транзисторе такого типа – генератор колебаний Колпитца. Это задающий генератор с одной индуктивностью и двумя последовательно соединёнными ёмкостями. С помощью него производится генерация требуемых частот. Оставшиеся элементы обеспечивают требуемый режим работы транзистора на постоянном токе.

Дополнительная информация. Эдвин Генри Колпитц – руководитель отдела инноваций «Вестерн Электрик» в начале прошлого века. Был пионером в разработке усилителей сигнала. Впервые произвёл радиотелефон, позволяющий разговаривать через Атлантику.

Также широко известен задающий генератор колебаний Хартли. Он, как и схема Колпитца, достаточно прост в сборке, однако требуется индуктивность с отводом. В схеме Хартли один конденсатор и две последовательно соединённые катушки индуктивности производят генерацию. Также в схеме присутствует дополнительная ёмкость для получения плюсовой обратной связи.

Основная область применения вышеописанных приборов – средние и высокие частоты. Используют для получения несущих частот, а также для генерации электрических колебаний малой мощности. Принимающие устройства бытовых радиостанций также используют генераторы колебаний.

Все перечисленные области применения не терпят нестабильного приёма. Для этого в схему вводят ещё один элемент – кварцевый резонатор автоколебаний. В этом случае точность высокочастотного генератора становится практически эталонной. Она достигает миллионных долей процента. В принимающих устройствах радиоприёмников для стабилизации приёма применяют исключительно кварц.

Что касается низкочастотных и звуковых генераторов, то здесь есть очень серьёзная проблема. Для увеличения точности настройки требуется увеличение индуктивности. Но увеличение индуктивности ведёт к нарастанию размеров катушки, что сильно сказывается на габаритах приёмника. Поэтому была разработана альтернативная схема генератора Колпитца – генератор низких частот Пирса. В ней индуктивность отсутствует, а на её месте применён кварцевый резонатор автоколебаний. Кроме того, кварцевый резонатор позволяет отсечь верхний предел колебаний.

В такой схеме ёмкость не даёт постоянной составляющей базового смещения транзистора дойти до резонатора. Здесь могут формироваться сигналы до 20-25 МГц, в том числе звуковые.

Производительность всех рассмотренных устройств зависит от резонансных свойств системы, состоящей из емкостей и индуктивностей. Отсюда следует, что частота будет определена заводскими характеристиками конденсаторов и катушек.

Важно! Транзистор – это элемент, произведённый из полупроводника. Имеет три вывода и способен от поданного входного сигнала небольшой величины управлять большим током на выходе. Мощность элементов бывает разная. Используется для усиления и коммутации электрических сигналов.

Дополнительная информация. Презентация первого транзистора была проведена в 1947 г. Его производная – полевой транзистор, появился в 1953г. В 1956г. за изобретение биполярного транзистора была вручена Нобелевская премия в области физики. К 80-м годам прошлого века электронные лампы были полностью вытеснены из радиоэлектроники.

Функциональный транзисторный генератор

Функциональные генераторы на транзисторах автоколебания изобретены для производства методично повторяющихся сигналов-импульсов заданной формы. Форма их задаётся функцией (название всей группы подобных генераторов появилось вследствие этого).

Различают три основных вида импульсов:

  • прямоугольные;
  • треугольные;
  • пилообразные.

Как пример простейшего нч производителя прямоугольных сигналов зачастую приводится мультивибратор. У него самая простая схема для сборки своими руками. Часто с её реализации начинают радио электронщики. Главная особенность – отсутствие строгих требований к номиналам и форме транзисторов. Это происходит из-за того, что скважность в мультивибраторе определяется емкостями и сопротивлениями в электрической цепи транзисторов. Частота на мультивибраторе находится в диапазоне от 1 Гц до нескольких десятков кГц. Высокочастотные колебания здесь организовать невозможно.

Получение пилообразных и треугольных сигналов происходит путём добавления в типовую схему с прямоугольными импульсами на выходе дополнительной цепочки. В зависимости от характеристик этой дополнительной цепочки, прямоугольные импульсы преобразуются в треугольные или пилообразные.

Блокинг-генератор

По своей сути, является усилителем, собранным на базе транзисторов, расположенных в один каскад. Область применения узка – источник внушительных, но скоротечных по времени (продолжительность от тысячных долей до нескольких десятков мкс) сигналов-импульсов с большой индуктивной плюсовой обратной связью. Скважность – больше 10 и может доходить до нескольких десятков тысяч в относительных величинах. Наблюдается серьезная резкость фронтов, по своей форме практически не отличающихся от геометрически правильных прямоугольников. Применяются в экранах электронно-лучевых приборов (кинескоп, осциллограф).

Генераторы импульсов на полевых транзисторах

Главное отличие полевых транзисторов – сопротивление на входе соизмеримо с сопротивлением электронных ламп. Схемы Колпитца и Хартли можно собирать и на полевых транзисторах, только катушки и конденсаторы необходимо подбирать с соответствующими техническими характеристиками. В противном случае генераторы на полевых транзисторах работать не будут.

Цепи, задающие частоту, подчиняются таким же законам. Для производства высокочастотных импульсов лучше приспособлен обычный прибор, собранный с использованием полевых транзисторов. Полевой транзистор не шунтирует индуктивность в схемах, поэтому генераторы вч сигнала работают более стабильно.

Регенераторы

LC-контур у генератора можно заменить путём добавления активного и отрицательного резистора. Это регенеративный путь получения усилителя. Такая схема обладает положительной обратной связью. Благодаря этому происходит компенсация потерь в колебательном контуре. Описанный контур называется регенерированным.

Генератор шума

Главное отличие – равномерная характеристика нч и вч частот в требуемом диапазоне. Это означает, что амплитудная характеристика всех частот этого диапазона не будет отличаться. Используются преимущественно в аппаратуре для измерений и в военной отрасли (особенно самолёто,- и ракетостроении). Кроме того, применяют для восприятия звука человеческим ухом – так называемый «серый» шум.

Простой звуковой генератор своими руками

Рассмотрим простейший пример – ревун. Понадобятся всего четыре элемента: плёночный конденсатор, 2 биполярных транзистора и резистор для подстройки. Нагрузкой будет электромагнитный излучатель. Для питания устройства достаточно простой батарейки на 9В. Работа схемы проста: резистор задаёт смещение на базу транзистора. Через конденсатор происходит обратная связь. Резистор для подстройки изменяет частоту. Нагрузка должна быть с высоким сопротивлением.

При всём многообразии типов, размеров и форм исполнения рассмотренных элементов мощных транзисторов для сверхвысоких частот до сих пор не придумано. Поэтому генераторы на транзисторах автоколебания применяют в основном для нч и вч диапазонов.

Видео

Предлагаемый высокочастотный генератор сигналов привлекает простотой конструкции и обеспечивает стабилизацию выходного напряжения в широкой полосе частот.

Общеизвестны требования, предъявляемые к широкополосному генератору сигналов. В первую очередь, это достаточно малая величина выходного сопротивления, позволяющая согласовать его выход с волновым сопротивлением коаксиального кабеля (обычно 50 Ом), и наличие автоматической регулировки амплитуды выходного напряжения, поддерживающей его уровень практически постоянным независимо от изменения частоты выходного сигнала. Для диапазона СВЧ (выше 30 МГц) большое значение имеют простая и надежная коммутация диапазонов, а также рациональная конструкция генератора.

Высокочастотный сигнал с генератора через конденсатор С4 поступает на затвор полевого транзистора VT3. Этим обеспечивается почти идеальная развязка нагрузки и генератора. Для установки напряжения смещения транзисторов VT3 и VT4 служат резисторы R7, R8, а токовый режим каскада определяют резисторы R12 - R 14. Для увеличения степени развязки выходное высокочастотное напряжение снимается с коллекторной цепи VT4.

Для стабилизации уровня сигнал ВЧ через конденсатор С9 подводится к выпрямителю с удвоением напряжения, выполненного на элементах VD1, VD2, С10, С11, R15. Пропорциональное амплитуде выходного сигнала выпрямленное напряжение дополнительно усиливается в цепи управления на VT5 и VT6. При отсутствии сигнала ВЧ транзистор VT6 полностью открыт; при этом к задающему генератору поступает максимальное напряжение питания. В результате облегчаются условия самовозбуждения генератора и в начальный момент устанавливается большая амплитуда его колебаний. Но это напряжение ВЧ через выпрямитель открывает VT5, при этом напряжение на базе VT6 увеличивается, что приводит к уменьшению напряжения питания генератора и в конечном счете к стабилизации амплитуды его колебаний. Равновесное состояние устанавливается при амплитуде сигнала ВЧ на коллекторе VT4 несколько выше 400 мВ.

Переменный резистор R17 (показан как потенциометр) в действительности представляет собой ВЧ аттенюатор и при отсутствии нагрузки на его выходе максимальное напряжение достигает четверти входного, т.е. 100 мВ. При нагрузке коаксиального кабеля на сопротивление 50 Ом (что является необходимым для его согласования в частотном диапазоне от 50 до 160 МГц и выше) на выходе генератора устанавливается напряжение ВЧ около 50 мВ, которое регулировкой аттенюатора может быть уменьшено до необходимого уровня.

В качестве регулятора R17 в схеме генератора был использован 50-омный аттенюатор фирмы Prech. Если для некоторых конкретных применений не требуется регулировки уровня выходного напряжения, аттенюатор R17 может быть заменен фиксированным резистором с сопротивлением 50 Ом.

Однако и в этом случае сохраняется возможность регулировки уровня напряжения ВЧ в некоторых пределах: с этой целью конденсатор С9 присоединяют не к коллектору VT4, а к его эмиттеру, при этом приходится учитывать небольшое изменение (уменьшение) уровня сигнала на высших частотах рабочего диапазона. Тогда нагрузку для VT4 образуют аттенюатор R17 и резисторы R11, R12. Увеличение амплитуды выходного высокочастотного напряжения может быть достигнуто замыканием резистора R11 проволочной перемычкой, если же требуется уменьшить амплитуду выходного напряжения, то резистор R11 оставляют в устройстве, а конденсаторы С7, С8 выпаивают. Еще большее уменьшение уровня выходного сигнала может быть получено снижением величины сопротивления R17, но в этом случае уже не будет согласования с кабелем, а на частотах выше 50 МГц это недопустимо!

Все детали генератора расположены на печатной плате небольших размеров. Катушки индуктивности генератора L1 - L3 намотаны на каркасах диаметром 7,5 мм. Их индуктивности подстраивают ферритовыми сердечниками с малыми потерями, предназначенными для работы в диапазоне УКВ. Катушка L3 имеет 62 витка, L2 - 15 и L1 - 5 витков провода ПЭЛ 0,2 (намотка всех катушек в один слой). Индуктивность WL1 выполнена в виде шлейфа, который одной своей стороной прикреплен к переключателю диапазонов, а другой - к конденсатору С1 переменной емкости. Размеры шлейфа приведены на рис. 2. Он выполнен из медного посеребренного провода диаметром 1,5 мм; для фиксации расстояний между его проводниками применяются три пластины из изоляционного материала с малыми потерями (например фторопласта), в которых просверлены по два отверстия диаметром 1,5 мм, находящиеся соответственно на расстоянии 10 и 2,5 мм (рис. 2).


Весь прибор размещают в металлическом корпусе размерами 45х120х75 мм. Если аттенюатор и ВЧ разъем установлены в корпусе на стороне, противоположной той, на которой находится печатная плата, то внутри корпуса прибора еще остается достаточно места для узлов блока питания: трансформатора питания мощностью 1 Вт с понижением напряжения сети до 15 В, выпрямительного моста и микросхемы 7812 (отечественный аналог- КР142ЕН8Б). В корпусе может быть размещен также миниатюрный частотомер с предварительным делителем частоты. При этом вход делителя следует подключить к коллектору VT4, а не к выходному разъему, что позволит производить отсчет частоты при любом напряжении ВЧ, снимаемом с аттенюатора R17.

Возможно изменение частотного диапазона прибора путем изменения индуктивности катушки контура или емкости конденсатора С1. При расширении частотного диапазона в сторону более высоких частот следует уменьшать потери контура настройки (применение в качестве С1 конденсатора с воздушным диэлектриком и керамической изоляцией, катушек индуктивности с малыми потерями). Кроме того, диоды VD1 и VD2 должны соответствовать этому расширенному диапазону частот, в противном случае с увеличением частоты выходное напряжение генератора будет увеличиваться, что объясняется уменьшением эффективности цепи стабилизации.

Для облегчения настройки параллельно С 1 подключают дополнительный переменный конденсатор малой емкости (электрический верньер) или же применяют механический верньер к конденсатору настройки с передаточным отношением 1:3 - 1:10.

От редакции. В этой конструкции транзисторы BF199 могут быть заменены отечественными - КТ339 с любым буквенным индексом, а при расширении диапазона генератора в сторону более высоких частот - КТ640, КТ642, КТ643. Вместо полевого транзистора BFW11 допустимо установить КП307Г или КП312, а вместо транзистора ВС252С подойдет КТ3107 с индексами Ж, И, К или Л. В качестве диодов можно применить детекторные диоды СВЧ, например, 2А201, 2А202А. Если же генератор работает на частотах, не превышающих 100 МГц, то могут быть использованы и диоды типа ГД507А (с коррекцией сопротивления резистора R11). Переключатель SA1 - ПГК. Мощность резисторов - 0,125 или 0,25 Вт.

Конденсатор С1 должен быть с воздушным диэлектриком и иметь керамическую или кварцевую изоляцию как статорных пластин от корпуса, так и роторных от оси; его максимальную емкость лучше ограничить 50 пф. Аттенюаторы типа, который применен в генераторе, нашей промышленностью не выпускаются. Вместо него допускается использовать плавный регулятор в цепи авторегулирования и обычный ступенчатый аттенюатор с П или Т-образными звеньями на выходе.

Похожие статьи