Распознавание изображений. Алгоритм Eigenface

08.07.2019

Аннотация: В лекции рассматриваются характеристики задач распознавания образов и их типы, основы теории анализа и распознавания изображений (признаковый метод), распознавание по методу аналогий. Среди множества интересных задач по распознаванию рассмотрены принципы и подход к распознаванию в задачах машинного чтения печатных и рукописных текстов.

Современные роботы, снабженные телевизионными камерами, способны достаточно хорошо видеть, чтобы работать с реальным миром. Они могут делать заключения о том, какого типа объекты присутствуют, в каких они находятся отношениях между собой, какие группы образуют, какой текст содержат и т. д. Однако сложные задачи распознавания, например, распознавание похожих трехмерных быстродвижущихся объектов или неразборчивого рукописного текста требуют совершенствования методов и средств для своего решения. В этой лекции мы рассмотрим основы некоторых традиционных методов распознавания. Наше рассмотрение мы начнем с наиболее часто применяемого признакового метода распознавания [ 1.4 ] , [ 4.1 ] .

Общая характеристика задач распознавания образов и их типы.

Под образом понимается структурированное описание изучаемого объекта или явления, представленное вектором признаков , каждый элемент которого представляет числовое значение одного из признаков , характеризующих соответствующий объект . Общая структура системы распознавания и этапы в процессе ее разработки показаны на рис. 4.1 .


Рис. 4.1.

Суть задачи распознавания - установить, обладают ли изучаемые объекты фиксированным конечным набором признаков , позволяющим отнести их к определенному классу.

Задачи распознавания имеют следующие характерные черты .

  1. Это информационные задачи , состоящие из двух этапов: а) приведение исходных данных к виду, удобному для распознавания ; б) собственно распознавание (указание принадлежности объекта определенному классу).
  2. В этих задачах можно вводить понятие аналогии или подобия объектов и формулировать понятие близости объектов в качестве основания для зачисления объектов в один и тот же класс или разные классы.
  3. В этих задачах можно оперировать набором прецедентов-примеров , классификация которых известна и которые в виде формализованных описаний могут быть предъявлены алгоритму распознавания для настройки на задачу в процессе обучения.
  4. Для этих задач трудно строить формальные теории и применять классические математические методы (часто недоступна информация для точной математической модели или выигрыш от использования модели и математических методов не соизмерим с затратами).
  5. В этих задачах возможна "плохая" информация (информация с пропусками, разнородная, косвенная, нечеткая, неоднозначная, вероятностная).

Целесообразно выделить следующие типы задач распознавания .

  1. Задача распознавания - отнесение предъявленного объекта по его описанию к одному из заданных классов ( обучение с учителем ).
  2. Задача автоматической классификации - разбиение множества объектов (ситуаций) по их описаниям на систему непересекающихся классов ( таксономия , кластерный анализ , обучение без учителя).
  3. Задача выбора информативного набора признаков при распознавании .
  4. Задача приведения исходных данных к виду, удобному для распознавания .
  5. Динамическое распознавание и динамическая классификация - задачи 1 и 2 для динамических объектов.
  6. Задача прогнозирования - это задачи 5, в которых решение должно относиться к некоторому моменту в будущем.

Основы теории анализа и распознавания изображений.

Пусть дано множество M объектов ; на этом множестве существует разбиение на конечное число подмножеств (классов) i = {1,m} , Объекты задаются значениями некоторых признаков x j , j= {1,N}. Описание объекта называют стандартным, если принимает значение из множества допустимых значений.

Пусть задана таблица обучения ( таблица 4.1). Задача распознавания состоит в том, чтобы для заданного объекта и набора классов , ..., по обучающей информации в таблице обучения о классах и описанию вычислить предикаты:

где i= {1,m}, - неизвестно.

Таблица 4.1. Таблица обучения
Объект Признаки и их значения Класс
x 1 x j x n
...
r11
...
...

Рассмотрим алгоритмы распознавания , основанные на вычислении оценок. В их основе лежит принцип прецедентности (в аналогичных ситуациях следует действовать аналогично).

Пусть задан полный набор признаков x 1 , ..., x N . Выделим систему подмножеств множества признаков S 1 , ..., S k . Удалим произвольный набор признаков из строк , , ..., и обозначим полученные строки через , , ..., , .

Правило близости, позволяющее оценить похожесть строк и состоит в следующем. Пусть "усеченные" строки содержат q первых символов, то есть и Заданы пороги ... , Строки и считаются похожими, если выполняется не менее чем неравенств вида

Величины ... , входят в качестве параметров в модель класса алгоритмов на основе оценок.

Пусть - оценка объекта по классу .

Описания объектов , предъявленные для распознавания , переводятся в числовую матрицу оценок. Решение о том, к какому классу отнести объект , выносится на основе вычисления степени сходства распознавания объекта (строки) со строками, принадлежность которых к заданным классам известна.

Проиллюстрируем описанный алгоритм распознавания на примере. Задано 10 классов объектов (рис. 4.2а). Требуется определить признаки таблицы обучения , пороги и построить оценки близости для классов объектов, показанных на рис. 4.2б . Предлагаются следующие признаки таблицы обучения :

x 1 - количество вертикальных линий минимального размера;


Что такое технология распознавания изображений? Распознавание изображений (некоторые также называют «компьютерным зрением») это технология, которая создана получать, обрабатывать, анализировать, и понимать изображения реального мира, с целью предоставить цифровую или символьную информацию. Что вы сказали? Не беспокойтесь. Мы понимаем, что это сложно. Позвольте перефразировать: когда вы загружаете свою фотографию, или фотографию ваших друзей на Facebook, все лица будут распознаны и пользователи будут автоматически отмечены: это и называется распознаванием изображений. Хорошо, это звучит намного понятнее Прекрасно! Потому что сейчас будет еще сложнее… Компьютерное зрение – очень широкая область компьютерных наук, так как сюда вовлечено множество аспектов, таких как машинное обучение, интеллектуальный анализ данных, расширение базы знаний, распознавание шаблонов, и другие. Исследования в данной области привели к технологиям, которые имитируют человеческое зрение. И для того, чтобы создать программное обеспечение, способное видеть, вам для начала понадобится пара линз. Что вы имеете в виду? Я имею в виду, что для того, чтобы обработать изображение, вам для начала нужно его снять с помощью камеры. Затем, программное обеспечение извлекает из него необходимую информацию, и после этого, совершает действия, основываясь на полученных данных. До недавних пор, цифровые камеры были неприлично дорогими, имели очень низкое разрешение, и распознавание изображений было невозможно совершать в режиме реального времени. Но с приходом мобильных телефонов и высокоскоростных камер, возможности стали безграничны. Например, знали ли вы, что несколько лет назад Японская компания создала робота, который мог играть в «камень, ножницы, бумага» и побеждать в 10 из 10 случаях. Это невозможно… Я так не думаю. Вот ссылка на это видео. Робот использует высокоскоростные камеры для распознавания движения руки человека. Анализируя шаблоны движения руки со скоростью 500 кадров в секунду, робот способен немедленно реагировать в ответ, и в результате выигрывать. Чтобы этого добиться, камера захватывает изображение очертаний руки, формирует объект и отравляет информацию программному обеспечению, которое распознает шаблон и генерирует реакцию робота в ответ. Объект руки человека формируется 60 мс, и затем робот выполняет все вышеперечисленное за 1 мс. Хорошо, но я думал, что речь пойдет о мобильных … Не беспокойтесь, мы дойдем и до этого. Одной из самых вызывающих и перспективных областей является обработка и распознавание изображений для имитации человеческого зрения: восприятия изображения, обработки и дальнейшей реакции. Это именно то, что делает робот на предыдущем примере: он воспринимает изображение путем захвата картинки, понимает, что делает человек, и реагирует, выполняя ответный ход. Конечно, мы, разработчики программного обеспечения, более заинтересованы в той части программы, где происходит распознавание шаблона. Так как же воспринимающая часть на самом деле работает? Ответ весьма прост - «математика». Самое важное направление в алгоритмах распознавания шаблонов - вероятностная классификация. Когда изображение сравнивается с набором других сохраненных изображений, задается значение (вероятность) для каждого другого изображения, с которым оно совпадает. Комбинируя несколько алгоритмов вероятностных классификаций, которые применяются к тому же набору изображений, называемых «ансамблем», предоставляется итоговая оценка для каждого изображения, которая затем используется программой для предположения, на какие изображение это похоже. Как вы могли представить, это довольно сложно для мобильного устройства. Вы можете подумать, что мощность процессора является проблемой. Так и есть! И самое тонкое место - база данных изображений, с которыми сравнивается оригинал. На примере робота, о котором уже говорилось, Вы можете иметь только ограниченное количество изображений (камень, ножницы, бумага), с которыми можно работать, но в примере с распознаванием изображений в Facebook, невозможно сохранять лица каждого человека, кто зарегистрирован в социальной сети на мобильном устройстве (это не совсем тот способ, по которому работает данная функция; Facebook сохраняет уникальный хэш для каждого человека, используя определенные характеристики лица как основу, но пример был предоставлен исключительно для того, чтоб объяснить идею). Чтоб решить эту и другие проблемы, распознавание изображений обычно выполняется на стороне сервера, где процессорная мощность, либо место для хранения данных не представляет проблем. Мобильные устройства могут просто отправлять изображение, и нейронная сеть или оборудование обработают запрос. Одну минуту! Я видел, как это работает на мобильных устройствах без соединения с интернетом Да, но тут только часть правды. Мобильному устройству все еще необходимо отправлять изображения на сервер, также как и серверу необходимо хранить их. Как только изображения окажутся там, сервер обработает изображение, сгенерирует намного меньший хэш, и вернет обратно в приложение. И затем, к примеру, вы можете зайти в режим полета и увидеть изображение на камере телефона, сравнение будет сделано в режиме оффлайн. Спасибо за все эти объяснения. Теперь поговорим о деле А, так вы хотите знать, как применить распознавание изображений на деле? Конечно, для вас не станет сюрпризом, что у распознавания изображений есть потенциал произвести революцию во всем мире. В области здравоохранения, например, IBM начали использовать технологию распознавания изображений для обработки большого количества медицинских данных. Это может помочь врачам диагностировать болезни быстрее и с большей точностью. Baidu разработали прототип DuLight: продукт для распознавания объектов, который поможет слепым «видеть» с помощью снимков всего, что их окружает и передавая обработанные данные через наушник. Однако, на продукцию в области искусственного интеллекта обычно налагаются этические и законодательные ограничения. Возьмем, к примеру, автомобильную индустрию и беспилотные автомобили от Google. Технология готова, но предстоит еще долгий процесс, прежде чем эти машины появятся на рынке. Хорошо, но я не планирую строить беспилотный автомобиль – что может технология распознавания изображений дать моему бизнесу? Честно говоря, многое! Существует множество мелкомасштабных методов применения технологии распознавания изображений для получения преимуществ. Так как мы говорим о мобильных устройствах, давайте рассмотрим некоторые примеры использования технологии распознавания изображений в мобильной связи. Одним из крупнейших игроков в этой области является Blippar: платформа для визуального обнаружения, которая позволяет пользователям сканировать объекты и получать их описание, что делает физический мир интерактивным игровым полем. Для любителей растений существует LeafSnap, для любителей вина - Delectable. Но существуют и такие маркетинговые компании, такие как Makeup Genius, TrackMyMaccas, и SnapFindShop, на которые стоит взглянуть. Эти брэнды применяют распознавание изображений для изучения социального обмена и привлечения пользователей. Так вы говорите, что технология распознавания изображений может помочь мне привлечь клиентов? Так как мы говорим о мобильных технологиях, слово «привлечение» так или иначе, всплыло бы в течение разговора. Мир приложений вращается вокруг привлечения пользователей: если вы не преуспели в этом, то есть шанс, что пользователь просто никогда не вернется к использованию вашего приложения. Распознавание изображений даст вашему приложению огромные возможности для расширения, поскольку технология позволит Вам выйти за пределы мобильного устройства в физический мир пользователя. Ваше приложение сможет предоставить что-то более материальное, что позволит создать сильную эмоциональную связь. И так как эмоции тесно связаны с памятью, у вас есть шанс создать незабываемое впечатление о Вашем бизнесе. http://www.softacom.ru/ru_imagesrecognition

Обнаружение и распознавание объектов составляет неотъемлемую часть человеческой деятельности. Пока еще не совсем понятно, как человеку удается так точно и так быстро выделять и узнавать нужные предметы в разнообразии окружающей среды. Попытки выяснить это делаются физиологами и психологами уже более ста лет. Однако здесь наша цель состоит не в понимании механизма восприятия человека (и животных), а в описании методов автоматизированного распознавания объектов по их изображениям: новой информационной технологии, мощной, практичной и в некотором смысле универсальной методологии обработки и оценивания информации и выявления скрытых закономерностей .

Распознавание трехмерных объектов по их двумерным изображениям стало в последнее время одной из важнейших задач анализа сцен и машинного зрения. Исходную для распознавания информацию содержат изображения в различных частях полного спектра излучений (оптические, инфракрасные, ультразвуковые и т.д.), полученные различными способами (телевизионные, фотографические, лазерные, радиолокационные, радиационные и т.д.), преобразованные в цифровую форму и представленные в виде некоторой числовой матрицы. Под объектом понимаем не только (и не столько) цифровое представление локального фрагмента двумерной сцены, а некоторое его приближенное описание, в виде набора характерных свойств (признаков). Основное назначение описаний (образов объектов)- это их использование в процессе установления соответствия объектов, осуществляемого путем сравнения (сопоставления). Задачей распознавания является определение «скрытой» принадлежности объекта к тому или иному классу путем анализа вектора значений наблюдаемых признаков. Информацию о связи между значениями признаков объекта и его принадлежностью к определенному классу алгоритм распознавания должен извлечь из обучающей совокупности объектов, для которых известны либо значения и признаков и классов, либо только значения их признаков. В первом случае задача называется задачей обучения распознаванию образов с учителем, а во втором - без учителя. Здесь предполагается что каждый объект «принадлежит» одному образу из некоторого фиксированного множества. При отнесении (классификации) объектов требуется применить некоторое установленное ранее правило, чтобы решить, какому образу (классу) принадлежит объект. В задаче распознавания с обучением правило классификации должно вырабатываться на основе исследования множества объектов с известной принадлежностью различным классам. Эти объекты в совокупности называются обучающим множеством или выборкой. В задаче автоматического формирования образов объекты предъявляются «наблюдателю» без указания их принадлежности классам (распознавание без учителя). Наблюдатель (алгоритм распознавания) должен самостоятельно построить соответствующее определение классов (кластерный анализ). Разумеется, такой подход к анализу изображений адекватен лишь одному из двух аспектов двуединой задачи обнаружения и распознавания объектов сцены, а именно, собственно распознаванию класса вполне определенного (выделенного) фрагмента изображения, рассматриваемого как внешнее проявление некоторого скрытого образа. При этом вынужденно предполагается уже решенной задача сегментации, т. е. определение границ фрагментов, каждый из которых допустимо рассматривать как единое целое (объект).

Исследования по распознаванию образов пространственных объектов отличаются большим разнообразием в постановке задач и выборе средств их решения (методов обработки соответствующих фрагментов изображений), что является следствием разнообразия областей практического применения. Традиционными задачами, решавшимися еще в первых опытных разработках систем машинного зрения, служат задачи обнаружения и распознавания объектов, имеющих заданную форму на основе зашумленных и (возможно) деформированных изображений. Так, одной из первых практических задач, стимулировавших становление и развитие теории распознавания объектов, была задача идентификации и распознавания человеческих лиц

Рис. 9.1. Иллюстрация проблемы распознавания человеческих лиц и подходов к выбору информативных фрагментов (источник )

Сложность этой задачи обусловлена многообразием возможных ракурсов (масштабов, положений, углов поворота) распознаваемых лиц (см. рис. 9.1). Здесь предварительно необходимо построить внутреннее представление объектов, включающее проекции изображений . Данная задача до сих пор имеет широкое применение в системах охраны, при верификации кредитных карточек, в криминалистической экспертизе, на телеконференциях и т.д. Для ее решения предложены методы распознавания, основанные на теории нейрокомпыотерных сетей, корреляционно-экстремальных алгоритмах, методах вычисления статистических и алгебраических моментов, контурном анализе, 3D-моделировании и др. . Среди них особое внимание уделяется направлению, связанному с автоматическим выделением характерных (информативных) признаков объектов сцены, в данном случае элементов глаз, носа, рта, подбородка – рис. 9.1.

Немного позже, в задачах мониторинга (контроля) природной среды по аэрокосмическим изображениям наметилось еще несколько важных подходов к построению информативных признаков. В частности, когда были получены первые многозональные и спектрозональные данные дистанционного зондирования, большинство разработчиков машинных методов интерпретации обратились к изучению спектральных свойств природных объектов, поскольку яркости соответствующих им элементов изображений в различных спектральных диапазонах позволяли идентифицировать их при относительно низких вычислительных затратах .

Рис. 9.2. Кластер-анализ спектральной яркости природных объектов, отображенный и двумерную плоскость пары информативных спектральных каналов

Наиболее употребительным методом обработки была «классификация без учителя» на основе кластерного анализа, с помощью которого пространство спектральных признаков разбивалось на различимые группы (кластеры, см. рис. 9.2), а классификация элементов изображений позволяла одновременно сегментировать сцену на спектрально однородные области .

Кроме того, выяснилось, что при распознавании природных образований помимо спектрозональных признаков оказались чрезвычайно важными также признаки, характеризующие локальную пространственную организацию полутонов (текстуру) объектов анализа. Опытный оператор-дешифровщик полагается на такую информацию (форму, ориентацию, распределение характерных элементов, контекст и другие пространственные характеристики) иногда в большей степени, чем на спектрозональные признаки . В любом случае привлечение текстурных признаков позволяет существенно повысить надежность распознавания и увеличить количество различимых классов природных объектов.

В экспериментальных исследованиях, ориентированных на решение конкретных задач, исходными данными является некоторое множество фрагментов изображений (объектов сцены), дешифрированное специалистами-предметниками и служащее обучающим и контрольным материалом. Здесь первичная цель разработки алгоритма распознавания заключается в получении ответа на вопрос, возможен ли автоматизированный анализ и классификация соответствующих изображений объектов и, если да, то какой набор дешифровочных признаков наиболее эффективен и какую структуру должны иметь решающее правило и метод дешифрирования.

Выполнен обзор нейросетевых методов, используемых при распознавании изображений. Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений:

  • применение для извлечение ключевых характеристик или признаков заданных образов,
  • классификация самих образов или уже извлечённых из них характеристик (в первом случае извлечение ключевых характеристик происходит неявно внутри сети),
  • решение оптимизационных задач.

Архитектура искусственных НС имеет некоторое сходство с естественными нейронными сетями. НС, предназначенные для решения различных задач, могут существенно различаться алгоритмами функционирования, но их главные свойства следующие .

НС состоит из элементов, называемых формальными нейронами, которые сами по себе очень просты и связаны с другими нейронами. Каждый нейрон преобразует набор сигналов, поступающих к нему на вход в выходной сигнал. Именно связи между нейронами, кодируемые весами, играют ключевую роль. Одно из преимуществ НС (а так же недостаток при реализации их на последовательной архитектуре) это то, что все элементы могут функционировать параллельно, тем самым существенно повышая эффективность решения задачи, особенно в обработке изображений. Кроме того, что НС позволяют эффективно решать многие задачи, они предоставляют мощные гибкие и универсальные механизмы обучения, что является их главным преимуществом перед другими методами (вероятностные методы, линейные разделители, решающие деревья и т.п.). Обучение избавляет от необходимости выбирать ключевые признаки, их значимость и отношения между признаками. Но тем не менее выбор исходного представления входных данных (вектор в n-мерном пространстве, частотные характеристики, вэйвлеты и т.п.), существенно влияет на качество решения и является отдельной темой. НС обладают хорошей обобщающей способностью (лучше чем у решающих деревьев ), т.е. могут успешно распространять опыт, полученный на конечном обучающем наборе, на всё множество образов.

Опишем применение НС для распознавания изображений, отмечая возможности применения для распознавания человека по изображению лица.

1. Многослойные нейронные сети

Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего. НС с двумя решающими слоями может с любой точностью аппроксимировать любую многомерную функцию. НС с одним решающим слоем способна формировать линейные разделяющие поверхности, что сильно сужает круг задач ими решаемых, в частности такая сеть не сможет решить задачу типа “исключающее или”. НС с нелинейной функцией активации и двумя решающими слоями позволяет формировать любые выпуклые области в пространстве решений, а с тремя решающими слоями - области любой сложности, в том числе и невыпуклой. При этом МНС не теряет своей обобщающей способности. Обучаются МНС при помощи алгоритма обратного распространения ошибки, являющегося методом градиентного спуска в пространстве весов с целью минимизации суммарной ошибки сети. При этом ошибки (точнее величины коррекции весов) распространяется в обратном направлении от входов к выходам, сквозь веса, соединяющие нейроны.

Простейшее применение однослойной НС (называемой автоассоциативной памятью) заключается в обучении сети восстанавливать подаваемые изображения. Подавая на вход тестовое изображение и вычисляя качество реконструированного изображения, можно оценить насколько сеть распознала входное изображение. Положительные свойства этого метода заключаются в том, что сеть может восстанавливать искажённые и зашумленные изображения, но для более серьёзных целей он не подходит.

Рис. 1. Многослойная нейронная сеть для классификации изображений. Нейрон с максимальной активностью (здесь первый) указывает принадлежность к распознанному классу.

МНС так же используется для непосредственной классификации изображений – на вход подаётся или само изображение в каком-либо виде, или набор ранее извлечённых ключевых характеристик изображения, на выходе нейрон с максимальной активностью указывает принадлежность к распознанному классу (рис. 1). Если эта активность ниже некоторого порога, то считается, что поданный образ не относится ни к одному из известных классов. Процесс обучения устанавливает соответствие подаваемых на вход образов с принадлежностью к определённому классу. Это называется обучением с учителем. В применении к распознаванию человека по изображению лица, такой подход хорош для задач контроля доступа небольшой группы лиц. Такой подход обеспечивает непосредственное сравнение сетью самих образов, но с увеличением числа классов время обучения и работы сети возрастает экспоненциально. Поэтому для таких задач, как поиск похожего человека в большой базе данных, требует извлечения компактного набора ключевых характеристик, на основе которых можно производить поиск.

Подход к классификации с использованием частотных характеристик всего изображения, описан в . Применялась однослойная НС, основанная на многозначных нейронах. Отмечено 100% распознавание на базе данных MIT, но при этом осуществлялось распознавание среди изображений, которым сеть была обучена.

Применение МНС для классификации изображений лиц на основе таких характеристик, как расстояния между некоторыми специфическими частями лица (нос, рот, глаза), описано в . В этом случае на вход НС подавались эти расстояния. Использовались так же гибридные методы – в первом на вход НС подавались результаты обработки скрытой марковской моделью, а во втором – результат работы НС подавался на вход марковской модели. Во втором случае преимуществ не наблюдалось, что говорит о том, что результат классификации НС достаточен.

В показано применение НС для классификации изображений, когда на вход сети поступают результаты декомпозиции изображения по методу главных компонент.

В классической МНС межслойные нейронные соединения полносвязны, и изображение представлено в виде одномерного вектора, хотя оно двумерно. Архитектура свёрточной НС направлена на преодоление этих недостатков. В ней использовались локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными подвыборками (spatial subsampling). Свёрточная НС (СНС) обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, искажениям. Архитектура СНС состоит из многих слоёв, каждый из которых имеет несколько плоскостей, причём нейроны следующего слоя связаны только с небольшим числом нейронов предыдущего слоя из окрестности локальной области (как в зрительной коре человека). Веса в каждой точке одной плоскости одинаковы (свёрточные слоя). За свёрточным слоем следует слой, уменьшающий его размерность путём локального усреднения. Затем опять свёрточный слой, и так далее. Таким образом, достигается иерархическая организация. Более поздние слои извлекают более общие характеристики, меньше зависящие от искажений изображения. Обучается СНС стандартным методом обратного распространения ошибки. Сравнение МНС и СНС показало существенные преимущества последней как по скорости, так и по надёжности классификации. Полезным свойством СНС является и то, что характеристики, формируемые на выходах верхних слоёв иерархии, могут быть применимы для классификации по методу ближайшего соседа (например, вычисляя евклидово расстояние), причём СНС может успешно извлекать такие характеристики и для образов, отсутствующих в обучающем наборе. Для СНС характерны быстрая скорость обучения и работы. Тестировании СНС на базе данных ORL, содержащей изображения лиц с небольшими изменениями освещения, масштаба, пространственных поворотов, положения и различными эмоциями, показало приблизительно 98% точность распознавания, причём для известных лиц, предъявлялись варианты их изображений, отсутствующие в обучающем наборе. Такой результат делает эту архитектуру перспективной для дальнейших разработок в области распознавания изображений пространственных объектов.

МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В применялся нейросетевой детектор для обнаружения изображения лица во входном изображении. Изображение сканировалось окном 20х20 пикселей, которое подавалось на вход сети, решающей принадлежит ли данный участок к классу лиц. Обучение производилось как с использованием положительных примеров (различных изображений лиц), так и отрицательных (изображений, не являющихся лицами). Для повышения надёжности детектирования использовался коллектив НС, обученных с различными начальными весами, вследствие чего НС ошибались по разному, а окончательное решение принималось голосованием всего коллектива.

Рис. 2. Главные компоненты (собственные лица) и разложение изображения на главные компоненты.

НС применяется так же для извлечения ключевых характеристик изображения, которые затем используются для последующей классификации. В , показан способ нейросетевой реализации метода анализа главных компонент. Суть метода анализа главных компонент заключается в получении максимально декореллированных коэффициентов, характеризующих входные образы. Эти коэффициенты называются главными компонентами и используются для статистического сжатия изображений, в котором небольшое число коэффициентов используется для представления всего образа. НС с одним скрытым слоем содержащим N нейронов (которое много меньше чем размерность изображения), обученная по методу обратного распространения ошибки восстанавливать на выходе изображение, поданное на вход, формирует на выходе скрытых нейронов коэффициенты первых N главных компонент, которые и используются для сравнения. Обычно используется от 10 до 200 главных компонент. С увеличением номера компоненты её репрезентативность сильно понижается, и использовать компоненты с большими номерами не имеет смысла. При использовании нелинейных активационных функций нейронных элементов возможна нелинейная декомпозиция на главные компоненты. Нелинейность позволяет более точно отразить вариации входных данных. Применяя анализ главных компонент к декомпозиции изображений лиц, получим главные компоненты, называемые собственными лицами (holons в работе ), которым так же присуще полезное свойство – существуют компоненты, которые в основном отражают такие существенные характеристики лица как пол, раса, эмоции. При восстановлении компоненты имеют вид, похожий на лицо, причём первые отражают наиболее общую форму лица, последние – различные мелкие отличия между лицами (рис. 2). Такой метод хорошо применим для поиска похожих изображений лиц в больших базах данных. Показана так же возможность дальнейшего уменьшения размерности главных компонент при помощи НС . Оценивая качество реконструкции входного изображения можно очень точно определять его принадлежность к классу лиц.

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Тема 18. РАСПОЗНАВАНИЕ ОБЪЕКТОВ ИЗОБРАЖЕНИЙ

Любое человеческое знание начинается с интуиции, переходит к понятиям и завершается идеями.

Иммануил Кант. Немецкий философ. XVIII в.

Когда компьютер вместо человека распознает на изображении лошадь, он не так уж далек от истины, хотя и находится только в начальной стадии процесса формирования своих знаний о человеке.

Георгий Коргуль, Уральский геофизик. ХХ в.

Введение.

1. Предварительная обработка изображений. Коррекция яркости и контрастности изображений. Гистограммы яркости. Выравнивание освещенности изображений. Улучшение пространственного разрешения.

2. Определение границ объектов на изображении. Поиск границ на основе градиента. Поиск границ на основе лапласиана.

3. Выделение объектов на изображении. Алгоритм "волшебная палочка". Алгоритм "умные ножницы". Сегментация при помощи разрезов на графах.

4. Выделение признаков объектов. Определение площади и периметра. Определение радиусов вписанных и описанных окружностей. Определение сторон описанного прямоугольника. Определение числа и взаимного положения углов. Определение моментов инерции объекта.

5. Обнаружение и распознавание объектов изображений. Обнаружение объектов. Способ прямого сравнения объекта с эталонным изображением. Корреляционный метод. Методы распознавания на основе системы признаков.

ВВЕДЕНИЕ

Подробное рассмотрение теоретических аспектов данной темы не является задачей настоящего раздела. Более полную информацию по этим вопросам желающие могут получить в других источниках. Ниже даются практические рекомендации по реализации отдельных методов, непосредственно связанных с наиболее типичными задачами, которые решаются на основе использования алгоритмов, рассмотренных в предыдущей теме.

Распознавание объектов на изображениях оптических датчиков (фото-, аэро-, спутниковых и прочих снимках) – традиционная область обработки изображений. Вместе с тем методы распознавания объектов начали широко применяться в автоматических системах теленаблюдений, в рентгеновской и магнито-резонансной томографии, и прочих видах изначально цифровых изображений как для постобработки, так и для обработки в реальном времени.

^ 18.1. предварительная обработка ИЗОБРАЖЕНИй

Операции распознавания на изображениях определенных объектов, как правило, предваряются обработкой изображений для создания условий, повышающих эффективность и качество выделения и распознавания искомых или изучаемых объектов. Методы предварительной обработки зависят от задач исследований, довольно разнообразны и могут включать, например, выделение наиболее информативных фрагментов, их увеличение, получение 3-мерных изображений, цветокартирование, реализация высокого пространственного разрешения, повышение контрастного разрешения, улучшение качества изображений и т.п. Рассмотрим среди них те, без которых, обычно, не обходится ни одна типовая задача.

Коррекция яркости и контрастности изображений .

Изображения, вводимые в компьютер, часто являются малоконтрастными. Слабый контраст, как правило, обусловлен широким диапазоном воспроизводимых яркостей, нередко сочетающийся с нелинейностью характеристики передачи уровней. Характер зависимости изменения яркости палитры пикселей от минимального значения до максимального также влияет на качество изображения. Оптимальной является линейная функция изменения интенсивности пикселей. При вогнутой характеристике изображение будет более темным, при выпуклой - более светлым. И в том, и в другом случае признаки объектов могут быть искажены и недостаточно хорошо идентифицируемы. Коррекция (линеаризация) яркости палитры существенно улучшает качество изображения.

Малая контрастность может быть обусловлена и тем, что вариации функции яркости пикселей на изображении намного меньше допустимого диапазона шкалы яркостей. В этом случае контрастность изображения повышается путем "растягивания" реального динамического диапазона яркостей на всю шкалу при помощи линейного поэлементного преобразования.

Другой способ коррекции яркости палитры связан с инверсией входного изображения. Поскольку различать слабые сигналы на темном фоне достаточно сложно, то инверсная форма представления таких изображений имеет другую гистограмму яркостей, более приемлемую для наблюдения и визуальной идентификации.

Некоторые задачи обработки изображения связаны с преобразованием полутонового изображения (много градаций яркости) в бинарное (две градации). Преобразование осуществляется для того, чтобы сократить информационную избыточность изображения, оставить в нем только информацию, которая нужна для решения конкретной задачи. В бинарном изображении должны быть сохранены определенные детали (например, очертания изображенных объектов) и исключены несущественные особенности (фон).

Пороговая обработка полутонового изображения заключается в разделении всех элементов изображения на два класса А 1 и А 2 по признаку яркости с границей А гр, и в выполнении соответствующей пороговой фильтрации с заменой пикселей изображения на установленную яркость классов. Выбор границы определяется видом гистограммы яркости исходного изображения. Для простейших изображений типа чертежей, машинописного текста и т.п., имеющих бимодальное распределение, граница устанавливается по минимуму между модами распределения. В общем случае изображение может быть многомодальным, и если устанавливается достаточно надежное соответствие между объектами и соответствующими модами их яркости, то пороговая фильтрация также может предусматривать несколько классов яркости пикселей.

Диапазон яркости изображения в компьютере может иметь отличия от диапазона яркостей исходного, например, в силу недостаточной экспозиции. Существует два возможных способа коррекции яркости. Согласно первому способу изображение линейно отображается в диапазоне яркостей исходного. Второй способ предусматривает ограничение яркости пикселей в обработанном изображении максимальным и минимальным пороговыми уровнями, и имеет более широкое применение. Присутствие в изображении самых светлых и самых темных тонов создает впечатление хорошей контрастности, однако излишняя контрастность приводит к тому, что максимальные градации влияют на средние тона, а большинство деталей изображения окрашены именно в средних тонах и излишняя контрастность может приводит к потере этих деталей или затруднить их выделение.

Гистограммы яркости. Инструментом для оценки уровней интенсивности пикселей является гистограмма - графическое отображение количественной характеристики вероятностного распределения интенсивности (яркости) пикселей в выделенном участке изображения. Максимальному значению интенсивности пикселей присваивается уровень градации интенсивности 255 (белый цвет), самому темному - значение 0 (черный цвет). Интенсивности в диапазоне от 0 до 255 имеют линейную шкалу изменения, либо устанавливаемую в соответствии с принятой функцией изменения, например, усиливающей слабые сигналы (градации серого) и ослабляющей сильные сигналы (в области белого цвета), чем повышается пространственное и контрастное разрешение изображения или определенной зоны интереса.

Известен метод улучшения изображений, основанный на вычислении логарифма спектральных коэффициентов преобразования Фурье исходного изображения (вычисление кепстра). При обратном преобразовании кепстра в изображение происходит выравнивание гистограммы изображения за счет логарифмического преобразования спектра изображения.

Многие изображения характеризуются гистограммами с высокой концентрацией линий в определенных зонах распределения интенсивности. Часто гистограмма распределения яркостей изображения имеет перекос в сторону малых уровней (яркость большинства элементов ниже средней). Одним из методов улучшения качества таких изображений является видоизменение их гистограммы. Выравнивание гистограммы может быть осуществлено на основе возведения в степень модуля спектральных коэффициентов Фурье-преобразования изображения, при этом знак и фаза коэффициентов сохраняется. Если обозначить показатель степени α, то при α<1 операция извлечения корня степени α уменьшает большие спектральные коэффициенты и увеличивает малые. Такое перераспределение энергии в частотной плоскости изображения приводит к более эффективному использованию динамического диапазона интенсивностей пикселей изображения в пространственной области.

Выбор хорошей маски регулирования гистограммы интенсивности пикселей повышает контраст, тем самым улучшая контрастную разрешающую способность деталей. В программах обработки есть команды, позволяющие устанавливать цвета при цветном картировании изображений, имеющие плавные или, наоборот, резкие переходы отображаемых деталей в зоне интереса. В сочетании с обращением контраста, преобразующем негативное изображение в позитивное, данный способ позволяет также повысить контраст мелких и средних деталей изображения.

Существует достаточно большой арсенал математических моделей и алгоритмов, программная реализация которых позволяет значительно повысить контрастное разрешение изображений. Эти алгоритмы основаны на процессах линейной и нелинейной фильтрации изображений, преобразующей гистограмму интенсивности.

Выравнивание освещенности изображений. Часто некоторые участки на изображении бывают слишком темными, чтобы на них можно было что-то разглядеть. Если прибавить яркости ко всему изображению, то изначально светлые участки могут оказаться засвеченными. Чтобы улучшить вид изображения в таких случаях, применяется метод выравнивания освещенности.

Освещенность меняется в пространстве достаточно медленно и ее можно считать низкочастотным сигналом. Само же изображение можно считать в среднем более высокочастотным сигналом. Если бы в процессе фотографии эти сигналы складывались, то их можно было бы разделять с помощью обычных фильтров. Однако на реальной фотографии получается произведение той картины, которую мы хотим видеть, и карты освещенности. И поскольку эти сигналы не складываются, а перемножаются, то избавиться от неравномерностей освещенности простой фильтрацией не удастся.

Для решения таких задач применяется гомоморфная обработка. Идея обработки заключается в сведении нелинейной задачи к линейной. Например, можно свести задачу разделения перемноженных сигналов к задаче разделения сложенных сигналов. Для этого нужно взять логарифм от произведения изображений, который будет равен сумме логарифмов сомножителей. При этом задача разделения произведения сигналов сводится к задаче разделения суммы НЧ- и ВЧ- сигналов и решается с помощью ВЧ-фильтра, который удалит из суммы сигналов низкие частоты. Останется взять от полученного сигнала экспоненту, чтобы вернуться к исходному масштабу амплитуд.

ВЧ-фильтр можно реализовать следующим образом. Сначала к изображению применяется операция размытия (НЧ-фильтр), а потом из исходного изображения вычитается размытое. Наилучший радиус размытия зависит от конкретного изображения. Можно начать эксперименты с радиуса порядка десяти пикселей.

Обычно для размытия изображения применяется двумерный гауссовский фильтр, имеющий вид h(x, y) = A exp(-(x 2 +y 2) /2 2). Здесь A – нормирующая константа (сумма всех коэффициентов фильтра должна быть равна 1), σ – «ширина» фильтра, регулирующая степень размытия.

Непосредственное вычисление двумерной свертки с таким ядром требует больших вычислений даже при сравнительно небольшом размере ядра. Однако эквивалентного эффекта можно достичь, отфильтровав одномерным гауссианом сначала строки изображения, а затем столбцы полученного изображения. Полученный от выравнивания освещенности эффект может оказаться слишком сильным (темные области станут по яркости такими же, как и светлые). Чтобы уменьшить эффект, можно просто смешать обработанное изображение с исходным в определенной пропорции.

Улучшение пространственного разрешения . Интерпретация изображений тесно связана с качеством представления мелких неискаженных деталей. При этом необходимо, чтобы с увеличением фрагментов не происходило ухудшения разрешающей способности изображения при выполнении математических операций 2D-интерполяции функции пространственного распределения интенсивности пикселей в строках и столбцах матрицы изображения. Важным фактором при идентификации объектов является также локализация и отображение зон одной и той же яркости или цветности, даже если эти области имеют размеры нескольких пикселей.

Четкость изображений в профессиональных программах корректируется, как правило, определением оптимальных значений яркости и контрастности путем выбора соответствующих опций:

А) «величины» - степени влияния воздействия на резкость изображения;

Б) «радиуса» - толщины контура резкости;

В) «порога дискриминации» - определения контуров объектов путем задания разности значений интенсивности соседних пикселей, достаточной для того, чтобы программа повысила контрастность между ними.

Некоторые программы содержат автоматическую установку оптимального соотношения контрастности и яркости, поддерживающих необходимую четкость изображения.

При обработке изображений важную роль играют алгоритмы ранговой фильтрации, позволяющие устранять «размытость» деталей (улучшить их фокусировку) за счет выбора двумерной n×n маски пикселей, выполнения операции ранжирования значений интенсивности пикселей в пределах задаваемой маски и присвоения центральному пикселю значения, равного максимальному значению по ранжиру. К виду ранговой относится также процедура медианной фильтрации, устраняющая в изображении некоррелированные случайные сигналы и импульсные помехи без "размытия" резких перепадов яркости на границах объектов.

Информативное применение линейной фильтрации обусловлено ее возможностями коррекции искажений различного типа, возникающих вследствие несовершенства устройств, формирующих изображение. Посредством линейной фильтрации удается уменьшить влияние флуктуационных шумов и других дефектов на воспроизводимых изображениях в режиме повышения контраста малоконтрастных деталей при увеличении масштаба зон интереса.

Коррекция аппертурных искажений изображений в случае отсутствия шумовой составляющей сигнала осуществляется путем инверсной фильтрации (деконволюции). Однако следует учитывать, фильтры деконволюции имеют коэффициент усиления дисперсии шумов, больший 1, и вместо улучшения изображения может увеличиться зашумленность.

Перспективными считаются нелинейные методы фильтрации на основе частотных масок, позволяющих уменьшить влияние низкочастотных компонент сигнала изображения и усилить влияние высокочастотных компонент, что повышает пространственное разрешение деталей, описываемых в спектре изображения более высокими пространственными частотами.

^ 18.2. ОПРЕДЕЛЕНИЕ ГРАНИЦ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ

С точки зрения распознавания и анализа объектов на изображении наиболее информативными являются не значения яркостей объектов, а характеристики их границ – контуров. Другими словами, основная информация заключена не в яркости отдельных областей, а в их очертаниях. Задача выделения контуров состоит в построении изображения именно границ объектов и очертаний однородных областей.

Как правило, граница предмета на фотографии отображается перепадом яркости между двумя сравнительно однотонными областями. Но перепад яркости может быть вызван также текстурой предмета, тенями, бликами, перепадами освещенности, и т.п.

Будем называть контуром изображения совокупность его пикселов, в окрестности которых наблюдается скачкообразное изменение функции яркости. Так как при цифровой обработке изображение представлено как функция целочисленных аргументов, то контуры представляются линиями шириной, как минимум, в один пиксел. Если исходное изображение, кроме областей постоянной яркости, содержит участки с плавно меняющейся яркостью, то непрерывность контурных линий не гарантируется. С другой стороны, если на “кусочно-постоянном” изображении присутствует шум, то могут быть обнаружены “лишние” контуры в точках, которые не являются границами областей.

При разработке алгоритмов выделения контуров нужно учитывать указанные особенности поведения контурных линий. Специальная дополнительная обработка выделенных контуров позволяет устранять разрывы и подавлять ложные контурные линии.

Процедура построения бинарного изображения границ объектов обычно складывается из двух последовательных операций: выделения контуров и их пороговой обработки.

Исходное изображение подвергается линейной или нелинейной обработке, с реакцией на перепады яркости. В результате этой операции формируется изображение, функция яркости которого существенно отличается от нуля только в областях резких изменений яркости изображения. Пороговой обработкой из этого изображения формируется контурный объект. Выбор порога на втором этапе должен производиться из следующих соображений. При слишком высоком пороге могут появиться разрывы контуров, а слабые перепады яркости не будут обнаружены. При слишком низком пороге из-за шумов и неоднородности областей могут появиться ложные контуры.

Поиск границ на основе градиента. Одним из наиболее простых способов выделения границ является пространственное дифференцирование функции яркости. Для двумерной функции яркости A(x, y) перепады в направлениях x и y регистрируются частными производными A(x, y)/x и A(x, y)/y, которые пропорциональны скоростям изменения яркости в соответствующих направлениях.

Рис. 18.2.1.


Выделение перепадов яркости иллюстрирует рис. 18.2.1. На нем можно видеть, что подчеркивание контуров, перпендикулярных к оси x, обеспечивает производная A(x, y)/x (рис. б), а подчеркивание контуров, перпендикулярных к оси y, – A(x, y)/y (рис. в).

В практических задачах требуется выделять контуры, направление которых является произвольным. Для этих целей можно использовать модуль градиента функции яркости

|A(x, y)| = ,

Который пропорционален максимальной (по направлению) скорости изменения функции яркости в данной точке и не зависит от направления контура. Модуль градиента в отличие от частных производных принимает только неотрицательные значения, поэтому на получающемся изображении (рис. г) точки, соответствующие контурам, имеют повышенный уровень яркости.

Для цифровых изображений аналогами частных производных и модуля градиента являются разностные функции.

Практический пример выделения границ на фотоизображении приведен на рис. 18.2.2. Исходное изображение (1) является однотонным. На изображении (2) представлен результат вычисления вектора градиента яркости Аx, y) = (A/x, A/y). Как видно на рисунке, в точках большого перепада яркости градиент имеет большую длину. Отфильтровав пиксели с длиной градиента, большей определенного порога , мы получим изображение границ (3).



Рис. 18.2.2.
Недостаток алгоритма - пропуск границы с малыми перепадами яркости и включение в число границ деталей изображения с большими изменениями яркости (шкурка бурундука). При зашумлении изображения карту граничных точек будут загрязнять и просто шум, поскольку не учитывается, что граничные точки соответствуют не просто перепадам яркости, а перепадам яркости между относительно монотонными областями.

Для снижения влияния данного недостатка изображение сначала подвергают сглаживающей гауссовской фильтрации. При сглаживающей фильтрации мелкие несущественные детали размываются быстрее перепадов между областями. Результат операции можно видеть на изображении (4). Однако при этом четко выраженные границы расплываются в жирные линии.

Градиент яркости в каждой точке характеризуется длиной и направлением. Выше при поиске граничных точек использовалась только длина вектора. Направление градиента - это направление максимального возрастания функции, что позволяет использовать процедуру подавления немаксимумов. При этой процедуре для каждой точки рассматривается отрезок длиной в несколько пикселей, ориентированный по направлению градиента и с центром в рассматриваемом пикселе. Пиксель считается максимальным тогда и только тогда, когда длина градиента в нем максимальна среди всех длин градиентов пикселей отрезка. Граничными можно признать все максимальные пиксели с длинами градиента больше определенного порога. Градиент яркости в каждой точке перпендикулярен границе, поэтому после подавления немаксимумов жирных линий не остается. На каждом перпендикулярном сечении жирной линии останется один пиксель с максимальной длиной градиента.

Перпендикулярность градиента яркости к границе может быть использована для прослеживания границы, начиная с некоторого граничного пикселя. Такое прослеживание используется в гистерезисной фильтрации максимальных пикселей. Идея гистерезисной фильтрации заключается в том, что длинный устойчивый граничный контур, скорее всего, содержит в себе пиксели с особенно большим перепадом яркости, и, начиная с такого пикселя, контур можно проследить, переходя по граничным пикселям с меньшим перепадом яркости.


Рис. 18.2.3.
При проведении гистерезисной фильтрации вводят не одно, а два пороговых значения. Меньшее () соответствует минимальной длине градиента, при которой пиксель может быть признан граничным. Большее (), соответствует минимальной длине градиента, при которой пиксель может инициализировать контур. После того как контур инициализируется в максимальном пикселе P с длиной градиента, большей , рассматриваются каждый соседний с ним максимальный пиксель Q . Если пиксель Q имеет длину градиента, большую , и угол между векторами PQ и (P ) близок к 90 o , то P добавляется к контуру, и процесс рекурсивно переходит к Q. Его результат для исходного изображения на рис. 18.2.2 показан на рис. 18.2.3.

Таким образом, алгоритм нахождения границ на основе градиента заключается в последовательном применении следующих операций:

Гауссовская сглаживающая фильтрация;

Нахождение градиента яркости в каждом пикселе;

Нахождение максимальных пикселей;

Гистерезисная фильтрация максимальных пикселей.

Этот алгоритм носит названия алгоритма Кэнни и наиболее часто применяется для нахождения границ.

Поиск границ на основе лапласиана. Известно, что необходимым и достаточным условием экстремального значения первой производной функции в произвольной точке является равенство нулю второй производной в этой точке, причем вторая производная должна иметь разные знаки по разные стороны от точки.

В двумерном варианте аналогом второй производной является лапласиан - скалярный оператор   f) = (2 f/x + 2 f/y).


Рис. 18.2.3.
Нахождение границ на изображении с использованием лапласиана может производиться по аналогии с одномерным случаем: граничными признаются точки, в которых лапласиан равен нулю и вокруг которых он имеет разные знаки. Оценка лапласиана при помощи линейной фильтрации также предваряется гауссовской сглаживающей фильтрацией, чтобы снизить чувствительность алгоритма к шуму. Гауссовское сглаживание и поиск лапласиана можно осуществить одновременно, поэтому нахождение границ при помощи такого фильтра производится быстрее, чем при помощи алгоритма Кэнни. Фильтр применяется в системах, где имеет значение и качество результата (обычно уступает алгоритму Кэнни), и быстродействие. Чтобы уменьшить чувствительность к несущественным деталям, из числа граничных точек также можно исключить те, длина градиента в которых меньше определенного порога (рис. 18.2.3).

^ 18.3. ВЫДЕЛЕНИЕ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ

При работе с изображением часто возникает необходимость отделить одну, значимую для пользователя часть (объект), от всего остального (фон). Так, например, в медицинских изображениях выделяется определенный объект для измерений его параметров. Алгоритмы решения этой задачи являются интерактивными, т.к. только пользователь может определить, что является интересующим его объектом, а что относится к фону.

В принципе, поставленная задача может быть решена простейшим способом - пользователь просто обводит объект курсором мыши, но для сложных объектов это потребует значительных усилий и временных затрат.

Алгоритм "Волшебная палочка" (Magic wand) был одним из первых алгоритмов интерактивной сегментации. Пользователь последовательно указывает точки объекта, а алгоритм выделяет окрестные пиксели с похожим цветом и (по решению пользователя) добавляет выделенную область к объекту. Для оценки "похожести" пользователем задается матрица порогов чувствительности расстояния между цветами. Чем он больше, тем больше пикселей выделится на одном шаге. При этом в область "похожих" цветов выделяются только связные пиксели.

Алгоритм неплохо работает при выделении достаточно монотонных по цвету объектов. При сильных вариациях цвета аккуратно отделить объект от фона с помощью данного алгоритма невозможно. При слишком малом пороге чувствительности может не выделяться значительная часть объекта. Увеличение порога приводит к тому, что выделение "протекает" за пределы объекта. В случае пестрого объекта или размытой границы между фоном и объектом алгоритм практически беспомощен.

Алгоритм "умные ножницы" используется с 1996 году, завоевал популярность и был встроен в распространенный редактор фотоизображений Adobe Photoshop. При использовании алгоритма пользователь обводит границу между объектом и фоном, указывая точки на границе с некоторым промежутком, а "умные ножницы" проводят граничную линию между последовательно указанными точками.


Рис. 18.3.1.
Представим себе растр изображения в виде графа (рис. 18.3.1) с ребрами, образованными сторонами пикселей. При указании пользователем двух последовательных точек P и Q алгоритм "ножниц" вычисляет минимальное расстояние между точками P и Q по ребрам графа, при этом условная геометрическая длина каждого ребра на этом пути имеет обратную зависимость от величины цветового перепада пикселей по его сторонам. Поскольку ребра, соответствующие резким цветовым перепадам, будут иметь меньшую условную длину, "умные ножницы" стремятся провести границу именно по таким ребрам.

"Умные ножницы" существенно ускоряют процесс выделения объекта. Однако и они работают не очень хорошо при наличии пестрого фона и/или пестрого объекта. В таких случаях требуется указывать большее количество граничных точек.

Сегментация при помощи разрезов на графах. Третий способ выделения объекта на фоне также основан на теории графов. Пользователь просто отмечает некоторое множество A пикселей, принадлежащих объекту, и некоторое множество B пикселей, принадлежащих фону. Поскольку эти пиксели не обязаны быть рядом с границей, такая разметка не требует от пользователя особых усилий. Результатом алгоритма служит сегментация, в которой все множество A относится к объекту, а множество B - к фону.

Если результат выделения с первого раза не удовлетворяет пользователя, он добавляет в исходные множества пиксели, доотмечая их на изображении. Например, если алгоритм ошибочно отнес кусок объекта к фону, пользователь отмечает часть пикселей этого куска как пиксели объекта (множество A). Результатом перезапуска алгоритма служит уточненная сегментация.

Рассмотрим, как работает алгоритм. Построим граф на растре следующим образом. Пиксельные вершины графа расположим в центре каждого пикселя, а под цветом вершины мы будем понимать цвет пикселя. Каждую вершину соединим с соседними вершинами и получим восемь ребер, которые соединяют центры соседних пикселей. Припишем каждому ребру вес:

(/L) exp(- (C 2 , C 2)),

Где L - геометрическая длина ребра, C 1 и C 2 - цвета вершин, соединяемых ребром, λ и σ - некоторые (положительные) параметры, (..) – матрица чувствительности по перепаду цвета. Данный вес тем меньше, чем больше разница между цветами вершин.

Добавим в граф две терминальных вершины, называемые истоком и стоком, и соединим их ребрами с каждой вершиной графа. Ребрам, соединяющим исток с вершинами множества A, и ребрам, соединяющим сток с вершинами множества B, припишем бесконечный вес.

Рассмотрим распределение цветов вершин множества A (например, как гистограмму). Для всех пиксельных вершин не из множества A, припишем ребрам, соединяющим их с истоком, вес, пропорциональный согласованности их цвета с этим распределением цветов, при этом вес ребра будет тем больше, чем больше "похож" цвет вершины на цвета вершин множества A. Аналогичную процедуру проделаем для множества B и ребер, соединяющих пиксельные вершины со стоком.

Все ребра графа "разрежем" на два непересекающихся множества - истоковое и стоковое, и будем считать, что вершины, попавшие в истоковое множество, соответствуют пикселям объекта, а остальные, попавшие в стоковое множество соответствуют пикселям фона. Число возможных вариантов разрезов равно 2 P , где P - число пикселей, так как каждую пиксельную вершину можно отнести либо в истоковое, либо в стоковое множестве.


Рис. 18.3.2.
Весом разреза назовем сумму весов всех разрезанных ребер, за исключением ребер с бесконечным весом. Минимальным разрезом назовем разрез с минимальным весом, при этом истоковые пиксели этого разреза будут соответственно отнесены к пикселям объекта, а стоковые – к фону. Граница между объектом и фоном будет проведена по возможности между пикселями с сильно отличающимися цветами.

Идеального разделения, естественно, быть не может. Например, участок изображения может быть похож по цвету на фон (пиксели множества B), но окружен пикселями множества A и не отделен от них резкой границей. В таких случаях выбор параметра λ в формуле веса ребер устанавливает баланс между последними двумя пунктами. При увеличении значения λ, увеличивается важность того, чтобы граница между фоном и объектом проходила между пикселями с разными цветами, а при уменьшении - увеличивается важность того, чтобы пиксели, похожие по цвету на пиксели множества A (или B), были отнесены к объекту (фону). Пример выделения объекта приведен на рис. 18.3.2.

^ 18.4. Выделение признаков объектов

Выделение признаков позволяет упростить реализацию распознавания или идентификации объектов. При выборе наиболее информативных признаков необходимо учитывать как свойства самих объектов, так и возможности разрешающей способности первичных формирователей сигнала изображения. Выделение признаков проведем на примере обработки монохромных (однослойных) изображений. В цветных изображениях рассмотренные алгоритмы можно применять к каждому цвету в отдельности.

При обработке предпочтительными являются следующие признаки объектов:

– площадь и периметр изображения объекта;

– размеры вписанных простейших геометрических фигур (окружностей, прямоугольников, треугольников и др.);

– число и взаимное расположение углов;

– моменты инерции изображений объектов.

Важной особенностью большинства геометрических признаков является инвариантность относительно разворота изображения объекта, а путем нормирования геометрических признаков друг относительно друга достигается инвариантность относительно масштаба изображения объекта.

Определение площади и периметра. Площадь изображения объекта вычисляется путём подсчёта числа элементов, относящихся к объекту:

A=S(x, y), S(x, y) = ,

Где L - множество координат массива S(x, y), принадлежащих выделенному объекту.

Периметр изображения объекта Р вычисляется после выделения границ объекта путем суммирования множество контурных точек изображения объекта.

На основе выделенных признаков нормированный признак, инвариантный к масштабу изображения U = A/P 2 или V = P/.

Определение радиусов вписанных и описанных окружностей (рис. 18.4.1) складывается из двух этапов.


Рис. 18.4.1.
1. Определение координат геометрического центра изображения объекта:

Х ц = xS(x, y) /S(x, y), Y ц = yS(x, y) /S(x, y),

Где x и y – номера строк и столбцов всех пикселей S(x, y), входящих в объект.

2. Вычисление минимального и максимального расстояний от центра до границ изображения объекта.

R(x, y) = .

R max = r (x , y max); R min = r (x , y min), где x , y  P (точки периметра).

Нормированный признак R′ = R max ⁄ R min инвариантен к масштабу изображения объекта.


Рис. 18.4.2.
Определение сторон описанного прямоугольника (рис. 18.4.2) выполняется следующим образом. Определяются максимальные и минимальные значения абсцисс и ординат изображения объекта x max и x min , y max и y min , после чего определяются высота и основание прямоугольника:

L = x max - x min , H = y max - y min .

Данный признак не инвариантен к развороту изображения объекта.

Определение числа и взаимного положения углов. Классический способ определения угловых точек изображения объекта заключается в анализе небольшого фрагмента контура в окрестностях данной точки и в определении радиуса её кривизны. Если радиус окажется меньше установленного порога – это угловой элемент, в противном случае – нет.


Рис. 18.4.3.
С практической точки зрения предпочтительным представляется более простой алгоритм. Он заключается в оценке расстояний между начальной и конечной точками фрагмента контура, например, между элементами контура с порядковыми номерами k – 2 и k + 2 на рис. 18.4.3.

Пусть x(k) и y(k) абсцисса и ордината контурных элементов соответственно. Тогда решающее правило может выглядеть следующим образом:

{|x(k-2)−x(k+2)|+|y(k−2)−y(k+2)| ≤H}.

Если условие выполняется, тогда данная точка контура принадлежит множеству угловых точек L. Здесь H – пороговое значение, выбираемое с учётом свойств объектов.

Определение моментов инерции объекта. Термин "моменты инерции изображения объекта" не имеет отношения к механике. Просто для вычисления указанного признака используются математические выражения, аналогичные вычислению моментов инерции материального тела, где вместо значений масс отдельных точек тела подставлены значения освещенностей в соответствующих точках его изображения. Моменты инерции являются информационными признаками для последующего распознавания образов.



Рис. 18.4.4.
Обозначим главные искомые моменты инерции изображения объекта через J 1 и J 2 . Чтобы найти J 1 и J 2 , необходимо предварительно определить так называемые промежуточные моменты J x и J y , т.е. моменты инерции относительно вертикальной и горизонтальной осей системы координат, а также смешанный момент J x,y (рис. 18.4.4а).

Порядок вычислений:

1. Определяются координаты центра "тяжести" (энергетического центра) изображения объекта.

Х цэ = xA(x, y) /A(x, y), Y цэ = yA(x, y) /A(x, y),

2. Определяются промежуточные моменты J x , J y , J x , y .

J x = [(x- Х цэ) 2 A(x, y)], Y x = [(y- Y цэ) 2 A(x, y)],

J xy = [(x- Х цэ) (y- Y цэ) A(x, y)].

3. Вычисляются главные моменты.

J 1,2 = .

^ 18.5. обнаружение и распознавание объектов ИЗОБРАЖЕНИЙ

Обнаружение объектов. Обнаружение (выявление) образов объектов в искажённом шумами и помехами изображении может быть определено в виде процедуры проверки определенного условия сравнения двух чисел - результата преобразования анализируемого изображения и определенного порогового значения:

L ≥ П. (18.5.1)

Здесь L[.] – оператор преобразования исходного изображения, П[.] – оператор формирования порогового значения. Решение о наличии объекта принимается в случае выполнения условия. Качество обнаружения характеризуется вероятностью выполнения условия при наличии объекта в анализируемом изображении.

Конкретный вид операторов L[.], П[.] и качество обнаружения зависят от наличия априорных сведений об ожидаемых объектах, шумах, помехах и искажениях. Основой для определения оптимальных параметров операторов является теория статистических решений.

Так, например, при выделении точечных объектов форма изображения объекта однозначно определяется функцией пятна рассеяния объектива, которую можно считать известной, при этом задача сводится к классической процедуре обнаружения сигнала известной формы на фоне аддитивных нормальных шумов с нулевым средним значением. В этом случае в качестве операторов преобразования выступают корреляционные интегралы, вычисляемые с использованием заданного описания известного изображения объекта и типового шума соответственно. Идентификация заключается в сравнении изображения объекта с эталонами заданного класса. Решение об объекте выносится по наилучшему совпадению.

Способ прямого сравнения объекта с эталонным изображением. Пусть S(x, y) – исходное изображение объекта, F(x, y) – эталонное изображение. Алгоритм прямого сравнения имеет вид:

T = (S(x, y) - F(x, y)) 2 ≤ D, (18.5.2)

Где D – порог различия.

Способ прост и может быть легко реализован. Однако, при наличии в реальных условиях дестабилизирующих факторов надёжность способа невелика. При большем значении порога D условию (18.5.2), могут удовлетворять различные объекты и могут возникнуть ошибки, связанные с неправильной идентификацией объекта (ошибки первого рода). При уменьшении D могут возникнуть ошибки типа пропуска объекта (ошибки второго рода). Регулируя величину D, можно лишь менять соотношение между вероятностями возникновения ошибок первого и второго рода в соответствии с заданным критерием оптимальности.

Корреляционный метод основан на вычислении взаимной корреляции между объектами и эталонами. Из множества k альтернативных вариантов выбирается тот объект (или эталон), при котором получается максимальная сумма взаимной корреляции:

K(k) = S k (x, y) F k (x, y). (18.5.3)

При идентификации объектов удобно пользоваться коэффициентами корреляции, которые в первом приближении дают и оценку вероятности отнесения объекта к данному эталону:

R(k) = K(k)/K max (k), K max (k) = F k 2 (x, y), (18.5.3)

Где K max (k) – значения автокорреляции эталонов.

Корреляционный метод более надёжен, но требует значительно большего объёма вычислений. Но при обработке бинарных изображений это не столь существенно, поскольку перемножение однобитовых чисел сводится к простой логической операции «И».

Рассмотренные выше методы требуют одинаковой ориентации изображений объекта и эталона, совмещения их по пространственным координатам и выдерживания одинаковых масштабов.

Методы распознавания на основе системы признаков также используют эталоны объектов, но в качестве элементов сравнения используются признаки объекта и эталона, что позволяет сократить объём эталонных данных и время обработки информации. Однако следует иметь в виду, что на практике выделение признаков объектов всегда осуществляется с некоторой погрешностью, а, следовательно, необходимо выявлять и учитывать характер и степень возможного рассеяния оценок используемых признаков для каждого из ожидаемых объектов, т.е. использовать гистограммы распределения значений признаков.

При большом числе возможных вариантов объектов рекомендуется многоступенчатый (иерархический) алгоритм. При этом на каждой ступени распознавания используется какой-либо из признаков объекта (площадь, периметр, радиусы вписанных и описанных окружностей, моменты инерции, число и расположение углов и т.д.). На нижних уровнях используются признаки, не требующие больших вычислительных затрат (например, площади и периметры объектов), а наиболее информативные (например, моменты инерции) – применяются на верхнем уровне, где число альтернатив минимально.

А.В.Давыдов.

литература

46. Хуанг Т.С. и др. Быстрые алгоритмы в цифровой обработке изображений. – М.: Радио и связь, 1984. – 224 с.

47. Сойфер В.А. Компьютерная обработка изображений. Часть 2. Методы и алгоритмы. – Соросовский образовательный журнал №3, 1996.

48. Апальков И.В., Хрящев В.В. Удаление шума из изображений на основе нелинейных алгоритмов с использованием ранговой статистики. - Ярославский государственный университет, 2007.

49. Андреев А.Л. Автоматизированные телевизионные системы наблюдения. Часть II. Арифметико -логические основы и алгоритмы. Учебное пособие. - СПб: СПб, ГУИТМО, 2005. – 88с.

50. Розенфельд Л.Г. и др. Возможности постобработки диагностических КТ и МРТ-изображений на персональном компьютере. - Український медичний часопис – № 6 (56) – XI/XII, 2006.

51. Лукин А. Введение в цифровую обработку сигналов (Математические основы).- М.: МГУ, Лаборатория

Похожие статьи