Простой широкополосный генератор вч. Самодельный высокочастотный генератор УКВ диапазонов

19.07.2019

Идея сделать недорогой генератор УКВ диапазонов для работы в полевых условиях родилась, когда возникло желание измерить параметры собранных своими руками антенн самодельным КСВ-метром . Быстро и удобно сделать такой генератор удалось, используя сменные блоки-модули. Уже собрал несколько генераторов на: радиовещательный 87,5 – 108 МГц, радиолюбительские 144 – 146 МГц и 430 - 440 МГц, включая PRM (446 МГц) диапазоны, диапазон эфирного цифрового телевидения 480 - 590 МГц. Такой мобильный и простой измерительный прибор помещается в кармане, а по некоторым параметрам не уступает профессиональным измерительным приборам. Линейку шкалы легко дополнить, поменяв несколько номиналов в схеме или модульную плату.


Структурная схема для всех используемых диапазонов одинаковая.

Это задающий генератор (на транзисторе Т1) с параметрической стабилизацией частоты, который определяет необходимый диапазон перекрытия. Для упрощения конструкции, перестройка по диапазону осуществляется подстроечным конденсатором. На практике такая схема включения, при соответствующих номиналах, на стандартизированных чип-индуктивностях и чип-конденсаторах, проверялась вплоть до частоты 1300 МГц.

Фото 2. Генератор с ФНЧ на диапазоны 415 - 500 МГц и 480 - 590 МГц.

Фильтр нижних частот (ФНЧ) подавляет высшие гармоники более чем на 55 дБ, выполнен на контурах с катушками индуктивностями L 1, L 2, L 3. Конденсаторы параллельные индуктивностям образуют режекторные фильтры-пробки настроенные на вторую гармонику гетеродина, что и обеспечивает дополнительное подавление высших гармоник гетеродина.

Линейный усилитель на микросхеме имеет нормированное выходное сопротивление 50 Ом и для данной схемы включения развивает мощность от 15 до 25 мВт, достаточную для настройки и проверки параметров антенн, не требующую регистрации. Именно такую мощность на выходе имеет высокочастотный генератор Г4 – 176. Для простоты схемы ФНЧ на выходе микросхемы отсутствует, поэтому подавления высших гармоник генератора на выходе ухудшилось на 10 дБ.

Микросхема ADL 5324 предназначена для работы на частотах от 400 МГц до 4-х ГГц, но практика показала, что она вполне работоспособна и на более низких частотах УКВ диапазона.

Питание генераторов осуществляется от литиевого аккумулятора с напряжением до 4,2 вольта. Устройство имеет разъём для внешнего питания и подзарядки аккумулятора и высокочастотный разъём для подключения внешнего счётчика, а самодельный КСВ-метр может служить индикатором уровня.

Генератор диапазона 87.5 – 108 МГц.

Параметры. Реальная перестройка частоты составила 75 – 120 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 25 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 40 дБ. Неравномерность в частотном диапазоне 87,5 – 108 МГц менее 2 дБ. Ток потребления не более 100 мА (V п = 4 В).


Рис. 1. Генератор диапазона 87,5 - 108 МГц.

Рис. 2.
На рис. 2. представлен эскиз монтажа задающего генератора на частоту 115,6 – 136 МГц. Этот генератор используется в роли гетеродина в преобразователе а и в Перестройка генератора осуществляется с помощью переменного резистора, изменяющего напряжение на варикапе.

Генератор радиолюбительского диапазона 144 - 146 МГц.

Параметры. Реальная перестройка частоты при этом составила 120 – 170 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 20 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более 100 мА (V п = 4 В).

В генераторе катушка индуктивности уменьшается до 10 витков (диаметр оправки 4 мм, диаметр провода 0,5 мм). Номиналы конденсаторов ФНЧ уменьшились.

Генератор радиолюбительского диапазона 430 – 440 МГц.

Параметры. Реальный диапазон перестройки при указанных номиналах составил 415 – 500 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 15 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне 430 – 440 МГц менее 1 дБ. Ток потребления не более 95 мА (V п = 4 В).

Фото 6. Конструкция генератора на диапазон 415 - 500 МГц и 480 - 590 МГц.

Генератор диапазона эфирного цифрового телевидения 480 – 590 МГц.

Параметры. Реальный диапазон перестройки при указанных номиналах составил 480 – 590 МГц. Напряжение питания V п = 3,3 – 4,2 В. Выходная мощность до 15 мВт (V п = 4 В). Выходное сопротивление R вых = 50 Ом. Подавление высших гармоник более 45 дБ. Неравномерность в частотном диапазоне менее 1 дБ. Ток потребления не более 95 мА (V п = 4 В).


Рис.3 Генератор диапазона 480 - 490 МГц.
Генератор диапазона 415 -500 МГц. Lг = 47 нГн. С3, С4 -5,6 пФ.

Высокочастотные генераторы предназначены для получе­ния электрических колебаний в диапазоне частот от десятков кГц до десятков и даже сотен МГц. Такие генераторы, как правило, вы­полняют с использованием LC-колебательных контуров или квар­цевых резонаторов, являющихся частотозадающими элементами. Принципиально схемы от этого существенно не изменяются, по­этому ниже будут рассмотрены LC-генераторы высокой частоты. Отметим, что в случае необходимости колебательные контуры в некоторых схемах генераторов (см., например, рис. 12.4, 12.5) мо­гут быть без проблем заменены кварцевыми резонаторами.

(рис. 12.1, 12.2) выполнены по традиционной и хорошо зарекомендовавшей себя на практи­ке схеме «индуктивной трехточки». Они различаются наличием эмиттерной RC-цепочки, задающей режим работы транзистора (рис. 12.2) по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности (рис. 12.1, 12.2) делают отвод (обычно от ее 1/3…1/5 части, считая от заземленного вы­вода). Нестабильность работы генераторов высокой частоты на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации «плавает». Для ослабления влияния транзистора на рабочую частоту генерации следует максимально ослабить связь коле­бательного контура с транзистором, до минимума уменьшив пе­реходные емкости. Кроме того, на частоту генерации заметно нпияет и изменение сопротивления нагрузки. Поэтому крайне необходимо между генератором и сопротивлением нагрузки иключить эмиттерный (истоковый) повторитель.

Для питания генераторов следует использовать стабильные источники питания с малыми пульсациями напряжения.

Генераторы, выполненные на полевых транзисторах (рис. 12.3), обладают лучшими характеристиками.

Собранные по схеме «ем­костной трехточки» на биполярном и полевом транзисторах, показаны на рис. 12.4 и 12.5. Принципиально по своим харак­теристикам схемы «индуктивной» и «емкостной» трехточек не отличаются, однако в схеме «емкостной трехточки» не нужно делать лишний вывод у катушки индуктивности.

Во многих схемах генераторов (рис. 12.1 - 12.5 и другие схемы) выходной сигнал может сниматься непосредственно с ко­лебательного контура через конденсатор небольшой емкости или через согласующую катушку индуктивной связи, а также с неза- земленных по переменному току электродов активного элемента (транзистора). При этом следует учитывать, что дополнительная нагрузка колебательного контура меняет его характеристики и ра­бочую частоту. Иногда это свойство используют «во благо» - для целей измерения различных физико-химических величин, контро­ля технологических параметров.

На рис. 12.6 показана схема несколько видоизмененного ва­рианта ВЧ генератора - «емкостной трехточки». Глубину положи­тельной обратной связи и оптимальные условия для возбуждения генератора подбирают с помощью емкостных элементов схемы.

Схема генератора, показанная на рис. 12.7, работоспособ­на в широком диапазоне значений индуктивности катушки коле­бательного контура (от 200 мкГч до 2 Гн) [Р 7/90-68]. Такой генератор можно использовать в качестве широкодиапазонного высокочастотного генератора сигналов или в качестве измери­тельного преобразователя электрических и неэлектрических ве­личин в частоту, а также в схеме измерения индуктивностей.

Генераторы на активных элементах с N-образной ВАХ (тун­нельные диоды, лямбда-диоды и их аналоги) содержат обычно

источник тока, активный элемент и частотозадающий элемент (LC-контур) с параллельным или последовательным включением. На рис. 12.8 показана схема ВЧ генератора на элементе с лям- бдаобразной вольт-амперной характеристикой. Управление его частотой осуществляется за счет изменения динамической емко­сти транзисторов при изменении протекающего через них тока.

Светодиод HL1 стабилизирует рабочую точку и индицирует вклю­ченное состояние генератора.

Генератор на аналоге лямбда-диода, выполненный на поле­вых транзисторах, и со стабилизацией рабочей точки аналогом стабилитрона - светодиодом, показан на рис. 12.9. Устройство работает до частоты 1 МГц и выше при использовании указанных на схеме транзисторов.

Ма рис. 12.10 в порядке сопоставления схем по степени их сложности приведена практическая схема ВЧ генератора на туннельном диоде. В качестве полупроводникового низко­вольтного стабилизатора напряжения использован прямосме- щенный переход высокочастотного германиевого диода. Этот генератор потенциально способен работать в области наибо­лее высоких частот - до нескольких ГГц.

Высокочастотный генератор, по схеме очень напоминаю­щий рис. 12.7, но выполненный с использованием полевого транзистора, показан на рис. 12.11 [Рл 7/97-34].

Прототипом RC-генератора, показанного на рис. 11.18 яв­ляется схема генератора на рис. 12.12 .

нот генератор отличает высокая стабильность частоты, способ­ность работать в широком диапазоне изменения параметров частотозадающих элементов. Для снижения влияния нагрузки на рабочую частоту генератора в схему введен дополнительный каскад - эмиттерный повторитель, выполненный на биполяр­ном транзисторе VT3. Генератор способен работать до частот свыше 150 МГц.

Из числа всевозможных схем генераторов особо следует выделить генераторы с ударным возбуждением. Их работа ос­нована на периодическом возбуждении колебательного конту­ра (либо иного резонирующего элемента) мощным коротким импульсом тока. В результате «электронного удара» в возбуж­денном таким образом колебательном контуре возникают по­степенно затухающие по амплитуде периодические колебания синусоидальной формы. Затухание колебаний по амплитуде обусловлено необратимыми потерями энергии в колебатель­ном контуре. Скорость затухания колебаний определяется добротностью (качеством) колебательного контура. Выходной высокочастотный сигнал будет стабилен по амплитуде, если импульсы возбуждения следуют с высокой частотой. Этот тип генераторов является наиболее древним в ряду рассматривае­мых и известен с XIX века.

Практическая схема генератора высокочастотных колеба­ний ударного возбуждения показана на рис. 12.13 [Р 9/76-52; 3/77-53]. Импульсы ударного возбуждения подаются на коле­бательный контур L1C1 через диод VD1 от низкочастотного генератора, например, мультивибратора, или иного генератора прямоугольных импульсов (ГПИ), рассмотренных ранее в гла­вах 7 и 8. Большим преимуществом генераторов ударного возбуждения является то, что они работают с использованием колебательных контуров практически любого вида и любой резонансной частоты.

Еще один вид генераторов - генераторы шума, схемы ко­торых показаны на рис. 12.14 и 12.15.

Такие генераторы широко используют для настройки раз­личных радиоэлектронных схем. Генерируемые такими устрой­ствами сигналы занимают исключительно широкую полосу частот - от единиц Гц до сотен МГц. Для генерации шума используют обратносмещенные переходы полупроводниковых приборов, работающих в граничных условиях лавинного пробоя. Дня этого могут быть использованы переходы транзисторов (рис. 12.14) [Рл 2/98-37] или стабилитроны (рис. 12.15) [Р 1/69-37]. Чтобы настроить режим, при котором напряжение генерируемых шумов максимально, регулируют рабочий ток через активный нтемент (рис. 12.15).

Отметим, что для генерации шума можно использовать и резисторы, совмещенные с многокаскадными усилителями низ­кой частоты, сверхрегенеративные приемники и др. элементы. Для получения максимальной амплитуды шумового напряжения необходим, как правило, индивидуальный подбор наиболее шу­мящего элемента.

Для того чтобы создать узкополосные генераторы шума, на выходе схемы генератора может быть включен LC- или RC-фильтр.

РадиоМир 2008 №9

Предлагаемый ВЧ-генератор является попыткой заменить громоздкий промышленный Г4-18А более малогабаритным и надёжным прибором.

Обычно при ремонте и налаживании КВ-аппаратуры необходимо "уложить" КВ-диапазоны с помощью LC-контуров, проверить прохождение сигнала по ВЧ- и ПЧ-тракту, настроить отдельные контура в резонанс и т.д. Чувствительность, избирательность, динамический диапазон и другие важные параметры КВ-устройств определяются схемотехническими решениями, так что для домашней лаборатории не обязательно иметь многофункциональный и дорогой ВЧ-генератор. Если генератор имеет достаточно стабильную частоту с "чистой синусоидой", значит, он подходит радиолюбителю. Конечно, считаем, что в арсенал лаборатории также входят частотомер, ВЧ-вольтметр и тестер. К сожалению, большинство испробованных мной схем ВЧ-генераторов КВ-диапазона выдавало очень искажённую синусоиду, улучшить которую без неоправданного усложнения схемы не удавалось. ВЧ-генератор, собранный по приведённой на рис.1 схеме, зарекомендовал себя очень хорошо (получалась практически чистая синусоида во всём КВ-диапазоне). За основу взята схема из . В моей схеме вместо настройки контуров варикапом применён КПЕ, а индикаторная часть схемы не используется.

В данной конструкции использован конденсатор переменной ёмкости типа КПВ-150 и малогабаритный переключатель диапазонов ПМ (11П1Н). С данным КПЕ (10...150 пФ) и катушками индуктивности L2...L5 перекрывается участок КВ-диапазона 1,7...30 МГц. По ходу работы над конструкцией были добавлены ещё три контура (L1, L6 и L7) на верхний и нижний участки диапазона. В экспериментах с КПЕ ёмкостью до 250 пФ весь КВ-диапазон перекрывался тремя контурами.

ВЧ-генератор собран на печатной плате из фольгированного стеклотекстолита толщиной 2 мм и размерами 50x80 мм (рис.2). Дорожки и монтажные "пятачки" вырезаны ножом и резаком. Фольга вокруг деталей не удаляется, а используется вместо "земли". На рисунке печатной платы для наглядности эти участки фольги условно не показаны. Конечно, можно изготовить и печатную плату, приведённую в .

Вся конструкция генератора вместе с блоком питания (отдельная плата со стабилизатором напряжения на 9 В по любой схеме) размещена на дюралевом шасси и помещена в металлический корпус подходящих размеров. Я использовал кассету от старой аппаратуры с размерами 130x150x90 мм. На переднюю панель выводятся ручка переключателя диапазонов, ручка настройки КПЕ, малогабаритный ВЧ-разъём (50-Омный) и светодиодный индикатор включения в сеть. При необходимости можно установить регулятор выходного уровня (переменный резистор сопротивлением 430...510 Ом) и аттенюатор с дополнительным разъёмом, а также проградуированную шкалу.

В качестве каркасов катушек контуров использованы унифицированные секционные каркасы СВ и ДВ диапазонов от устаревших радиоприёмников. Количество витков каждой катушки зависит от ёмкости используемого КПЕ и первоначально берется "с запасом". При налаживании ("укладке" диапазонов) генератора часть витков отматывается. Контроль ведётся по частотомеру.

Катушка индуктивности L7 имеет ферритовый сердечник М600-3 (НН) Ш2,8х14. Экраны на катушки контуров не устанавливаются. Намоточные данные катушек, границы поддиапазонов и выходные уровни ВЧ-генератора приведены в таблице.

Диапазон, МГц

Количество витков

Провод (диаметер, мм)

Каркас, сердечник

Выходной уровень, В

Бескаркасная диаметром 6 мм. L=12 мм

Керамический диаметром 6 мм, L=12 мм

Унифицированный
3-секционный

Унифицированный
4-секционный

В схеме генератора, кроме указанных транзисторов, можно применить полевые КП303Е(Г), КП307 и биполярные ВЧ-транзисторы BF324, 25С9015, ВС557 и т.д. Блокировочные ёмкости желательно использовать импортные малогабаритные.

Конденсатор связи С5 ёмкостью 4,7...6,8 пФ - типа КМ, КТ, КА с малыми потерями по ВЧ. В качестве КПЕ очень желательно использовать высококачественные (на шарикоподшипниках), однако они дефицитны. Более доступны регулировочные КПЕ типа КПВ с максимальной ёмкостью 80...150 пФ, но они легко ломаются и имеют заметный "гистерезис" при вращении вперёд и назад.

Тем не менее, при жёстком монтаже, качественных деталях и прогреве генератора в течение 10...15 минут можно добиться "ухода" частоты не более 500 Гц в час на частотах 20...30 МГц (при стабильной температуре в помещении).

Форма сигнала и выходной уровень изготовленного ВЧ генератора проверялись по осциллографу С1-64А.

На заключительном этапе наладки все катушки индуктивности (кроме L1, которая припаяна одним концом к корпусу) закрепляются клеем вблизи переключателя диапазонов и КПЕ.

Литература:
1. Коротковолновый ГИР - Радио, 2006, №11, С.72.

А.ПЕРУЦКИЙ, г.Бендеры, Молдова.

Предлагаемый генератор работает в диапазоне частот от 26560 кГц до 27620 кГц и предназначен для настройки СВ-аппаратуры. Напряжение сигнала с " Вых. 1 " составляет 0,05 В на нагрузке 50 Ом. Имеется и "Вых.2". к которому можно подключать частотомер при налаживании приемников. В генераторе предусмотрена возможность получения частотно-модулированных колебаний. Для этого служит "Вх. мод.", на который подается низ-кочастотный сигнал с внешнего генератора звуковой частоты. Питание генератора производится от стабилизированного источника +12 В.потребляемый ток не превышает 20 мА. Задающий генератор выполнен на полевых транзисторах VT1. VT2. включенных по схеме "общий исток - общий затвор".

Генератор, собранный по такой схеме, хорошо работает на частотах от 1 до 100 МГц. потому что в нем применены полевые транзисторы с граничной частотой >100 МГц. Согласно проведенным исследованиям . этот генератор имеет кратковременную нестабильность частоты (за 10 с) лучшую, чем генераторы, выполненные по схемам емкостной и индуктивной трехточки. Уход частоты генератора за каждые 30 мин работы после двухчасового прогрева, а также уровни второй и третьей гармоник меньше, чем у генераторов, выполненных по схеме трехточки. Положительная обратная связь в генераторе осуществляется конденсатором С10. В цепь затвора VT1 включен колебательный контур С5...С8. L1. определяющий частоту генерации схемы. Через небольшую емкость С9 к контуру подключена варикапная матрица VD1. Подавая на нее низкочастотный сигнал, изменяем ее емкость и тем самым осуществляем частотную модуляцию генератора. Питание генератора дополнительно стабилизируется VD2. Высокочастотный сигнал снимается с резистора R6. включенного в истоковые цепи транзисторов. К генератору через конденсатор С 11 подключен широкополосный эмиттерный повторитель на VT3 и VT4. Преимущества такого повторителя приведены в . К его выходу через конденсатор С 15 подключен делитель напряжения (R14.R15). Выходное сопротивление по "Вых.1" равно 50 Ом. поэтому с помощью коаксиального кабеля с волновым сопротивлением 50 Ом к нему можно подключить схему с входным сопротивлением 50 Ом. например ВЧ-аттенюатор. опубликованный в [З]. К выходу эмиттерного повторителя подключен истоковый повторитель на VT5. Это позволило полностью исключить взаимное влияние нагрузок. подключенных к "Вых.1" и "Вых.2".

Детали. Конденсаторы Сб...С 10 - типа КТ6. Остальные конденсаторы: керамические - типа К10-7В. К10-17. электролитические - типа К50-35. Катушка L1 намотана на керамическом ребристом каркасе (размер по ребрам - 15 мм) посеребренным проводом диаметром 1 мм с шагом 2 мм. Количество витков -- 6.75. Намотка производится нагретым проводом с "натягом". Дроссель L2 - от черно-белых ламповых телевизоров (можно использовать и другие) индуктивностью от 100 до ЗООмкГн. Резисторы - типа МЛТ-0.125. Полевые транзисторы можно применить любые из серии КПЗОЗ. еще лучше - из серии КП307. Высокочастотные разъемы Х1...ХЗ - типа СР50-73ФВ. Транзистор VT3 - любой высокочастотный прп-типа. VT4 - высокочастотный рпр-типа.

Литература
1. Котиенко Д.. Туркин Н. LC-генератор на полевых транзисторах. - Радио. 1990. N5. с.59.
2. Широкополосный повторитель напряжения. - Радио. 1981. N4. с.61.
3. ВЧ аттенюатор. - Радиолюбитель. KB и УКВ. 1996. N10. с.36.
4. Мухин В. Нестандартное поведение катушек индуктивности при нагревании. -- Радиолюбитель. 1996. N9. с.13. 14.
5. Маслов Е. Расчет колебательного контура для растянутой настройки. - Радиолюбитель, 1995. N6. с. 14-16.

В предлагаемой книге рассматриваются особенности схемотехнических решений, применяемых при создании миниатюрных транзисторных радиопередающих устройств. В соответствующих главах приводится информация о принципах действия и особенностях функционирования отдельных узлов и каскадов, принципиальные схемы, а также другие сведения, необходимые при самостоятельном конструировании простых радиопередатчиков и радиомикрофонов. Отдельная глава посвящена рассмотрению практических конструкций транзисторных микропередатчиков для систем связи малого радиуса действия.

Книга предназначена для начинающих радиолюбителей, интересующихся особенностями схемотехнических решений узлов и каскадов миниатюрных транзисторных радиопередающих устройств.

В рассмотренных ранее схемотехнических решениях LC-генераторов в качестве активного элемента использовался биполярный транзистор. Однако при разработке миниатюрных радиопередатчиков и радиомикрофонов широко применяются схемы активных элементов, выполненных на полевых транзисторах. Главное достоинство полевых транзисторов, часто называемых канальными или униполярными, заключается в высоком входном сопротивлении, соизмеримом с входным сопротивлением электронных ламп. Особую группу составляют полевые транзисторы с изолированным затвором.

По переменному току полевой транзистор активного элемента высокочастотного генератора может быть включен с общим истоком, с общим затвором или с общим стоком. При разработке микропередатчиков чаще используются схемотехнические решения, в которых полевой транзистор по переменному току включен по схеме с общим стоком. Такая схема включения полевого транзистора аналогична схеме включения с общим коллектором для биполярного транзистора. В активном элементе, выполненном на полевом транзисторе, включенном по схеме с общим стоком, нагрузка подключена в цепь истока транзистора, а выходное напряжение снимается с истока по отношению к шине корпуса.

Коэффициент усиления по напряжению такого каскада, часто называемого истоковым повторителем, близок к единице, то есть выходное напряжение практически равно входному. При этом фазовый сдвиг между входным и выходным сигналами отсутствует. Истоковые повторители отличает сравнительно небольшое входное сопротивление при повышенном входном сопротивлении. Помимо этого для таких каскадов характерна малая входная емкость, что приводит к увеличению входного сопротивления на высоких частотах.

Одним из критериев классификации LC-генераторов на полевых транзисторах, как и генераторов на биполярных транзисторах, является схемотехническое решение цепи положительной обратной связи. В зависимости от примененной схемы цепи ПОС такие генераторы делятся на генераторы с индуктивной связью, с емкостной связью и трехточечные генераторы (так называемые трехточки). В генераторах с индуктивной связью цепь положительной обратной связи между входным и выходным электродами транзистора образована индуктивной связью, а в генераторах с емкостной связью – емкостной. В трехточечных ВЧ-генераторах, которые в свою очередь делятся на индуктивные и емкостные трехточки, резонансный контур подключен к активному элементу в трех точках.

Следует признать, что при разработке высокочастотных генераторов для миниатюрных радиопередающих устройств особой популярностью пользуются схемотехнические решения с полевыми транзисторами, основанные на применении индуктивной трехточки (схема Хартли). Дело в том, что на высоких частотах комплексное входное сопротивление полевого транзистора велико. Поэтому транзистор практически не шунтирует резонансный контур, то есть не оказывает никакого влияния на его параметры. Принципиальная схема одного из вариантов высокочастотного LC-генератора, выполненного по схеме Хартли на полевом транзисторе, включенном по переменному току по схеме с общим стоком, приведена на рис. 3.10.


Рис. 3.10. Принципиальная схема LC-генератора на полевом транзисторе по схеме Хартли

В рассматриваемой схеме активный элемент LC-генератора выполнен на полевом транзисторе VT1, который по переменному току включен по схеме истокового повторителя, то есть с общим стоком. Электрод стока транзистора замкнут на шину корпуса через конденсатор С2. Резонансный контур образован включенными параллельно подстроечным конденсатором С1 и катушкой индуктивности L1, от параметров которых зависит частота генерируемых колебаний. Этот контур подключен в цепь затвора полевого транзистора VT1.

Возникшие в резонансном контуре колебания подаются на затвор транзистора VT1. При положительной полуволне входного сигнала на затвор поступает соответственно положительное напряжение, в результате чего возрастает проводимость канала, а ток стока растет. При отрицательной полуволне колебания на затвор поступает соответственно отрицательное напряжение, в результате чего проводимость канала снижается, а ток стока уменьшается. Снимаемое с электрода истока транзистора VT1 напряжение подается в резонансный контур, а именно на вывод катушки L1, которая по отношению к истоку транзистора включена по схеме повышающего автотрансформатора. Такое включение позволяет увеличить коэффициент передачи цепи положительной обратной связи до необходимого уровня, то есть обеспечивает соблюдение условия баланса амплитуд. Выполнение условия баланса фаз обеспечивается включением транзистора VT1 по схеме с общим стоком.

Соблюдение условий баланса амплитуд и баланса фаз приводит к возникновению устойчивых колебаний на частоте резонанса колебательного контура. При этом частота генерируемого сигнала может изменяться с помощью подстроечного конденсатора С1 колебательного контура. Выходной сигнал, формируемый генератором, снимается с электрода истока полевого транзистора VT1.

При конструировании высокочастотных генераторов для микропередатчиков нередко используются схемотехнические решения с полевыми транзисторами, основанные на применении емкостной трехточки (схема Колпитца). Принципиальная схема одного из вариантов высокочастотного LC-генератора, выполненного по схеме Колпитца на полевом транзисторе, включенном по переменному току по схеме с общим стоком, приведена на рис. 3.11.


Рис. 3.11. Принципиальная схема LC-генератора на полевом транзисторе по схеме Колпитца

Активный элемент данного LC-генератора выполнен на полевом транзисторе VT1, который по переменному току включен по схеме с общим стоком. При этом электрод стока транзистора замкнут на шину корпуса через конденсатор С5. Параллельный резонансный контур образован катушкой индуктивности L1 и конденсаторами С1 – С4, от параметров которых зависит частота генерируемых колебаний. Этот контур включен в цепь затвора полевого транзистора.

Возникшие в резонансном контуре колебания подаются на затвор транзистора VT1. Снимаемое с электрода истока транзистора VT1 напряжение через цепь обратной связи подается в резонансный контур, а именно в точку соединения конденсаторов С3 и С4, образующих емкостной делитель. Выбор соответствующих величин емкостей конденсаторов С3 и С4, а также необходимого соотношения этих величин позволяет подобрать такой уровень коэффициента передачи цепи положительной обратной связи, при котором обеспечивается соблюдение условия баланса амплитуд. Выполнение условия баланса фаз обеспечивается включением транзистора VT1 по схеме с общим стоком.

Соблюдение условий баланса амплитуд и баланса фаз обеспечивает возникновение устойчивых колебаний на частоте резонанса колебательного контура. При этом частота генерируемого сигнала может изменяться с помощью конденсатора С2 (грубая настройка) и конденсатора С1 (точная настройка). Выходной сигнал частотой около 5 МГц, формируемый генератором, снимается с электрода истока полевого транзистора VT1.

Похожие статьи