Принцип работы никель-металлогидридных аккумуляторов и возможности их замены. Никель-металл гидридный аккумулятор

18.08.2019

Основное отличие Ni-Cd аккумуляторов и Ni-Mh аккумуляторов — это состав. Основа аккумулятора одинаковая — это никель, он является катодом, а аноды разные. У Ni-Cd аккумулятора анодом является металлический кадмий, у Ni-Mh аккумулятора анодом является водородный металлогидридный электрод.

У каждого типа аккумулятора есть свои плюсы и минусы, зная их вы, сможете более точно подобрать необходимый вам аккумулятор.

Плюсы Минусы
Ni-Cd
  • Низкая цена.
  • Возможность отдавать большой ток нагрузки.
  • Широкий диапазон рабочих температур от -50°C до +40°C. Ni-Cd аккумуляторы даже могут заряжаться при отрицательной температуре.
  • До 1000 циклов заряда-разряда, при правильной эксплуатации.
  • Относительно высокий уровень саморазряда (примерно 8-10%% в первый месяц хранения)
  • После длительного хранения требуется 3-4 цикла полного заряда-разряда для полного восстановления аккумулятора.
  • Обязательно полный разряд аккумулятора перед зарядкой, для предотвращения «эффекта памяти»
  • Больший вес относительно Ni-Mh аккумулятора одинаковых габаритах и ёмкости.
Ni-Mh
  • Большая удельная емкость относительно Ni-Cd аккумулятора (т.е. меньший вес при той же емкости).
  • Практически отсутствует «эффект памяти».
  • Хорошая работоспособность при низких температурах, хотя и уступает Ni-Cd аккумулятору.
  • Более дорогие аккумуляторы в сравнении с Ni-Cd.
  • Большее время зарядки.
  • Меньший рабочий ток.
  • Меньшее количество циклов заряда-разряда (до 500).
  • Уровень саморазряда в 1,5-2 раза выше, чем у Ni-Cd.

Подойдёт ли старое зарядное устройство к новому аккумулятору если я поменяю Ni-Cd на Ni-Mh аккумулятор или наоборот?

Принцип заряда у обоих аккумуляторов абсолютно одинаковый, поэтому зарядное устройство можно использовать от предыдущего аккумулятора. Основное правило зарядки данных аккумуляторов заключается в том, что заряжать их можно только после полной разрядки. Это требование является следствием того, что оба типа аккумулятора подвержены «эффекту памяти», хотя у Ni-Mh аккумуляторов эта проблема сведена к минимуму.

Как правильно хранить Ni-Cd и Ni-Mh аккумуляторы?

Лучшее место для хранения аккумулятора — сухое прохладное помещение, так как чем выше температура хранения, тем быстрее происходит саморазряд аккумулятора. Хранить батарею можно в любом состоянии кроме полного разряда или полного заряда. Оптимальный заряд — 40-60%%. Раз в 2-3 месяца следует проводить дозаряд (по причине присутствующего саморазряда), разряд и снова заряд до 40-60%% ёмкости. Допустимо хранение сроком до пяти лет. После хранения батарею следует разрядить, зарядить и после этого использовать в обычном режиме.

Можно ли использовать аккумуляторы большей или меньшей ёмкости чем аккумулятор из первоначального комплекта?

Ёмкость аккумулятора — это время работы вашего электроинструмента от аккумулятора. Соответственно для электроинструмента нет абсолютно никакой разницы по ёмкости аккумулятора. Фактическая разница будет только во времени зарядки аккумулятора, и времени работы электроинструмента от аккумулятора. При выборе ёмкости аккумулятора следует отталкиваться от ваших требований, если требуется дольше работать, используя один аккумулятор — выбор в пользу более ёмких аккумуляторов, если комплектные аккумуляторы полностью устраивали, то следует остановиться на аккумуляторах равных или близких по ёмкости.

Купил на Али кучку держателей для аккумуляторов (или просто батареек) формата АА… Вещь бывает нужна в хозяйстве, тем более, если собираешь или ремонтируешь какие-либо электронные приборы или гаджеты. Собственно больше то и писать о них было бы нечего (ну только оценить сопротивление контактов, померить длину проводков и оценить на зуб и глаз пластмассу - что будет в обзоре), но наткнулся на одну статью в интернете и родилась идея проверить, можно ли восстановить емкость отработавших свой срок NiCd и NiMh аккумуляторов, которых накопилось в хозяйстве, и выбросить их просто на свалку рука не поднимается, т.к такие элементы нужно сдавать на утилизацию… Что из этого получилось, и вообще получилось ли… Можно узнать прочитав обзор…
Внимание - много фото, трафик!!!

Вот собственно, сама статья, которую я упоминал в оглавлении обзора…


Начал искать еще информацию про восстановление утративших емкость NiCd и NiMh АКБ и поиск привел меня на занимательную статью на английском, которую вы сможете прочитать пройдя по ссылке: Не знающие английский могут воспользоваться возможностями автоматического перевода на русский системой Google. Из статьи я вынес главное, что элементы NiCd и NiMh имеют память (у NiCd это очень выражено, у NiMh менее выражено, но все же эффект имеет место), и что бы продлить жизнь им, необходимо разряжать, до определенного напряжения перед зарядкой.


Наверное многие знают об этом, что производитель рекомендует разряжать аккумуляторы до остаточного напряжения 0.9-1В, а только потом ставить на зарядку. Но часто это игнорируется и со временем элементы теряют емкость, в них образуются кристаллы солей кадмия и никеля. И что бы их, хотя бы частично, разбить, нужно разряжать аккумуляторы небольшим током до остаточного напряжения 0.4-0.5В…

Кстати, немного о том, как устроен аккумулятор: Основу любого аккумулятора составляют положительный и отрицательный электроды. Разберем на основе NiCd аккумулятора. Положительный электрод (катод) содержит гидрооксид никеля NiOOH с графитовым порошком (5-8%), а отрицательный (анод) - металлический кадмий Cd в виде порошка.


Аккумуляторы этого типа часто называют рулонными, так как электроды скатаны в цилиндр (рулон) вместе с разделяющим слоем, помещены в металлический корпус и залиты электролитом. Разделитель (сепаратор), увлажненный электролитом, изолирует пластины друг от друга. Он изготавливается из нетканого материала, который должен быть устойчив к воздействию щелочи. Электролитом чаще всего выступает гидрооксид калия KOH с добавкой гидроксида лития LiOH, способствующего образованию никелатов лития и увеличения емкости на 20%.

Никель-металлогидридные аккумуляторы по своей конструкции являются аналогами никель-кадмиевых аккумуляторов, а по электрохимическим процессам - никель-водородных аккумуляторов. Удельная энергия Ni-MH-аккумулятора значительно выше удельной энергии Ni-Cd- и Ni-Н2-аккумуляторов
Аккумулятор NiMh (Никель-металлогидридный), устроен почти так же как NiCd:


Положительный и отрицательный электроды, разделенные сепаратором, свернуты в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой. Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае сбоя при эксплуатации аккумулятора.

Вооружившись знаниями, я решил попробовать собрать нечто подобное как в статье «Автоматическая разряжалка», и на практике проверить поможет это или нет, восстановить, хотя бы частично, утратившие емкость аккумуляторы… Собрал такое тестовое устройство по схеме приведенной в статье. В статье в качестве индикации была применена лампочка на 1В 75мА, уж не знаю где автор нашел такую. Так же в статье было предложено использовать светодиод, но эта идея не пройдет, поскольку все светодиоды при 1-1.5В не светят… Потому в качестве индикатора был применен амперметр…

Начальный ток разрядки свежезаряженной АКБ составляет 250мА, и постепенно падает. При остаточном напряжении в 1В, ток разряда снижается до 30-40мА, как раз примерно такой ток и нужен, что бы попытаться разбить кристаллы «шлака» в аккумуляторе…
Провел небольшое тестирования «убитого» радиотелефоном Ni-Mh аккумулятора формата ААА, всего было проведено 4 цикла заряда-разряда. Тестирование проводилось таким образом: Аккумулятор был разряжен до рекомендуемого производителем напряжения в 1В и был полностью заряжен при помощи автоматического Зарядного устройства Soshine (спасибо китайцам)

Зарядное устройство считает количество «закаченного» в АКБ заряда, конечно это неправильный способ оценки емкости, т.к нужно измерять емкость АКБ при разряде, а не заряде (в дальнейшем будем измерять емкость правильно), но косвенно можно судить, изменяется или нет емкость «убитого» аккумулятора…

Лирическое отступление

Кстати, на Муське, многие авторы этим «грешат», измеряя емкость аккумуляторов при помощи всеми любимого, «белого доктора»… Измерив «вдуваемый» в аккумулятор заряд, с важным видом рассуждают о емкости батареи, не учитывая, что не всё «вдутое» можно «выдуть» назад, а так же многочисленные потери энергии на саморазряд, нагрев батареи и т.п. Любой обзор девайса имеющего USB порт, считается не полным, если в нем нет фотографии «белого доктора». Китайцы вероятно обогатились на продажах этих супер-устройств для тестирования...))))


Полностью заряженный аккумулятор взял 480мА/ч «заряда» и был поставлен на разрядку в изготовленное разрядное устройство… Отсечка разрядки произошла при остаточном напряжении АКБ при 0.5В… Это значение зависит от параметров транзисторов, использованных в разрядном устройстве… Цикл Заряда-Разряда повторяли 4 раза… Результаты предварительного тестирования привожу ниже:

1- заряд - 680мА/ч

2- заряд - 726мА/ч

3- заряд - 737мА/ч

4- заряд - 814мА/ч

Что ж мы видим положительную динамику… По крайней мере, в аккумулятор входит все больше «заряда», но к сожалению это только косвенная оценка емкости, а что бы оценить точно, нужно разряжать аккумулятор измеряя емкость…
Чем мы и займемся далее))))
Для правильной оценки емкости аккумуляторов было заказано новое Зарядно-разрядное устройство ВМ200 в у китайцев… Оно способно разряжать АКБ и измерять емкость, это будет намного точнее…

Поскольку можно сразу же тестировать 4 АКБ, было решено переделать разряжалку, и сделать её тоже 4-х канальной. Зарядно-разрядное устройство ВМ200 конечно способно самостоятельно разряжать АКБ, но делает она это до остаточного напряжения 0.9В, а это мало, мне необходимо разрядить каждый элемент до 0.4В, потому была найдена схема другого разряжающего устройства в интернете

Я перевел эту схему на современные элементы и размножил до 4-х каналов…
Получилось вот такое разрядное устройство:




Поскольку во всех 4-х каналах, я выставляю одинаковое напряжение отсечки компараторов, то обошелся одним стабилитроном и одним построечным резистором на все четыре канала…
Для желающих повторить, даю ссылку на печатную плату, на ней все элементы подписаны

Вот тут-то мы и дошли до наших держателей для АКБ или батареек… Мне нужно было 4 шт, остальные уйдут «про запас»… Как обычно ссылка уже идет в «никуда», потому я поставил в заголовке аналогичный товар у другого продавца. Под спойлером прикладываю скриншот заказа, а то не поверят, что я заказываю запчасти у китайцев…))))

Скрин заказа


Пока ко мне на всех парáх, на рикшах китайцы, в поте лица, везут мои 2 посылки, позволю себе короткое лирическое отступление… Обязательно найдутся пару читателей «муськи», которые скажут, что я занимаюсь фигней, тем более изготавливая печатные платы, и вообще надо не париться, а просто выкидывать отслужившие аккумуляторы… Возможно, это и правильно, но у каждого свой путь, кто-то водку пьет, кто-то в баню ходит, ну а мне нравится что-то созидать, пусть даже это кажется кому-то бессмысленным… Главное, что мне это нравится, ну а вам я желаю просто хорошо отдохнуть, читая мой обзор, может быть узнать что-то новое и обсудить это в комментариях, только не доводите споры до «холивара»…)))
Пока ждал посылку, сделал модуль индикации, вместо вольтметра для первого варианта платы, что на двух транзисторах…

развлекаюсь под спойлером

Это все сделано на микросхеме LM3914, практически по типовой схеме с даташита. Питание 5В от какой-то зарядки сотового телефона… На плате есть перемычка, которой можно переключать микросхему из режима «Точка», в режим «Столбик» и обратно…

обратная сторона


Когда горит один красный светодиод, напряжение на АКБ, равно 0.2В, когда горит весь столбик - значит на АКБ 1.2В. Каждый потухший светодиод сообщает, что напряжение на АКБ упало еще на 0.1В… Удобно использовать эту плату в виде вольтметра индикатора с довольно высокой точностью...

Наконец то обе посылки пришли, я не буду описывать распаковку, взвешивание, измерение размеров, ибо и так понятно, что держатели батареек формата АА, чуть больше самих батареек… Вот общий вид держателя.


Пластмасса упругая, держит аккумулятор хорошо, более того, довольно сложно пальцами вытащить батарейку, приходится поддевать каким-либо тонким предметом, отверткой, например.
Проверим сопротивление пружинного контакта. 2 миллиОма…


Длина проводов (красного и черного) около 15 см.

Настроим теперь напряжение отсечки компараторов, это можно сделать на любом канале из четырех. И проверим ток которым будут разряжаться наши аккумуляторы… Подаем на разрядное устройство 5В с какого то источника питания от сотового телефона. Видим что все светодиоды горят. Зеленый сигнализирует, что подключено питание, а красные 4 светодиода нам сообщают, что все компараторы находятся в закрытом состоянии, и разряд не происходит.

Описание процесса настройки и фотографии под спойлером

Присоединяем к первому каналу лабораторный блок питания и даем 1.2В - это напряжение полностью заряженного аккумулятора… Видим, что началась разрядка током 70мА (справа точный амперметр имеющий 4 разряда после запятой)


Обратите внимание, что светодиод первого канала потух, сигнализируя, что началась разрядка в этом канале…


При напряжении на аккумуляторе в 0.5В ток разряда составляет 40мА, в принципе как раз примерно такой ток нам и нужен для успешного разбиения образовавшихся кристаллов…


При напряжении 0.4В компаратор закрывается и разрядка на этом окончена. Обратите внимание, что ток на амперметре стал нулевой


При помощи кримпера (не дешевый, профессиональный, куплен на Али), обжимаем провода в специальные наконечники для разъемов


Получается вот такой обжатый наконечник… Приятно работать профессиональным инструментом, хотя он и не дешев, но удобство и результат стоят того.

Ну что же… все готово, отбираем кандидатов на восстановление емкости. Под номерами 1 и 2 идут NiMh аккумуляторы от электробритвы «Panasonic» изначальная емкость не известна. После 3 лет работы в электробритве полностью заряженных аккумуляторов не стало хватать на один сеанс бритья. Под номерами 3 и 4 NiCd аккумуляторы, изначальная емкость 600мА, отработали свое в электрокардиографе…
Поскольку аккумуляторы долго лежали без использования, сначало необходимо их «взбодрить», это можно сделать на Зарядном устройстве ВМ200 выбрав режим Gharge-Refresh - зарядное устройство проведет 3 цикла разрядки до 0.9В, а затем полная зарядка и так 3 раза. При этом емкость незначительно повышается. Таким образом мы исключим погрешность, незначительного повышения емкости, которая добавится после нескольких циклов «тренировки» долго лежащих без работы аккумуляторов. Тренировка была проведена, по времени заняло примерно 36 часов

Теперь можно приступить к процессу восстановления…


Вставляем все аккумуляторы в зарядное устройство, выбираем режим «Зарядка-Тест»… и ждем… После полной зарядки током 200мА, ЗУ разрядит аккумуляторы до 0.9В током 100мА и посчитает отданную емкость. Будем оперировать ей, как начальной емкостью до восстановления.


Вот под утро зарядное устройство выдало посчитанную емкость аккумуляторов, её будем использовать как начальные значения, Никель-Кадмиевые аккумуляторы потеряли половину своей начальной емкости, Никель-металлогидридные, не известно сколько имели емкости изначально, подозреваю, где-то 1200мАч, но это не важно, нам главное динамика и восстановление емкости.


Ставим все аккумуляторы в разрядное устройство, видим, что все красные светодиоды потухли, во всех четырех каналах началась разрядка аккумуляторов. При постижении остаточного напряжения 0.4В на каждом аккумуляторе, компараторы закроются, и красные светодиоды зажгутся, сигнализируя об окончании разрядки. Это может занять много времени…


Пришел с работы, на разрядном устройстве горят все 4 красных светодиода. На всякий случай замерил вольтметром остаточное напряжение на всех аккумуляторах. Примерно 0.4В на каждом…

Ну что же, начинаем повторять цикл разрядки-зарядки. Долго-нудно, день-ночь. Все тестирование заняло 4 суток. На дисплее ЗУ ВМ200 видна положительная динамика, все больше и больше заряда «входит» в аккумуляторы… Видно что метод работает...)))))


Но точки над i расставит заключительное тестирование емкости аккумуляторов при разряде.
5 циклов зарядки-разрядки прошли… Ставим аккумуляторы на определение емкости, это режим «Gharge-Test»… Ну и вот окончательный результат - вердикт…


Как мы видим, емкость какой была, такой и осталась… Чуда не произошло, хотя все говорило, что аккумуляторы восстанавливаются, т.к. растет «закачиваемая» емкость… Но увы…
На этом месте Муськовчане, имеющие гуманитарное образование, опечалено закрыли обзор и поставили мне жирный минус… Муськовчане, имеющие инженерное образование, похихикали и подумали, что законы физики, химии, старость и старуху с косой никто еще не обманул… И они об этом заранее знали… Но… Есть одно небольшое НО…
Как вы помните, я ранее писал про восстановление аккумуляторов формата ААА от радио телефона, в начале статьи… Аккумуляторы отработали 2 года, и перестали держать заряд. Если снять телефон с зарядки, через 10-15 минут на экране мигал значок разряженной батарейки, и требовал поставить телефон на зарядку. Если его требование игнорировалось, то телефон просто отключался. Это было примерно год назад. После 4-х циклов разряда-заряда, я опять поставил аккумуляторы в телефон, и они уже год как работают в нем, пусть ставить на зарядку телефон приходится немного чаще, чем с новыми аккумуляторами, НО!!! Телефон нормально работает год с восстановленными аккумуляторами!!! Почему и как, я не знаю… Но факт остается фактом…
Теперь вернем заряженные аккумуляторы в бритву «Panasonic»… До восстановления аккумуляторов хватало примерно на 4-5 минут после полной зарядки… Потом бритва неизбежно «умирала»… Ну что же, проверим, поставил аккумуляторы на место… Я побрился… потом еще 25 минут держал бритву включенной… Жужжит, как имеющая новые аккумуляторы… Дальше не стал мучить двигатель… выключил… Чувствую, что мне еще хватит этих аккумуляторов на некоторое время…
Выводы я делать не буду, каждый может сделать их самостоятельно… Спасибо всем, кто дочитал мой обзор до конца…
В завершение обзора, по традиции животное… Животному понравилась пластмасса и сопротивление пружинного контакта, но крайне не понравилась длина проводков… Длинее надо… и шуршун должен быть на конце проводков…

Долгое время не мог закинуть результаты своих эксперементов в ЖЖ... дома инета сейчас нет, на работе большая загруженность.

Тем не мение работы не встали, а двигаются и вскоре тут появится отчет о проделанной работе.

на данном этапе я наткнулся на то, что все АКБ имеющиеся у меня в наличии, постепенно пришли в негодность... результатом - испытания уже автономного устройства откладываются...

Порыл инет на эту тему и честно копипастю сюда кусок статейки, непосредственно алгоритм восстановления Ni-Mh

Алгоритм восстановления Ni-MH аккумуляторов

Как было сказано выше, потеря емкости аккумулятора связана с отложением продуктов реакции на электродах. Для восстановления аккумулятора необходимо вернуть эти продукты в исходное состояние.

Для этого необходимо иметь в наличии следующее:

  • источник питания с плавной регулировкой напряжения, индикаторами силы тока и напряжения (можно также воспользоваться отдельными вольтметром и амперметром);
  • подготовленные для зарядки аккумуляторные элементы;
  • нагрузку - реостат или лампочку, сопротивление которых необходимо подобрать исходя из формулы:

R = U / I [Ом] , где U - номинальное напряжение батареи [B], I - необходимая сила тока [A], которая берется из расчета I = 0.4 С(бат).

Желательно также иметь в наличии термодатчик или термореле, чтобы можно было вовремя отключить ток при перегреве.

Перед зарядкой разрядим аккумулятор до напряжения порядка 1 В - подключаем вольтметр и нагрузку параллельно элементу. Периодически контролируем напряжение (оно не должно упасть ниже 0.9 В - могут начаться необратимые процессы). Периодически контролируем температуру - она не должна подниматься выше 50 градусов Цельсия. В противном случае необходимо отключать нагрузку до тех пор, пока элемент не остынет до комнатной температуры. После разрядки необходимо выждать время для нормализации процессов внутри элемента (15-20 минут). За это время элемент «регенерируется», напряжение повысится, и его можно доразрядить до напряжения 0.9 В. Далее, выждав 10-15 минут, можно приступать к зарядке.

Зарядка

Для зарядки подсоединяем амперметр последовательно к заряжаемому элементу, источник питания и вольтметр - параллельно, одним контактом к свободному полюсу аккумулятора, другим - к свободному контакту амперметра. Термодатчик или чувствительный элемент, термореле, желательно закрепить на аккумуляторе с использованием термопасты для более точных измерений. Устанавливаем регулятор напряжения источника питания на минимальное напряжение (реостат - на максимальное сопротивление). Далее - плавно поднимаем напряжение так, чтобы сила тока на амперметре достигла значения:

I(зар) = 0.1C(бат)

Например, для аккумулятора емкостью 1500 мАч максимальная сила тока будет 150 мА. Сила тока будет постепенно снижаться, и соответственно, необходимо повышать напряжение. Сначала - раз в 3-5 минут в течение первого часа, далее - каждый час. Как только напряжение достигнет 1.3 номинального (1.4-1.5 вольт), нужно оставить аккумулятор на зарядке как есть - далее повышать напряжение нельзя. Когда сила тока упадет до значения близкого к нулю (через 4-6 часов), нужно отключить зарядку, подождать 15-20 минут для нормализации процессов, и поставить заряжаться на 8 часов. На всем протяжении зарядки необходимо следить за тем, чтобы температура не поднималась выше 50 градусов Цельсия. Если же температура превышает это значение - надо понизить ток зарядки (в 1.5-2 раза) до тех пор, пока аккумулятор не остынет до 30 градусов. Затем можно плавно поднять ток до номинального значения. Для восстановления первоначальной емкости потребуется 3-4 таких цикла.

Исследования в области никель-металлгидридных батарей начались в 1970х годах как совершенствование никель-водородных батарей, поскольку вес и объем никель-водородных батарей не удовлетворял производителей (водород в этих батареях находился под высоким давлением, что требовало прочного и тяжелого стального корпуса). Использование водорода в виде гидридов металлов позволило снизить вес и объем батарей, также снизилась и опасность взрыва батареи при перегреве.

Начиная с 1980х была существенно улучшена технология производства NiMH батарей и началось коммерческое использование в различных областях. Успеху NiNH батарей способствовала увеличенная емкость (на 40% по сравнению с NiCd), использование материалов, годных к вторичной переработке («дружественность» природной среде), а также весьма длительных срок службы, часто превышающий показатели NiCd аккумуляторов.

Преимущества и недостатки NiMH аккумуляторов

Преимущества

・ бОльшая емкость - на 40% и более, чем обычные NiCd батареи
・ намного меньшая выраженность эффекта «памяти» по сравнению с никель-кадмиевыми аккумуляторами - циклы обслуживания батареи можно проводить в 2-3 раза реже
・ простая возможность транспортировки - авиакомпании перевозят без всяких предварительных условий
・ экологически безопасны - возможна переработка

Недостатки

・ ограниченное время жизни батареи - обычно около 500-700 циклов полного заряда/разряда (хотя в зависимости от режимов работы и внутреннего устройства могут быть различия в разы).
・ эффект памяти - NiMH батареи требуют периодической тренировки (цикла полного разряда/заряда аккумулятора)
・ Относительно малый срок хранения батарей - обычно не более 3х лет при хранении в разряженном состоянии, после чего теряются основные характеристики. Хранение в прохладных условиях при частичном заряде в 40-60% замедляют процесс старения батарей.
・ Высокий саморазряд батарей
・ Ограниченная мощностная емкость - при превышении допустимых нагрузок уменьшается время жизни батарей.
・ Требуется специальное зарядное устройство со стадийным алгоритмом заряда, поскольку при заряде выделяется большое количество тепла и никель-металлгидридные батареи прохо переносят перезаряд.
・ Плохая переносимость высоких температур (свыше 25-30 по Цельсию)

Конструкция NiMH аккумуляторов и АКБ

Современные никель-металлгидридные аккумуляторы имеют внутреннюю конструкцию, схожую с конструкцией никель-кадмиевых аккумуляторов. Положительный оксидно-никелевый электрод, щелочной электролит и расчетное давление водорода совпадают в обеих аккумуляторных системах. Различны только отрицательные электроды: у никель-кадмиевых аккумуляторов – кадмиевый электрод, у никель-металлгидридных – электрод на базе сплава поглощающих водород металлов.

В современных никель-металлгидридных аккумуляторах используется состав водородоадсорбирующего сплава вида AB2 и AB5. Другие сплавы вида AB или A2B не получили широкого распространения. Что же обозначают загадочные буквы A и B в составе сплава? – Под символом A скрывается металл (или смесь металлов), при образовании гидридов которых выделяется тепло. Соответственно, символ B обозначает металл, который реагирует с водородом эндотермически.

Для отрицательных электродов типа AB5 используется смесь редкоземельных элементов группы лантана (компонент А) и никель с примесями других металлов (кобальт, алюминий, марганец) – компонент B. Для электродов типа AB2 используются титан и никель с примесями циркония, ванадия, железа, марганца, хрома.

Никель-металлгидридные аккумуляторы с электродами типа AB5 имеют большее распространение из-за лучших показателей циклируемости, несмотря на то, что аккумуляторы с электродами типа AB2 более дешевы, имеют большую емкость и лучшие мощностные показатели.

В процессе циклирования происходит колебания объема отрицательного электрода до 15-25% от исходного за счет поглощения/выделения водорода. В результате колебаний объема возникает большое количество микротрещин в материале электрода. Это явление объясняет, почему для нового никель-металлгидридного аккумулятора необходимо произвести несколько «тренировочных» циклов заряда/разряда для приведения значений мощности и емкости аккумулятора к номинальным. Также у образования микротрещин есть и отрицательная сторона – увеличивается площадь поверхности электрода, которая подвергается коррозии с расходованием электролита, что приводит к постепенному увеличению внутреннего сопротивления элемента и снижению емкости. Для уменьшения скорости коррозийных процессов рекомендуется хранить никель-металлгидридные аккумуляторы в заряженном состоянии.

Отрицательный электрод имеет избыточную емкость по отношению к положительному как по перезаряду, так и по переразряду для обеспечения приемлемого уровня выделения водорода. Из-за коррозии сплава постепенно уменьшается емкость по перезаряду отрицательного электрода. Как только избыточная емкость по перезаряду исчерпается, на отрицательном электроде в конце заряда начнет выделяться большое количество водорода, что приведет к стравливанию избыточного количества водорода через клапаны элемента, «выкипанию» электролита и выходу аккумулятора из строя. Поэтому для заряда никель-металлгидридных аккумуляторов необходимо специальное зарядное усройство, учитывающее специфику поведения аккумулятора для избегания опасности саморазрушения аккумуляторного элемента. При сборе батареи аккумуляторов необходимо предусмотреть хорошую вентиляцию элементов и не курить рядом с заряжающейся никель-металлгидридной батареей большой емкости.

Со временем в результате циклирования возрастает и саморазряд аккумулятора за счет появления больших пор в материале сепаратора и образовании электрического соединения между пластинами электродов. Эта проблема может быть временно решена путем нескольких циклов глубокого разряда аккумулятора с последующим полным зарядом.

При заряде никель-металлгидридных аккумуляторов выделяется достаточно большое количество тепла, особенно в конце заряда, что является одним из признаков необходимости завершения заряда. При собирании нескольких аккумуляторных элементов в батарею необходима система контроля параметров батареи (BMS), а также наличие терморазмыкающихся токопроводящих соединительных перемычек между частью аккумуляторных элементов. Также желательно соединять аккумуляторы в батарее путем точечной сварки перемычек, а не пайки.

Разряд никель-металлгидридных аккумуляторов при низких температурах лимитируется тем фактом, что эта реакция эндотермическая и на отрицательном электроде образуется вода, разбавляющая электролит, что приводит к высокой вероятности замерзания электролита. Поэтому, чем меньше температура окружающей среды, тем меньше отдаваемая мощность и емкость аккумулятора. Напротив, при повышенной температуре в процессе разряда разрядная емкость никель-металлгидридного аккумулятора будет максимальной.

Знание конструкции и принципов работы позволит с большим пониманием отнестись к процессу эксплуатации никель-металлгидридных аккумуляторов. Надеюсь, информация, почерпнутая в статье, позволит продлить жизнь вашей аккумуляторной батареи и избежать возможных опасных последствий из-за недопонимания принципов безопасного использования никель-металлгидридных аккумуляторов.

Разрядные характеристики NiMH-аккумуляторов при различных
токах разряда при температуре окружающей среды 20 °С


изображение взято с www.compress.ru/Article.aspx?id=16846&iid=781

Никель-металлгидридная батарейка Duracell

изображение взято с www.3dnews.ru/digital/1battery/index8.htm

P.P.S.
Схема перспективного направления создания биполярных аккумуляторных батарей

схема взятя с Биполярные свинцово-кислотные батареи

Сравнительная таблица параметров различных типов аккумуляторов

NiCd NiMH Lead Acid Li-ion Li-ion polymer Reusable
Alkaline
Энергетическая плотность (W*час/кг) 45-80 60-120 30-50 110-160 100-130 80 (начальная)
Внутреннее сопротивление
(включая внутренние схемы), мОм
100-200
при 6В
200-300
при 6В
<100
при 12В
150-250
при 7.2В
200-300
при 7.2В
200-2000
при 6В
Число циклов заряда/разряда (при снижении до 80% от начальной емкости) 1500 300-500 200-300 500-1000 300-500 50
(до 50%)
Время быстрого заряда 1 час типовое 2-4 часа 8-16 часа 2-4 часа 2-4 часа 2-3 часа
Устойчивость к перезаряду средняя низкая высокая очень низкая низкая средняя
Саморазряд / месяц (при комнатной температуре) 20% 30% 5% 10% ~10% 0.3%
Напряжение элемента (номинальное) 1.25В 1.25В 3.6В 3.6В 1.5В
Ток нагрузки
- пиковый
- оптимальный
20C
1C
5C
0.5C и ниже
5C
0.2C
>2C
1C и ниже
>2C
1C и ниже
0.5C
0.2C и ниже
Температура при эксплуатации (только разряд) -40 to
60°C
-20 to
60°C
-20 to
60°C
-20 to
60°C
0 to
60°C
0 to
65°C
Требования к обслуживанию Через 30 – 60 дней Через 60 – 90 дней Через 3 – 6 месяцев Не требуется Не требуется Не требуется
Типовая цена
(US$, только для сравнения)
$50
(7.2В)
$60
(7.2В)
$25
(6В)
$100
(7.2В)
$100
(7.2В)
$5
(9В)
Цена на цикл (US$) $0.04 $0.12 $0.10 $0.14 $0.29 $0.10-0.50
Начало коммерческого использования 1950 1990 1970 1991 1999 1992

таблица взята с

Всё о Ni─MH аккумуляторах: устройство, характеристики, плюсы и минусы

Никель-металлогидридные (Ni─MH) аккумуляторы относятся к группе щелочных. Это химические источники тока, в которых в роли анода выступает водородный металлогидридный электрод, катода ─ оксид никеля, а электролитом является щёлочь гидроксид калия (KOH). Ni─MH аккумуляторы имеют конструкцию, аналогичную Ni─Cd аккумуляторам. По протекающим в них процессам они похожи на никель-водородные аккумуляторы. По своей удельной энергоёмкости никель─металлогидридные превосходят оба этих типа. В этой статье мы подробно разберём устройство и характеристики Ni─MH аккумуляторы, также их плюсы и минусы.

Никель-металлогидридные начали создавать ещё в середине прошлого века. Они разрабатывались с учётом преодолеть те недостатки, которые имели . Во время проводимых исследований учёные разработали новые никель─водородные батареи, применяемые в космической технике. Им удалось разработать новый способ накопления водорода. В новом типе аккумуляторов водород собирался в определённых материалах, а точнее сплавах некоторых металлов. Эти сплавы могли накапливать объем водорода, в тысячу раз превышающий их собственный объем. В состав сплавов входили 2 или более металлов. Один из них накапливал водород, а другой выступал в роли катализатора, который обеспечивал переход атомов водорода в металлическую решётку.


В Ni─MH аккумуляторах могут использоваться различные комбинации металлов. В результате есть возможности по изменению свойств сплава. Для создания никель─металлогидридных аккумуляторов был налажен выпуск сплавов, которые работают в условиях комнатной температуры и при низком давлении водорода. Разработка различных сплавов и совершенствование технологии производства Ni─MH аккумуляторов ведётся по настоящее время. Современные образцы аккумуляторов этого типа обеспечивают до 2 тысяч циклов заряд-разряд. При этом ёмкость минусового электрода снижается не больше, чем на 30 процентов. Такой результат достигается при использовании сплавов никеля с различными редкоземельными металлами.

В 1975 году Билл получил патент на сплав LaNi5. Это был первый образец никель─металлогидридного аккумулятора, где этот сплав был в роли активного вещества. Что касается более ранних экземпляров из других металлогидридных сплавов, то там не была обеспечена требуемая ёмкость.

Промышленный выпуск Ni─MH аккумуляторов был организован лишь в середине восьмидесятых годов, когда был получен сплав состава La─Ni─Co. Он позволял проводить обратимое абсорбирование водорода больше ста циклов. В дальнейшем все усовершенствования конструкции Ni─MH аккумуляторных батарей сводились к наращиванию энергетической плотности.

В дальнейшем был заменён отрицательный электрод, что дало увеличение активной массы плюсового электрода в 1,3─2 раза. Именно от плюсового электрода и зависит ёмкость этого типа аккумуляторов. Ni─MH аккумуляторы обладают более высокими удельными энергетическими параметрами, чем никель─кадмиевые.

Помимо высокой энергетической плотности никель-металлогидридных аккумуляторных батарей, они ещё состоят из нетоксичных материалов, что упрощает их эксплуатацию и утилизацию. Благодаря этим факторам аккумуляторы Ni─MH стали успешно распространяться. Дополнительно можете прочитать про для автомобиля.

Применение никель-металлогидридных аккумуляторов

Ni─MH аккумуляторы широко применяются для питания различной электроники, работающей в автономном режиме. В большинстве своём они выполняются в виде АА или ААА батарей. Хотя есть и другие исполнения, в том числе, промышленные аккумуляторные батареи. Сфера применения у них практически полностью совпадает с никель─кадмиевыми и даже шире, поскольку они не содержат токсичных материалов.





Продаваемые на рынке никель─металлогидридные аккумуляторы можно разделить на две большие группы по ёмкости:

  • 1500-3000 мАч;
  • 300-1000 мАч.

Первая группа (1500-3000 мАч) используется в различных устройствах, которые имеют высокое энергопотребление за короткий промежуток времени. При этом, как правило, отсутствует предварительное хранение батареек. В качестве примера можно привести такие устройства, как плееры, фотоаппараты, радиоуправляемые модели и другие гаджеты, где энергия аккумулятора Ni─MH расходуется за короткое время .

Вторая группа (300-1000 мАч) подходит, когда расход энергии начинается после определённого временного интервала. Примером могут служить ручные фонарики, рации, игрушки, GPS-навигаторы и других устройств с умеренным энергопотреблением, долгое время находящихся в автономном режиме.

Устройство Ni─MH аккумуляторов

Конструкция никель─металлогидридных аккумуляторов

Ni─MH цилиндрической формы

В этой конструкции разноимённые электроды разделены сепаратором. Все вместе они свёрнуты в рулон. Он помещается в корпус и герметизируется крышкой со специальной прокладкой. В крышке сделан аварийный клапан, рассчитанный на открытие при возрастании давления внутри аккумулятора до 2─4 МПа. На рисунке ниже показана конструкция никель─металлогидридного цилиндрического аккумулятора.

Ni─MH призматической формы

В Ni─MH аккумуляторах призматической формы поочерёдное размещение разноимённых электродов. Их также разделяет сепаратор. Сборка электродов находится в металлическом или пластиковом корпусе, который закрывается герметичной крышкой. В крышке в большинстве случаев ставится датчик или клапан давления. Ниже представлена конструкция никель-металлогидридного аккумулятора призматической формы.


В никель-металлогидридных аккумуляторных батареях в роли электролита выступает щёлочь. По составу это КОН с добавлением LiOH. Материал сепаратора в большинстве случаев это нетканый полиамид и полипропилен, обработанные смачивателем. Толщина сепаратора от 0,12 до 0,25 миллиметров.

Положительный электрод Ni─MH аккумуляторов выполняется из тех же материалов, что используются в Ni─Cd аккумуляторных батареях. Это оксидно─никелевая металлокерамика, пенополимерные и войлочные материалы.

Отрицательные электроды для Ni─MH аккумуляторов могут быть следующих вариантов:

  • ламель. Водород─абсорбирующий сплав в виде порошка запрессовывается в сетку из никеля;
  • пеноникелевый. Паста из сплава и связующего вещества вводится в пеноникелевую основу с последующей сушкой и прессованием;
  • фольга. Паста из сплава и связующего вещества наносится на перфорированную фольгу (из никеля или стали) с последующей сушкой и прессованием;
  • вальцованный. Порошок из сплава и связующего посредством прокатки (вальцевание) наносится на решётку или сетку (медную или никелевую);
  • спечённый. Сплав в порошкообразном виде напрессовывается на сетку Ni и затем обжигается в водороде.

Удельные ёмкости у всех этих вариантов электродов близки по значению. Они зависят в основном от ёмкости используемого сплава. Теперь стоит несколько подробнее рассмотреть конструкцию разных электродов никель─металлогидридных аккумуляторов.

Устройство электродов Ni─MH аккумуляторов

Устройство металловодородного электрода

Основной материал, который определяет характеристики Ni─MH аккумуляторов, это сплав, поглощающий водород. Он может абсорбировать объем водорода в тысячу раз больший, чем его собственный объем . Наиболее распространённым сплавом для производства металловодородных электродов стал LaNi5. Так обозначается группа сплавом, где никель частично заменён на кобальт, марганец и алюминий. Это сделано для увеличения его активности и стабильности. В целях экономии ряд производителей используют не лантана, а Мm (миш-металл). Он представляет собой смесь редкоземельных элементов в соотношении, близком к тому, что есть в природной руде. Там кроме La есть неодим, церий, празеодим.

Во время прохождения цикла заряд-разряд кристаллическая решётка сплава сжимается и расширяется на 15─25 процентов. Это обусловлено процессами десорбции и абсорбции водорода. В результате растёт внутреннее напряжение и в сплаве образуются трещины. Из-за образования трещин растёт площадь поверхности, подвергающейся коррозии из-за реакции со щёлочью (электролит). В результате происходит постепенное снижение разрядной ёмкости отрицательного электрода.

Поскольку в аккумуляторной батарее имеется ограниченное количество электролита, все описанные процессы порождают проблемы, которые связаны с его перераспределением. В результате коррозии сплава его поверхность становится химически пассивной. На ней образуются оксиды и гидроксиды, стойкие к коррозии. Они увеличивают перенапряжение при реакции на металлогидридном электроде. Продукты коррозии образуются с потреблением водорода и кислорода из щелочи. Это ведёт к уменьшению количества электролита в батарее и увеличению её внутреннего сопротивления. Все эти процессы отрицательно сказываются на сроке эксплуатации Ni─MH аккумуляторов.

Чтобы снизить нежелательные процессы коррозии и диспергирования, производители используют 2 методики. Первая включает в себя микрокапсулирование частиц сплава. Это значит, что поверхность покрывается пористым слоем меди или никеля малой толщины (5─10 процентов). Более распространена вторая методика. Эта технология подразумевает обработку частиц сплава в щелочном растворе. В результате образуется защитная плёнка, которая проницаема для водорода.

Устройство оксидно─никелевого электрода

Оксидно-никелевые электроды можно встретить в следующих исполнениях:

  • ламельные;
  • безламельные металлокерамические спечёные;
  • прессованные.

Всё большую популярность обретают пенополимерные и безламельные войлочные электроды.

Конструктивно ламельные оксидно─никелевые электроды состоят из соединённых ламелей. Ламель – это перфорированные коробочки из тонкой стальной никелированной ленты. Её толщина составляет 0,1 миллиметра.

Металлокерамические спечённые электроды имеют пористую структуру металлокерамической основы. В порах, которых в основе не менее 70 процентов, находится активная масса. Материал основы – это карбонильный никелевый мелкодисперсный порошок (60─65 процентов) и карбонат аммония (или карбамид). Этот порошок напрессовывается, накатывается на сетку из никеля или стали. Также может выполняться его напыление.

Далее по технологии сетка с порошком проходит термообработку в атмосфере водорода. Температура при этом составляет 800─960 градусов Цельсия. Карбамид или карбонат аммония разлагается и происходит спекание никеля. В результате получается основа толщиной 1─2,3 миллиметра. Пористость получаемой основы составляет 80─85 процентов, а радиус пор равен 5─20 микрометров. Далее полученная основа пропитывается нагретым до 60─90 градусов раствором сульфата или нитрата никеля. А затем ещё делается пропитка раствором щелочи, осаждающей оксиды и гидроксиды никеля.

На современных производствах применяется электрохимическая технология пропитки. Электрод в растворе нитрата никеля подвергают катодной обработке. В результате в порах выделяется водород и пластины подщелачиваются. В порах пластины происходит осаждение гидроксидов и оксидов никеля.

Фольговые электроды являются разновидностью спечённых электродов. Их производят следующим образом. На перфорированную ленту из никеля толщиной около 0,05 миллиметра с двух сторон наносится спиртовая эмульсия никелевого карбонильного порошка со связующими веществами. Далее проводится спекание и пропитка реагентами (химическая или электрохимическая). Толщина электрода равна 0,4─0,6 миллиметра.

Прессованные электроды производятся путём напрессовки на ленту или сетку из стали активной массы. Давление при этом составляет 35─60 МПа. В качестве активной массы используется смесь гидроксидов никеля и кобальта, графита, связующих веществ.


Металловойлочные электроды представляют собой высокопористую основу, состоящую из волокон углерода или никеля. Пористость основы составляет от 95 процентов. Войлочный электрод делается на основе углеграфитового или полимерного фетра, покрытого никелем. Толщина электрода может быть от 0,8 до 10 миллиметров. Активная масса внедряется в войлок различными методиками.

Есть технология, где вместо войлока используют пеноникель. Его делают никелированием пенополиуретана и дальнейшим отжигом в восстановительной атмосфере. В высокопористую среду вносят добавки посредством намазки. Это паста, включающая в себя гидроксид никеля со связкой. Далее основу сушат и вальцуют. Электроды металловойлочного и пеноникелевых типов имеют высокую удельную ёмкость и существенный ресурс работы.

Реакции в никель─металлогидридных аккумуляторах

Как уже разбиралось выше, в Ni─MH аккумуляторе положительный электрод оксидно─никелевый также, как в Ni─Cd батареях. А вот отрицательный электрод вместо кадмиевого используется из никелевого сплава с добавлением редкоземельных элементов.

Какие реакции протекают в Ni─MH аккумуляторах?

На оксидно-никелевом электроде (положительный) протекает реакция:

При заряде

Ni(OH) 2 + OH −- ⇒ NiOOH + H 2 O + e −

При разряде

NiOOH + H 2 O + e − ⇒ Ni(OH) 2 + OH −

На электроде из никелевого сплава (отрицательный) протекает реакция:

При заряде

M + H 2 O + e − ⇒ MH + OH −-

При разряде

MH + OH − ⇒ M + H 2 O + e −

Суммарная реакция, протекающая в Ni─MH аккумуляторе, выглядит следующим образом:

При заряде

Ni(OH) 2 + M ⇒ NiOOH + MH

При разряде

NiOOH + MH ⇒ Ni(OH) 2 + M

При этом щелочной электролит не принимает участия в реакции образования тока.

После того, как при заряде аккумулятора до уровня 70─80 процентов на оксидно─никелевом запускается выделение кислорода в соответствии со следующей реакцией:

2OH − ⇒ 1/2O 2 + H 2 O + 2e −

На отрицательном электроде происходит реакция восстановления этого кислорода:

1/2O 2 + H 2 O + 2e − ⇒ 2OH −

Так описывается процесс перезарядки никель─металлогидридного аккумулятора. Эти реакции образуют собой замкнутую циркуляцию кислорода. В процессе восстановления кислорода происходит увеличение ёмкости металлогидридного электрода благодаря выделению группы ОН − .

Характеристики Ni-MH аккумуляторов

Основные параметры никель─металлогидридных и никель─кадмиевых аккумуляторов приводятся в следующей таблице.

Характеристика Ni-Cd Ni-MH Ni-H2
Характеристика Ni-Cd Ni-MH Ni-H2
Энергетическая плотность, Вт-ч/кг 45-80 60-120 -
Внутреннее сопротивление (при 6 В), мОм 100-200 200-300 -
Число циклов заряд-разряд до падения ёмкости 80 процентов от номинала 1500 300-500 2000-3000
Время быстрой зарядки, часы 1 2-4 -
Устойчивость к перезаряду средняя низкая -
Саморазряд при комнатной температуре 20% в месяц 30% в месяц 20-30% за сутки
Номинальное напряжение, В 1,25 1,25 1,25
Оптимальный ток нагрузки до 0,5С -
Пиковый ток нагрузки 20С -
Рабочая температура (разряд), С от -40 до +60 от -20 до +60 от -20 до +30
Периодичность обслуживания (тренировка), дней 30-90 30-90 -
Появление в продаже 1950 1990 -
Срок службы, лет 1-5 1-5 2-7
Удельная энергия, Вт-ч/литр 60-120 100-270 60-80

Электрические характеристики

Ёмкость аккумулятора

При повышении нагрузки и понижении температуры ОС ёмкость никель─металлогидридного аккумулятора снижается в соответствии с графиком ниже.



Эффект снижения ёмкости особенно заметен при существенной скорости разряда в области отрицательных температур.

Номинальное разрядное напряжение

Номинальное разрядное напряжение (U р) обычно находится в пределах 1,2─1,25 вольта при токе разряда (I р), определяемом по формуле:

I p = 0,1─0,2С, где

С — номинальная ёмкость батареи при температуре 25 градусов Цельсия.

Конечное напряжение разряда составляет 1 вольт. Как можно видеть на графике ниже, напряжение снижается при возрастании нагрузки.

Напряжение разомкнутой цепи

Величину этого параметра Ni─MH аккумуляторов определить достаточно сложно. Это определяется тем, что равновесный потенциал оксидно─никелевого электрода во многом зависит от степени окисленности Ni.

Важную роль играет и равновесный потенциал отрицательного электрода, который определяется степенью насыщенности водородом. Спустя сутки после заряда батареи напряжение разомкнутой никель-металлогидридного аккумулятора находится в пределах 1,30─1,35 вольта.

Хранение и срок эксплуатации

Во время хранения Ni─MH аккумулятора, как и в случае других типов батарей, имеет место явление саморазряда. При комнатной температуре за первый месяц хранения такой аккумулятор теряет 20─30 процентов ёмкости. В дальнейшем каждый месяц ёмкость никель─металлогидридного аккумулятора падает на 3─7 процентов в месяц. Интенсивность саморазряда возрастает с ростом температуры, как можно видеть на графике ниже.

Похожие статьи