Преобразователь частоты для асинхронного двигателя своими руками. Как выбрать частотный преобразователь для электродвигателя

02.09.2019

Простой преобразователь частоты для асинхронного электродвигателя.

Первым был ресторан - зимой холодный воздух должен строго дозировано дуть на разгорячённых посетителей, а летом наоборот -замерзших от холодного мороженого плавно согревать жарким воздухом с улицы. Без инвертора никак не обойтись.
Второй хочет стричь лохматых овец, но вот беда машинка трехфазная. А в поле только одна да и та не 220в. Опять нужен инвертор.
Третий вообще наждачный камень, сверлильный станок и намоточный -захотел прицепить к двигателю.
В конце концов оглядевшись по сторонам я увидел - все…все делают инверторы японцы, французы, немцы …. , только я ещё не имею своего точила для отверток. И мало того все приличные фирмы уже написали, как это делать.

Итак коль уж асинхронный двигатель так распространён и трехфазная система напряжения созданная М. О. Доливо-Добровольским так удобна. А современная элементная база так хороша. То сделать преобразователь частоты -это лишь вопрос личного желания и некоторых финансовых возможностей. Возможно кто то скажет « Ну, зачем мне инвертор, я поставлю фазосдвигающий конденсатор и все решено» . Но при этом обороты не покрутишь и в мощности потеряешь и потом это не интересно.

Возьмём за основу - в быту есть однофазная сеть 220в, народный размер двигателя до 1 кВт. Значить соединяем обмотки двигателя треугольником. Дальше -проще, понадобится драйвер трехфазного моста IR2135(IR2133) выбираем такой потому, что он применяется в промышленной технике имеет вывод SD и удобное расположение выводов. Подойдёт и IR2132 , но у неё dead time больше и выхода SD нет. В качестве генератора PWM выберем микроконтроллер AT90SPWM3B - доступен, всем понятен, имеет массу возможностей и недорого стоит, есть простой программатор -https://real.kiev.ua/avreal/. Силовые транзисторы 6 штук IRG4BC30W выберем с некоторым запасом по току - пусковые токи АД могут превышать номинальные в 5-6 раз. И пока не ставим "тормозной" ключ и резистор, будем тормозить и намагничивать перед пуском ротор постоянным током, но об этом позже.... Весь процесс работы отображается на 2-х строчном ЖКИ индикаторе. Для управления достаточно 6 кнопок (частота +, частота -, пуск, стоп, реверс, меню).
Получилась вот такая схема.

Я вовсе не претендую на законченность конструкции и предлагаю брать данную конструкцию за некую основу для энтузиастов домашнего электропривода. Приведённые здесь платы были сделаны под имеющиеся в моём распоряжении детали.

Конструктивно инвертор выполнен на двух платах - силовая часть (блок питания, драйвер и транзисторы моста, силовые клеммы) и цифровая часть (микроконтроллер + индикатор). Электрически платы соединены гибким шлейфом. Такая конструкция выбрана для перехода в будущем на контроллер TMS320 или STM32 или STM8.
Блок питания собран по классической схеме и в комментариях не нуждается. Микросхема IL300 линейная опто развязка для управления током 4-20Ма. Оптроны ОС2-4 просто дублируют кнопки «старт, стоп, реверс» для гальванически развязанного управления. Выход оптрона ОС-1 «функция пользователя» (сигнализация и пр.)
Силовые транзисторы и диодный мост закреплены на общий радиатор. Шунт 4 витка манганинового провода диаметром 0.5мм на оправке 3 мм.
Сразу замечу некоторые узлы и элементы вовсе не обязательны. Для того что бы просто крутить двигатель, не нужно внешнее управление током 4-20 Ма. Нет необходимости в трансформаторе тока, для оценочного измерения подойдёт и токовый шунт. Не нужна внешняя сигнализация. При мощности двигателя 400 Вт и площади радиатора 100см 2 нет нужды в термодатчике.

ВАЖНО! - имеющиеся на плате кнопки управления изолированы от сети питания только пластмассовыми толкателями. Для безопасного управления необходимо использовать опторазвязку.

Возможные изменения в схеме в зависимости от микропрограммы.
Усилитель DA-1 можно подключать к трансформатору тока или к шунту. Усилитель DA-1-2 может быть использован для измерения напряжения сети или для измерения сопротивления терморезистора если не используется термодатчик PD-1.
В случае длинных соединительных проводов необходимо на каждый провод хотя бы надеть помехоподавляющие кольцо. Имеют место помехи. Так например -пока я этого не сделал у меня «мышь» зависала.
Так же считаю важным отметить проверку надёжности изоляции АД -т.к. при коммутации силовых транзисторов выбросы напряжение на обмотках могут достигать значений 1,3 Uпит.

Общий вид.

Немного про управление.

Начитавшись книжек с длинными формулами в основном описывающих как делать синусоиду при помощи PWM. И как стабилизировать скорость вращения вала двигателя посредством таходатчика и ПИД регулятора. Я пришёл к выводу -АД имеет достаточно жёсткую характеристику во всём диапазоне допустимых нагрузок на валу.
Поэтому для личных нужд вполне подойдет управление описанное законом Костенко М.П. или как его ещё называют скаляроное. Достаточное для большинства практических случаев применения частотно регулируемого электропривода с диапазоном регулирования частоты вращения двигателя до 1:40. Т.е. грубо говоря мы в самом простом случае делаем обычную 3-х фазную розетку с переменной частотой и напряжением меняющимися в прямой зависимости. С небольшими «но» на начальных участках характеристики необходимо выполнять IR компенсацию т.е. на малых частотах нужно фиксированное напряжение. Втрое «но» в питающие двигатель напряжение замешать 3 гармонику. Всё остальное сделают за нас физические принципы АД. Более подробно про это можно прочесть в документе AVR494.PDF
Основываясь на моих личных наблюдениях и скромном опыте именно эти методы без особых изысков чаще всего применяются в приводах мощностью до 15 кВт.
Далее не буду углубляться в теорию и описание мат моделей АД. Это и без меня достаточно хорошо изложили профессора ещё в 60-х.

Но ни в коем случае не стоит недооценивать сложности управления АД. Все мои упрощения оправданны только некоммерческим применением инвертора.

Плата силовых элементов.

В программе V-1.0 для AT90SPWM3B реализовано
1- Частотное управление АД.Форма напряжения синусоида с 3 гармоникой.
2- Частота задания 5 Гц -50 Гц с шагом 1 Гц. Частота ШИМ 4 кГц.
3- Фиксированное время разгона -торможения
4- Реверс (только через кнопку СТОП)
5- Разгон до заданной частоты с шагом 1 Гц
6 - Индикация показаний канала АЦП 6 (разрядность 8 бит., оконный фильтр апертура 4 бита)
я использую этот канал для замера тока шунта.
7 - Индикация режима работы START,STOP,RUN,RAMP, и Частота в Гц.
8- Обработка сигнала авария от мс IR2135

Впервые асинхронный двигатель был использован в конце 19-го века. Его успешное применение позволило внедрить данное оборудование практически на любой завод, фабрику, в любую отрасль промышленности. Однако управлять данным устройством оказалось довольно проблемно, особенно пуском и остановкой. Основной целью эксплуатации частотного преобразователя, а также целью его создания как раз и стала необходимость в устройстве, управляющем асинхронным двигателем.

Общая информация

Целесообразнее всего снабжать преобразователем частоты (ЧП) те устройства, которые обладают довольно высоким показателем мощности. Основная цель, для которой используется такое оборудование, - это изменение пускового тока. ЧП дает возможность задавать величину для этого параметра, что и обеспечивает более плавную остановку и запуск двигателя.

Также можно отметить, что эти два устройства, работающие в паре, позволяют заменить такие устройства, как электроприводы постоянного тока. С одной стороны, регулировать скорость у такой системы очень просто, однако есть и слабое место в такой сети - сам электродвигатель. В электроприводах постоянного тока именно это устройство является наиболее дорогим и ненадежным. А если сравнивать асинхронное оборудование с прибором постоянного тока, то тут можно выделить явные преимущества: более простое и надежное устройство; масса, стоимость и габариты асинхронного приспособления будут гораздо ниже, чем у аппарата постоянного тока с той же мощностью.

Что такое частотный преобразователь

Стоит сказать о том, что регулировать числовое значение тока можно и вручную. Однако на это будет уходить определенное количество времени, так как человек не способен моментально среагировать на любое изменение, как машина. А это приведет к тому, что некоторое количество энергии будет уходить впустую, а энергетический ресурс двигателя выработается быстрее.

Частотный преобразователь для электродвигателя - это практически необходимая деталь, так как те устройства, которые не имели его, обладали значением тока, превышающим номинальное значение напряжение в 5-7 раз. Такая разница не позволит создавать приемлемые условия для эксплуатации двигателя.

Принцип работы частотного преобразователя кроется в том, что в нем используется специальный электронный механизм, который и управляет работой асинхронного двигателя. Также важно отметить, что ЧП позволяет не только настроить плавный запуск, но и выбрать оптимальный показатель между напряжением и частотой. Эта характеристика рассчитывается по определенной формуле.

Основное преимущество применения частотного преобразователя для двигателя - это экономия электрической энергии, значение которой доходит до 50 %. Еще одно важное преимущество ЧП - это возможность настроить его работу так, чтобы она максимально подходила под каждую отрасль производства. Применение такого устройства основывается на принципе работы двойного преобразования напряжения.

Первый этап - это регулировка напряжения, поступающего из сети. Оно выпрямляется и фильтруется. Эти операции осуществляются посредством системы конденсаторов.

Второй этап - включение в работу электронного управления системой. Этот элемент выставляет значение тока, которое будет соответствовать частоте, а также ранее выбранному режиму работы.

Как можно заметить, принцип работы частотного преобразователя довольно прост.

Материалы для сборки

На сегодняшний день распространение и улучшение технологий и оборудования привело к тому, что, имея некоторые знания в электронике и умения, можно собрать ЧП для однофазного двигателя собственноручно.

Для того чтобы собрать это устройство, понадобятся такие материалы, как:

  • драйвер трехфазного моста модели IR2135 или 2133;
  • понадобится микроконтроллер, который будет использоваться как генератор PWM, модели AT90SPWM3B;
  • еще одна важная деталь - программатор;
  • три пары транзисторов;
  • жидкокристаллический индикатор;
  • шесть кнопок для управления системой.

Сборка устройства

Для начала работы необходимо иметь схему частотного преобразователя. Осуществлять сборку будет намного удобнее и быстрее, имея этот документ.

Первый шаг сборки - соединение обмоток двигателя. Для этого нужно использовать вариант подключения, который в электротехнике называется треугольник.

В сборке частотного преобразователя своими руками основой будут выступать две платы. Одна из них (первая) будет являться основой для размещения таких элементов, как блок питания, драйвер, транзисторы. Силовые клеммы также будут подключаться к этой плате. Вторая же плата необходима для крепления микроконтроллера и индикатора. Для того чтобы соединить эти два элемента между собой, нужно использовать гибкий шлейф. Чтобы изготовить импульсный блок, можно использовать самую простую схему.

Для того чтобы осуществлять контроль над работой двигателя, нет необходимости в добавлении внешних устройств. Однако если такое желание все же есть, то можно добавить схему IL300 в конструкцию.

Следующим важным элементом в сборке частотного преобразователя своими руками станет общий радиатор. В схеме этих устройств данный элемент используется для того, чтобы разместить на нем транзисторы и диодный мост. Один из обязательных шагов - это установка оптронов ОС2-4. Основное предназначение этих элементов - дублирование кнопок управления.

При изготовлении частотного преобразователя своими руками для двигателя с мощностью до 400 Вт можно обойтись без термодатчика. Для того чтобы измерять напряжение, можно использовать обычный усилитель (DA-1-2). Необходимо также защитить все кнопки управления. Для этого используются пластиковые толкатели. Управление устройством осуществляется при помощи опторазвязки.

Последнее, что необходимо сделать при изготовлении частотного преобразователя своими руками, - это позаботиться о подавлении помех. Это необходимо делать лишь в том случае, если в системе используются слишком длинные провода. Когда ротор двигателя уже запущен, то можно выбрать любою скорость вращения, которая лежит в пределах частоты от 1 до 40.

Подключение

Собрать ЧП - это лишь половина дела. Вторая половина - это правильное подключение преобразователя к двигателю. Частотный преобразователь для насоса, работающего посредством использования асинхронного двигателя, может подключаться по двум методам. Выбор метода зависит от напряжения сети.

Если она обладает напряжением в 220 В и всего одной фазой, то наиболее выгодная схема подключения - это треугольник. Тут важно запомнить одну вещь. Выходной ток не может превышать номинальный более чем на 50 %.

Если подключать частотный преобразователь на 380 В и трех фазах, то для подсоединения к двигателю лучше всего прибегнуть к такой схеме, как звезда. Для того чтобы максимально упростить этот процесс, на покупных ЧП имеются специальные клеммы, которые обладают нужной маркировкой. На самодельном придется обойтись без этого.

Важно не забыть, что в любой системе, самодельной или покупной, должна быть схема, имеющая клемму для заземления.

Обслуживание устройства

Как уже говорилось ранее, просто собрать ЧП и подключить его - мало. Еще одна важная часть, которая гарантирует длительный срок службы устройства, - это обслуживание прибора. Частотный преобразователь для насоса, двигателя или любого другого устройства, должен подвергаться тщательному уходу:

  1. Наиболее страшный враг электронного оборудования - это пыль. Важно следить, чтобы на внутренних контактах она не скапливалась. Для удаления этих частиц мусора можно использовать компрессор с невысокой мощностью. Пылесос использовать нежелательно, так как он не сможет убрать плотный слой пыли.
  2. Необходимо регулярно проверять работоспособность всех узлов. При возникновении неполадок сразу их менять. Нормальный срок эксплуатации электролитического конденсатора - 5 лет, для предохранителя - 10 лет. Вентиляторы, работающие внутри устройства, нужно менять каждые 2-3 года, внутренние шлейфы - каждые 6 лет.
  3. Очень важно следить за такими параметрами, как температура внутренних элементов, а также напряжение на шине постоянного тока. Если температура повысится слишком сильно, то термопаста с большой долей вероятности высохнет, что приведет к выходу из строя конденсаторов. Чтобы избежать этой проблемы, рекомендуется менять термопасту каждые три года.
  4. Важно соблюдать следующие правила эксплуатации: температура окружающего воздуха не выше +40 градусов; помещение должно быть сухим, повышенная влажность недопустима; повышенная запыленность также отрицательно скажется на приборе.

Структурное устройство ЧП

Для того чтобы точно ответить на вопрос, как сделать частотный преобразователь, необходимо разобраться еще в одном пункте. Это - структурное устройство данного прибора.

Так как ориентироваться при изготовлении нужно на покупные модели, то и схема должна быть соответствующей. А это значит, что работать он должен на структуре двойного преобразования. У этой схемы имеются основные части: звено постоянного тока, силовой импульсный инвертор и система управления.

Если рассматривать более детально, то часть с постоянным током состоит из двух соединений: неуправляемый выпрямитель и фильтр. Именно в этом элементе переменное напряжение, которое действует в сети, будет преобразовываться в постоянное.

Второй элемент - силовой импульсный инвертор. Он является трехфазным, а состоит из шести транзисторных ключей. Они предназначены для подключения соответствующей обмотки двигателя к каждому из ключей как положительному, так и отрицательному. Этот элемент отвечает за преобразование поступающего постоянного напряжения в трехфазное и переменное. Также это устройство задает нужную частоту и амплитуду.

Последний элемент - это система управления. Здесь используются силовые IGBT-транзисторы. Если сравнивать с обычными тиристорами, то частота переключения у транзисторов выше. Это позволяет вырабатывать выходной сигнал в форме синусоиды с минимальным искажением.

Частотные преобразователи на микроконтроллере

Принцип работы таких устройств является следующим. Изначально характеристики всех микроконтроллеров (МК) настраиваются так, чтобы работать в паре с напряжением в 200 В, а также частотой поля в 50 Гц. Другими словами, они настроены по умолчанию для работы в паре с наиболее примитивными асинхронными двигателями 220 В/50 Гц. Также имеется такой показатель, как скорость набора частоты. По умолчанию это значение устанавливается как 15 Гц/сек. Это означает, что разгон МК до 50 Гц будет занимать чуть более чем 3 секунды, а, к примеру, до 150 Гц за 10 секунд ровно. Также важно отметить, что изначально ЧП является скалярным. Другими словами, чем выше будет выходная частота двигателя, тем выше будет его напряжение.

Ремонт и наладка прибора

Ремонт частотных преобразователей - неотъемлемая часть работы с этими устройствами. Довольно часто случается такая проблема, как выход из строя тормозного резистора. Если это происходит, то ЧП не сможет работать на полную мощность. Для того чтобы установить, вышел ли из строя тормозной элемент или нет, имеется таблица, в которой приведены все номинальные значения для всех типов элементов. Если после сверки с этим документом выяснилось, что какой-либо параметр не совпадает, то резистор нужно менять.

Также могут быть сбои в том случае, если ЧП оказался слишком мощным или же сеть слишком слабая для этой модели. Тут дело заключается в принципе работы элементов ЧП. Он рассчитан на эксплуатацию при постоянном высоком напряжении. Если параметры сети не дотягивают до минимальных показателей, требуемых для работы, то и выполнять свои функции он не сможет. Как таковой ремонт частотного преобразователя тут не требуется, необходимо купить менее мощный прибор.

Основные показатели преобразователей

К основным характеристикам этих устройств можно отнести следующее:

  • рабочее напряжение в пределах от 220 до 480 В;
  • все модели обладают защитой lP54;
  • температурный режим, требуемый для нормальной эксплуатации, в пределах от +10 до +40 градусов по Цельсию;
  • мощность для большинства покупных моделей - от 1 кВт.

Кроме того, существуют такие модели, как двухзвенные частотные преобразователи, а также такие разновидности, как матричные и векторные устройства. К примеру, векторный тип - это ЧП переменного тока и напряжение, которое подается на него, необходимое для создания нужной амплитуды. Этот тип прибора обеспечивает включение в работу двигателя спустя 2 секунды после запуска ЧП. Однако недостатком стало то, что он довольно дорогой, а потому его популярность стремительно падает.

Очень важно заметить, что подбирать просто мощный прибор - это неправильно. Выбор должен осуществляться в соответствии с рабочими параметрами сети. Если купить слишком мощный частотный преобразователь для электродвигателя, то получится, что будет переплата за то оборудование, которое будет представлять угрозу, а не регулировать работу агрегата.

Во всем мире с успехом реализуются принципы частотного управления асинхронным электроприводом. Способ предусматривает кроме значительной экономии электроэнергии , усовершенствованное управление работы агрегатов, и ведет к существенному энергосбережению.

Принцип действия

Скорость вращения вала электродвигателя зависит от частоты подаваемого питающего напряжения. Использование частотных преобразователей повсеместно признано самым эффективным методом регулировки скорости вращения . Действие устройства заключается в формировании из значения выходного напряжения (U), характеризуемого постоянной частотой (F) и амплитудой (A), в напряжение с переменными параметрами. Это приводит к изменению величины частоты магнитного поля, изменяющего механическое вращение вала двигателя.

Принимая во внимание, что момент нагрузки постоянен, сила тока зависит от нагрузки, соответственно, происходит изменение подаваемого на клеммы двигателя напряжения пропорционального частоте, это сохраняет неизменным поток намагничивания и постоянный крутящий момент, а также неизменное значение тока.

Как следствие этих процессов, наблюдается постоянная корректировка скорости и вращающего момента в отношении рабочей нагрузки. Потери – минимальны, это достигается при помощи поддержания постоянного скольжения при любой скорости, для всех нагрузок.

Преимущества способа частотного регулирования

  • Управление электродвигателем может осуществляться на значительном расстоянии в удобном для этого месте.
  • Мягкий пуск и уменьшение затрат на техническое обслуживание устройства.
  • Возможность увеличивать производительность с помощью регулирования скорости, в соответствии с требуемой производственной потребностью.
  • Повышенный КПД преобразователя частоты до 97% асинхронной машины и до 95% повышает энергоэффективность за счет способа управления и применяемого электродвигателя.
  • Статический преобразователь применяется для переменного момента (невысокий крутящий момент, небольшие скорости) с уменьшенной величиной напряжения на клеммах присоединения к электродвигателю. Также, для использования в случае неизменного момента и мощности, в таком случае высокая эффективность достигается за счет плавного управления скоростью. Благодаря этим возможностям система может считаться универсальной.
  • Обязательный контроль скорости способствует достижению оптимизации технологического процесса, что способствует высокому качеству продукции.

Характеристики

Сигнал заданного значения напряжения и определенной частоты, получается по прохождении трех этапов – это:

  • Выпрямительный диодный мост.
  • Фильтр постоянного тока для осуществления сглаживания уже выпрямленного значения напряжения при помощи конденсаторов.
  • Инвертор или силовой модуль, работающий на базе IGВT (БТИЗ – биполярный транзистор с изолированным затвором). Этот силовой транзистор может использоваться в качестве ключа со значительным рабочим током в несколько кило-ампер, и с величиной напряжения в несколько киловольт с частотой коммутации более 30 кГц.


Рис №1. Три основных звена, из которых состоит устройство частотного преобразователя.

Типы частотного управления скоростью асинхронной машины

Существует два основных типа управления скоростью вращения, являющимися базовыми способами, это:

  • Скалярное (без использования обратной связи).
  • Векторное управление, обратная связь может применяться, а может отсутствовать.

Характеристика скалярного управления

При использовании этого типа управления, происходит сохранение соотношения U/F в неизменном виде по всему частотному интервалу для сохранения постоянного магнитного потока (Ф) электрического двигателя. Данный метод применяется при отсутствии надобности стремительного реагирования на колебания момента вращения и число оборотов.

Скалярное регулировании позволяет от одного частотного устройства запитать несколько рабочих асинхронных машин. При скалярном регулировании применяется компенсация скольжения за счет снижения скорости. Происходит увеличение постоянного момента вращения за счет повышения коэффициента V/F, это компенсирует понижение значения напряжения на статоре двигателя. Этот способ прост конструктивно и не нуждается в значительной точности и быстром реагировании на изменения числа оборотов вала.

Векторное управление двигателем

Увеличение эффективности в управлении рабочим приводом рекомендуется применить метод регулировки за счет изменения потокосцепления.

Самым точным и наиболее действенным считается метод векторного регулирования фазы тока в статоре машины и соответственно, фазой его магнитного поля относительно ротора. Для этого метода характерно применение датчика позиционирования или положения (энкодера), позволяющего показать точное положение ротора в каждый вращающий момент. Применение датчиков положения способно увеличить стоимость электропривода. С использованием энкодеров скорость можно регулировать с точностью до 0,01%.

Чтобы обойти такое ограничение рекомендуется применять в системе управления электродвигателем, преобразователь интегральных схем ASIC. Он создает адаптивную модель двигателя, выраженную математически с точным указанием величины токов, напряжений, сопротивления статора, индуктивность рассеивания на выходе. Делает возможным создание моделирования тепловых рабочих параметров двигателя при разных режимах работы.

Векторное управление без применения датчиков обратной связи способно обеспечить динамические погрешности, которые присутствуют в электроприводах с замкнутой обратной связью. Векторное управление без использования датчиков простое конструктивно, но весьма ограничено при использовании на невысоких скоростях, он отлично подходит для больших скоростей вращения.

Влияние токов высших гармоник

Важно : для сетей переменного тока система использующая преобразователь частоты служит нелинейной импульсной нагрузкой, где присутствуют токовые гармоники, отрицательно влияющие на качественные параметры линии электропередач в зависимости от значения сопротивления линии. Высшие гармоники обладают более низкой амплитудой и тем легче могут быть отфильтрованы.

Гармонические токи способствуют увеличению электрических потерь и снижение коэффициента мощности, способствуют перегреву элементов сети, например: кабелей, трансформаторов, двигателей, конденсаторов.

Сетевой дроссель или сглаживающий линейный реактор

Для преобразователей частоты обязательно наличие фильтрующего устройства. Снизить гармонические искажения можно за счет применения сетевых дросселей или DC-реакторов. Дроссель препятствует снижению величины напряжения на электродвигателе и способствует повышению его коэффициента мощности. Недостаток дросселя, он может привести нежелательному резонансу в общей системе электроснабжения, это происходит за счет неправильно выбранной комбинации его сопротивления с сопротивлением линии.

Рекомендуется сопротивление сетевого дросселя добавлять к существующему сопротивлению источника питания. При этом учитывается сопротивление трансформаторов и кабельных линий, в этом случае падение напряжения составит 2-4% и послужит для улучшения коэффициента мощности и уменьшения гармонических искажений на выходном токе.

Также сглаживающий реактор улучшает коэффициент мощности и служит для подавления или ослабления высших гармоник. Реактор помогает увеличить срок эксплуатации полупроводников, конденсаторных батарей. За счет этого происходит снижение значения тока выпрямительных диодов и уменьшается пульсация тока через конденсаторы.


Рис №2. Сетевой дроссель (реактор).

Мероприятия, направленные на сглаживание гармоник

Для подавления радиопомех, которые генерируются инвертором, в частотном преобразователе используют фильтр радиопомех и модуль DBR, устройства используются для соответствия требованиям по электромагнитной совместимости.

Также для уменьшения гармоник используют многоуровневый преобразователь, что влечет некоторое увеличение стоимости оборудования, снижает надежность и усложняет управление. Хорошее решение этого вопроса можно наблюдать при улучшении качества ШИМ, выполняется оптимизация временной диаграммы – происходит: пространственно векторная модуляция, улучшается контроль напряжения, повышается эффективность системы (частотный преобразователь + электродвигатель)

Энергосбережение

Повышение КПД электрического двигателя достигается за счет увеличения частоты коммутации. При подключении от преобразователя, происходит сохранение КПД двигателя, по сравнению со стандартными двигателями.

Энергоэффективность достигается за счет снижения тепловых потерь и потерь в железе, это можно нормализировать при снижении скорости. Качество управления происходит вследствие исключения механических устройств, при которых возникают потери, и понижается надежность – это могут быть: заслонки, системы тормозов, задвижки и т. д.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад, если вы найдете на моем еще что-нибудь полезное. Всего доброго.

Немного предыстории. Тема моей дипломной работы звучала так: «Разработка и исследование тиристорного частотно-регулируемого асинхронного электропривода электромобильного агрегата». Пространное название, зато отражающее суть: и силовую элементную базу (тиристоры, точнее тринисторы), и способ управления (частотно-регулируемый), и назначение электропривода – электромобиль.

Это мой диплом инженера-электрика. Слева внизу печать: Нагрудный знак выдан.


Вкладыш к диплому. Вверху напечатано, на какую тему я зашитил дипломный прект.

Внизу напечатаны предметы, которые я изучал по индивидуальному плану.

Вкладыш в развёрнутом виде. Сколько же предметов изучено за 5 лет!

А теперь краткое описание моей дипломной работы, которую я защитил на "отлично" с ходатайством о поступлении в аспирантуру:

Схемы блоков управления были выполнены на транзисторах. Блок силовых тринисторов был увесистой конструкцией. В качестве двигателя агрегата использовался трёхфазный асинхронный электродвигатель с короткозамкнутым ротором. Для питания силового блока и схемы управления применялась свинцово-кислотная аккумуляторная батарея, занимающая всё пространство багажника и весящая неимоверно много.

Получался электромобиль-фургон, назначение которого было перевозить небольшие грузы в черте города, например, по торговым точкам. Запаса электроэнергии аккумуляторов хватало на рабочий день. Средняя скорость – 70 км/час.

Теперь перенесёмся на несколько десятилетий вперёд. Тяга к проблеме электропривода у меня с годами не только не прошла, а всё более разгоралась. На смену и в дополнение мощным тринисторам пришли мощные полевые (например, IRF840A) и биполярные транзисторы с изолированным затвором (IRG4PSC71U). Взамен схем управления на транзисторах и микросхем малой и средней степени интеграции пришли микроконтроллеры (я использую в своих конструкциях любимые мной PIC-контроллеры) и специализированные драйверы – микросхемы управления выходными силовыми транзисторными ключами IR2130-IR2131.

Мой путь к успеху был тернистым. Много времени я повторял чужие схемотехнические ошибки, допуская свои. Использовал недоработанные программы управления, записанные в памяти PIC-контроллеров. Не будучи программистом, я не мог программы доработать, усовершенствовать. В результате – куча сгоревших мощных транзисторов и, как неизбежное, несмотря на узлы защиты, «палёных» микросхем драйверов IR2131 и моих любимцев – PIC16F628A – микроконтроллеров.

Успех стал приходить с внимательным изучением материала по этому актуальному вопросу из различных источников. Это и иностранные статьи, в которых раньше чем в отечественной технической литературе публиковались и теоретические материалы, и практические схемные решения по управлению трёхфазными асинхронными электродвигателями от одно- и трёхфазной электрической сети, что непринципиально.

В результате моя самодельная конструкция собрана из нескольких функциональных блоков, разработанных разными авторами, которым я стал доверять, навсегда расставшись с другими, «благодаря» которым я терпел неуспех за неуспехом.

Буквально на-днях собрал, запустил и опробовал свой модульный, пока последний, вариант частотного преобразователя на 4 фиксированные скорости вращения.

С 250-ватным 3-фазным электродвигателем работа устойчива. Мощные ключевые транзисторы IRG4PSC71 без радиаторов позволяют управлять электродвигателями до 5 кВт.

Принципиальная электрическая схема этого варианта "частотника" показана на фото:

Основные этапы сборки будут отражены на ряде фотографий.

Внешний вид платы управления со стороны деталей:

Это основная плата управления преобразователя. В панельку вставлен PIC16F628A. Три транзисторных сдвоенных оптронных ключа АТ101АС гальванически развязывают выходы микроконтроллера и входы драйвера силовых ключй IR2131.

Внешний вид платы управления со сотороны печати:

Компоновка основных узлов прибора на кросс-плате:

Кросс-плата с закреплёнными узлами установлена в корпусе от БП ПК:

Вид прибора сверху:

Вид прибора сзади:

Вид прибора сбоку со стороны печатных дорожек платы драйвера:

Импровизированный испытательный стенд:

Статья обзорная. Такую сложную тему невозможно описать в рамках всего одной статьи, поэтому по мере доработок и усовершенствований будет время от времени подлежать корректуре и редактированию.

Асинхронные двигатели – устройства, наиболее часто применяемые в промышленности.

{ ArticleToC: enabled=yes }

Для плавного запуска пользуются частотными преобразователями, способными контролировать ток пусковой и позволяющие регулировать скорость вращения. Но, важно понимать, что частотный преобразователь для однофазного электродвигателя отличается от того, который требуется трехфазному.

Асинхронные моторы в сравнении с иными электрическими машинами более мощные и производительные, но имеющие такой недостаток, как необходимость оснащения дополнительными элементами, отвечающими за скорость вращения ротора.

Также обстоят дела с пусковым током, который в 5-7 раз превышает номинальный, из-за чего ударные нагрузки приводят к потере энергии и все вместе сокращает его срок службы.

Для борьбы с этими проблемами существует класс приборов, автоматически контролирующий пусковые токи. Называются они частотными преобразователями.

С их помощью удается в 5 раз уменьшить пусковые токи, осуществив плавный запуск.

Кроме этого, регулируя частоты с напряжением, управляют ротором.

Помимо этих достоинств, применение таких приборов имеет следующие:

  • во момент пуска экономится до 50% энергии;
  • с их помощью осуществляется между смежными проводниками обратная связь. Их
  • можно назвать генераторами трехфазного напряжения нужного значения и частоты.

В их основе лежит инвертор двойного преобразования.

Принцип функционирования заключен в следующем:

  • вначале входной ток входной синусоидальный 220 или 380в выпрямляется, проходя диодный мостик;
  • после этого, он поступает на конденсаторную группу, где сглаживается; пройдя через конденсаторы, он подается на управляющие микросхемы и биполярный БТИ транзистор, точнее мостовые ключи, где из него формируют заданных параметров широтно-импульсную трехфазную последовательность;
  • полученные импульсы, имеющие форму прямоугольника, под воздействием индуктивности обмоток превращаются на выходе в синусоидальное напряжение.

Ниже приведена схема, позволяющая понять, как работает частотный преобразователь:



Выбор преобразователей частотных

Для производителей этих устройств, чтобы завоевать рынок, важна цена, как и для любого электронного оборудования. Чтобы ее снизить, ими создаются приборы, у которых набор функций минимален, т.е. чем дороже стоит частотный преобразователь, тем прибор универсальнее, что важно для потребителя, желающего продлить срок службы двигателя.

Основные критерии выбора

К ним относятся:

  • управление . По этому показателю преобразователи частотные подразделяются на скалярные и векторные, которые чаще встречаются, но стоят дороже. Объясняется это тем, что они способны обеспечить более высокоточную регулировку, которую не могут дать первые. Скалярные же могут только удерживать заданное соотношение напряжения на выходе и частоты. Их поэтому ставят в приборы с невысокой нагрузкой на мотор;
  • мощность. Понятно, что чем этот параметр больше, тем лучше. Но, помимо цифры, важен производитель: оборудование, находящееся в «близком родстве» работает намного эффективнее.Помимо этого, использование однобрендовых преобразователей важен для взаимозаменяемости;
  • напряжение сети. Чтобы защитить устройства от скачков напряжения, которые нередко случаются в отечественных сетях, желательно, чтобы напряжение имело большой рабочий диапазон;
  • диапазон регулировки частоты. Здесь исходят из требований конкретного устройства. На практике применяют преобразователи с частотой 10-100 Герц; дискретные входы. Они предназначены для передачи команд. Также благодаря им обеспечивается запуск двигателя и остановка, вращение в обратном направлении и торможение;
  • аналоговые входы. Благодаря им осуществляют контроль при рабочем двигателе и настройку привода;
  • цифровые. Их назначение – передача высокочастотных сигналов, которые генерируются датчиками угла поворота. Чем входов больше, тем это лучше, но дороже прибор;
  • помимо входов , важны дискретные выходы, с которых сигнал сообщает о возникших неисправностях (перегреве, авариях, отклонении напряжения на входе от нормы и пр.);
  • выходы аналоговые отвечают за передачу обратной связи. Их выбирают по выше описанному принципу;
  • у шины управления число входов и выходов совпадать должно со схемой преобразователя. Но, лучше, если у нее будет запас, который может понадобиться при усовершенствовании устройства;
  • перегрузочная способность. Нормальным считается, когда мощность частотного преобразователя больше на 10-15%, чем у двигателя. Выше, чем номинальный, должен быть у него и ток.

Их выпускают мощностью 5-10 Вт. Этого достаточно для работы центрифуг, бытовых холодильников, стиральных машин, станков обрабатывающих и пр. Характеристики технические у них хуже, в сравнении с трехфазными:

Мощность составляет всего 70% от трехфазного, ниже и перегрузочная способность.

На статоре АД расположены обмотки — основная и пусковая. Последнюю используют при запуске короткозамкнутого ротора «беличье колесо».

Чтобы понять, зачем необходима обмотка пусковая, обратимся к примеру: мотор соединен лишь с рабочей обмоткой (220В).

В ней I1(однофазный ток) создает магнитное пульсирующее поле. Его можно разложить на два – с одинаковой амплитудой и скоростями вращения, но противоположно направленных — Фа и Фв. При неподвижном роторе эти поля создают моменты крутящие М1 и М2 отличные по знаку, но равные по величине.

Результирующий пусковой момент равен нулю (Мn= M1 – M2), т.е. мотор не сможет вращаться без приложения к валу нагрузки.

Поэтому и требуется пусковая обмотка. Создаваемое ею поле заставляет вращаться мотор. Направление вращения определяет пусковой начальный момент.

Электрический двигатель — это машина, преобразующая электрическую энергию в механическую, благодаря которой в движение приводятся механизмы. При обратном преобразовании энергии эти устройства выступают в роли генератора. Ротор (вращающийся) и статор (неподвижный) — основные компоненты электродвигателей.

Для создания вращающегося поля требуется две обмотки на статоре, смещенные в пространстве под определенным углом. Пусковая укладывается на статор в соответствие с этим со смещением относительно рабочей в 90 градусов. Чтобы обеспечить сдвиг токов, при подключении ее к сети используют фазосдвигающий элемент – катушку, конденсатор или активный резистор.

Когда по проводнику течет ток, создается магнитное поле, действующее на него с силой F. Если проводник изогнуть в рамку и поместить в магнитное поле, две стороны, находящиеся под углом 90 градусов к полю, испытают действие такой же силы, но направленной в противоположную сторону, которые и создают крутящий момент.

Нужен малогабаритный однофазный частотный преобразователь, чтобы осуществлять управление мотором асинхронными с конденсаторным пуском (АИРЕ, АВЕ и пр.)

Устанавливают такие моторы в вентиляторах электрических, моечных машинах, холодильниках и т.д.

На сайте http://xn--80aqahnfuib9b.xn--p1ai/esq_A200.html можно посмотреть все характеристики устройства. Здесь же его можно купить, определившись по таблице с моделью.

Модель Ток, А Мощность, кВт Габариты (ВхШхГ) Вес, кг Цена, руб с НДС
Серия ESQ-А200, однофазные 1/1 фаза, 200-260 В (для однофазных электродвигателей)
Преобразователь частоты ESQ-A200-2S0007 для однофазного двигателя 0,75 кВт 4,7 0,75 141x85x113 1,1 14 338
Преобразователь частоты ESQ-A200-2S0015 для однофазного двигателя 1,5 кВт 7,5 1,5 141x85x113 1,2 13 874
Преобразователь частоты ESQ-A200-2S0022 для однофазного двигателя 2,2 кВт 10 2,2 170x125x113 2 19 007

В интернет-магазине http://npf-oberon.com.ua/index.php?route=product/product&path=59_63_65&product_id=62/ его стоимость 170 долларов . Там же ознакомиться можно с характеристиками.

Используют его для управления моторами, установленными в сельскохозяйственном оборудовании, транспортерах, миксерах, мощных насосах.

Огромный выбор одно- и трехфазных преобразователей разных производителей на сайте https://chastotnik.com.ua/preobrasovateli//p5 .

Чтобы сказать лучше ли однофазный преобразователь частотный или трехфазный, нужно четко знать для чего он требуется. В однофазных моторах они нужны для управления и регулирования. Переменное напряжение такими преобразователями частотными преобразуется в импульсное, у которого частота 0-1000 колеб./сек. Скорость, с которой вращается ротор асинхронного мотора, получающий напряжение синусоидальное, при этом, меняется пропорционально частоте такого питания.

Отличается частотный преобразователь для электродвигателя 380 от моторов, работающих от бытовой сети, напряжением, подаваемым на инвертор. Частота трехфазного напряжения на выходе лежит в диапазоне 0-1 кГц.

От него в дальнейшем питается мотор, т.е. такой преобразователь позволяет привод запитывать от бытовой сети, одновременно регулирует его характеристики.

Сегодня такие приборы используют редко, поскольку на смену им пришли трехфазные преобразователи частотные, у которых намного шире возможности. Трехфазный частотный преобразователь для трехфазного электродвигателя способен преобразовывать промышленное напряжение сети (трехфазное).

Их к асинхронному двигателю подключают «звездой», а однофазные – «треугольником», т.е регулируют они большее число параметров, что дает возможность выбрать оптимальный режим.

У них значительно меньше габариты и большие функциональные возможности, высокие показатели долговечности и надежности, вполне приемлемая стоимость.

Видео: Частотный преобразователь. Подключение трехфазного двигателя в однофазную сеть 220В.

Похожие статьи