Портал вычислительной техники. Накопители на магнитных лентах или диски? Будущее ленточных носителей и сферы их применения

24.06.2019
12.02.2015

Один информационный вестник, не будем называть имени (все совершают ошибки), активно обсуждал увядание сектора хранителей на магнитной ленте в 2012 году. По их мнению, всё, что оставалось производителям магнитных носителей, это просто уйти из бизнеса. Они подчёркивали, что резервное копирование сместилось в сторону VLT, и что для магнитных накопителей это означает конец.

В статье была поставлена под вопрос конкурентоспособность магнитных носителей в сравнении с дисками - одним из аргументов против магнитных накопителей был более медленный доступ к ним по сравнению с ними. Наконец, в этой статье было сказано, что единственный производитель магнитных накопителей, скорости которых были сопоставимы со скоростями классических дисков, это SpectraLogic, поскольку новости относительно других производителей оказывались совсем уж безрадостными.

У всех бывают плохие дни. Оглядываясь на результаты прошлого 2014 года, можно выделить несколько моментов, почему приведённые в статье выводы были ошибочными:

. Резервное копирование . В этом авторы отчасти оказались правы. Десятилетиями магнитные ленты были основным носителем для сохранения информации, однако этому, как и многому другому, приходит конец. Резервное копирование быстрее делать на винчестер и дешевле - в смысле краткосрочного хранения - в облако. Целевой рынок - предприятия малого и среднего бизнеса, небольшие объёмы информации которых можно заливать прямиком в облачное хранилище без потери производительности. Однако более крупные предприятия производят большие объёмы данных, которые необходимо хранить в течение длительного периода времени. Именно для них становятся актуальными носители на магнитных лентах, предоставляющие большую плотность хранимых данных и более экономные в плане стоимости.

. Надёжность. Надёжность магнитных лент действительно имела плохую репутацию некоторое время, в основном из-за DLT поколений. Однако с развитием и стабилизацией LTO стандарта это больше неактуально. Магнитные накопители доказали свою надёжность, которая даже превосходит надёжность дисков, особенно дешёвых. National Energy Research Scientific Computing Center (NERSC) сообщил о том, что картриджи для магнитных лент примерно на 4 порядка надёжнее, чем их аналоги для SATA.

На это есть несколько причин - можно рассмотреть критерий качества передачи данных (BER) и феномен деградации хранимых данных. Параметр BER предсказывает процент порченых бит от общего числа записанных бит информации. Магнитные ленты показывают 10-кратное улучшение этого показателя в сравнение с лучшими винчестерами. Деградация данных - постепенное снижение качества среды хранения информации на магнитном носителе - также очень важный показатель качества носителя данных в терминах долгосрочного хранения. И ленты, и винчестеры по природе своей устройства магнитные, но вращающийся диск винчестера представляет больше опасности для хранимой информации (продолжительность жизни LTO - 15-30 лет).

. Продажи. После небольшого провала в продажах, в 2013 году продажи магнитных накопителей остановились, а в 2014 снова пошли в гору. LTO -достаточно чётко описывает состояние рынка магнитных лент. LTO-6 дисков было продано в общей сложности на 100,000 Пб ёмкости меньше, чем лент. LTO-4 также немного сбавили темпы, а вот объёмы продаж LTO-5 выросли. LTO-6 продаётся быстрее благодаря новому фрэймворку. Также одной из причин возросшей популярности стала цена за гигабайт. Производители дисков не упустили шанса упомянуть о снижении цены на свои винчестеры, но ленточные накопители всё равно остались дешевле: картридж для магнитной ленты на 1.5 Тб стоит порядка $40, что в сравнении со схожей ёмкостью - в два раза меньше цены для HDD.

. Производительность . Производители винчестеров любят избитое клише: «магнитные ленты медленнее дисков». По большому счёту это неверно: производительность зависит от скорости дисковой системы или автозагрузки/библиотеки и типа передаваемых данных. Диск, как правило, быстрее при работе со случайным доступом к данным, когда головка диска может перемещаться в разные секторы быстрее, чем головка магнитной ленты. Тем не менее, производительность магнитных ленточных накопителей, как правило, выше при последовательном доступе к данным. Именно поэтому их удобно использовать для бэкапов, архивирования и хранения больших объёмов данных.

Наиболее частые случаи использования магнитных лент

Сегодня магнитные накопители успешно используются в следующих случаях: архивирование, облака (да, вы не ослышались, в облачных хранилищах). Производители дисков отрицают это, но посудите сами: производителям, которые не предлагают покупателям магнитные накопители, выгодно, чтобы последние навсегда исчезли. Такие производители будут спорить, что они не продают ленточные магнитные накопители по той простой причине, что не верят в их возможности. Хотя, с точки зрения ёмкости лент, их экономичности и надёжности такие утверждения просто несправедливы.

Архивирование

Самый распространённый вариант использования - долгосрочное архивирование. Классический пример - долгосрочное хранение архивов данных. Активное архивирование также один из вариантов, когда лента принимает часть данных с диска, таким образом, разгружая его, и предоставляет данные для использования аналитическими программами или загрузки в другие системы.

За примерами далеко ходить не надо. National Geographic’s NG Global Media управляет огромными массивами медиа данных. Television MediaCore - её подразделение, предоставляющее медиа сервисы своим клиентам. Как правило, они генерируют порядка 5-10 Тб контента в день и архивируют примерно 90% от этого количества на ленточные магнитные библиотеки Spectra Logic. Архивы остаются постоянно доступными, в то время как значительный процент объёма данных находится в прямом доступе и повторно используется.

Суперкомпьютер Blue Waters центра суперкомпьютерных вычислений (NCSA) использует ленточную библиотеку Spectra 380B в качестве активного хранилища. Библиотека обеспечивает скорости чтения/записи порядка 2.2 Пб/ч и может хранить 380 Пб данных.

Национальный институт здоровья (NIH) использует магнитную библиотеку Oracle для активного архивирования в своих центрах обработки данных, а также для долгосрочного хранения. Огромные объёмы данных остаются доступны для прямого доступа и анализа медицинскими исследователями по всему миру.

Некоторые провайдеры услуг на базе дисков и облачных хранилищ пытаются противопоставить магнитные ленты и облака друг другу, заявляя что-то наподобие: «хранение данных в облаках быстрее и дешевле, чем на магнитных лентах». Это неверный аргумент в пользу облачных хранилищ по той простой причине, что магнитные носители используются в облаках. Центры данных облачных хранилищ часто владеют огромными библиотеками магнитных лент для долгосрочного и экономичного хранения информации. Исключением является разве что Glacier: Amazon клянётся, что не применяет магнитные ленты, в то же время скромно отмалчиваясь, а что же именно она использует. Однако, многие основные поставщики облачных сервисов, включая Google, пользуются преимуществами магнитных накопителей.

Примеры научных сообществ, сочетающих облака и магнитные носители, включают CERN, лабораторию Argonne National Laboratory и NASA, а канал Discovery, пожалуй, самый яркий пример в этой области.

Большие данные

Ленточные серверы являются наиболее экономичными хранилищами для неструктурированных данных. Даже производитель суперкомпьютеров Cray использует магнитные ленты для хранилищ в своём 4-отсековом архиве. Для анализа больших данных ключевым является активное архивирование и картриджи большой ёмкости для огромных наборов данных.

Промышленная линейка HP StoreEver ESL G3 хранит до 75 Пб данных в единой системе. Крупнейшая промышленная модель Quantum Scalar i6000 также расширяется до 75 Пб. В прошлом году Oracle представила магнитный диск StorageTek, способный хранить 8.5 Тб сырых данных со скоростями доступа до 252 Мб/с. В этом году IBM и Fujifilm анонсировали прототип картриджа, способного хранить 85.9 млрд. бит данных на квадратный дюйм, что эквивалентно 154 Тб несжатых данных. IBM также сотрудничает с Sony, анонсировавшей магнитный носитель с плотностью данных в 148 Гб на квадратный дюйм или 185 Тб в одном картридже.

. “Flape” . Не очень удачный термин, сочетающий два слова - флэш (flash) и магнитная лента (tape). Хоть IBM и не использует этот термин, у них есть наработка, объединяющая систему FlashSystems V840 с магнитной лентой. Флэш система имеет достаточную ёмкость и производительность для систем Tier 0 и Tier 1. Она интеллектуально переносит данные прямиком на второстепенный уровень, которым может являться диск или магнитный носитель. IBM предлагает использовать здесь магнитные накопители в целях экономии и надёжности долгосрочного хранения данных.

. Взлёт LTFS. LTFS - это по своей сути грандиозно. Вкратце, файловая система LTFS хранит данные на магнитном носителе вместе с метаданными, которые позволяют пользователям получать доступ к файлам на ленте без необходимости использования бэкап-приложений или специфических версий. Это решает насущную IT проблему необходимости поиска нужных файлов через бэкап-каталог с целью их восстановления с магнитной ленты. IBM разрабатывает магнитную систему, интегрирующую LTFS и GPFS, кластерную файловую систему IBM. Новая система облачит магнитные носители в форму винчестеров для серверов и задаст общее пространство имён диску и магнитной ленте для глобального управляемого хранилища.

. Технические преимущества. LTO-6 всё ещё держится. Каждое новое LTO поколение делает серьёзный скачок в повышении плотности. И LTO-7 уже на подходе, а LTO-9 и 10 - в планах на ближайшее будущее. Ленточные картриджи также постоянно совершенствуются. IBM, Oracle, Quantum, Spectra Logic и прочие производители делают существенные подвижки в плане повышения ёмкости, надёжности и долговечности, улучшая жизненный цикл управления данными и повышая скорости доступа к информации. Поставщики также улучшают характеристики энергопотребления и технологии охлаждения, делая библиотеки магнитных накопителей всё более экономичными.

Экономия за счёт роста

Экономия на магнитных лентах это экономия за счёт роста. Чем больше масштаб предприятия, объём, необходимый для хранения данных, тем больше выгода от использования магнитных накопителей по сравнению с обычными дисками. Диски быстро становятся более дорогими, поскольку 80% информации на них записывается один раз и дальше просто хранится, как архив, а износ самого диска за счёт наличия внутри подвижных конструкций при этом продолжается - таким образом, компания теряет деньги на неразумное обслуживание архивов данных. А с ростом объёмов информации, которую необходимо хранить, преимущества магнитных носителей становятся всё более очевидными.

Вывод из всего сказанного очень прост - магнитные накопители не умирают, их продажи не уменьшаются и на пенсию они пока не собираются.

Перед отраслью хранения данных стоят непростые задачи: бюджеты компаний на ИТ не успевают за темпами роста объемов данных (ежегодно, по разным оценкам, на 30-50% и даже более). Так, в 2003 г. администратору хранения данных в западной компании приходилось управлять в среднем 1,4 Тбайт, а в 2004 г. эта цифра выросла до 2,5 Тбайт и, как прогнозируют специалисты отрасли, к 2006 г. достигнет 4,6 Тбайт. И все-таки возможности для контроля над массивами данных имеются даже у тех компаний, кто не располагает свободными средствами на приобретение дополнительных накопителей и увеличение штата квалифицированных сотрудников.

Потенциальные резервы кроются в повышении эффективности использования ресурсов хранения: в среде UNIX/Linux на сегодняшний день реально задействуется лишь 30-45% емкости носителей, в среде Windows - 20-40%. Именно на решение этой задачи нацелена столь пропагандируемая в последнее время концепция управления жизненным циклом данных (Information Lifecycle Management, ILM), суть которой кратко формулируется так: «Информация должна располагаться на соответствующих ей по стоимости носителях».

Важный аспект хранения данных - обеспечение их сохранности. Благодаря надежности и дешевизне хранения больших объемов данных одним из наиболее распространенных носителей информации по-прежнему остается магнитная лента. Запись на ленту представляет собой ключевой процесс в стратегии защиты и архивирования данных с возможностью их последующего восстановления. Современные системы архивирования данных, резервного копирования и восстановления после катастроф принадлежат к числу пользующихся наибольшим спросом приложений и по популярности уступают лишь средствам для работы с электронной почтой.

РОЖДЕНИЕ СТАНДАРТА DLTtape

Впрочем, так было не всегда: понадобилось более полувека, прежде чем магнитная лента стала выполнять присущие ей сегодня функции. В конце 1940-х гг. музыка все еще записывалась на пластинки со скоростью вращения 78 оборотов/мин, проволочные магнитофоны применялись в основном лишь в радиопромышленности, данные хранились преимущественно на бумаге, а самым передовым способом хранения информации были, пожалуй, перфокарты.

На перфокарте стандартно помещалось лишь 80 символов, а скорость считывания составляла всего 100 перфокарт/мин, или 133 символа/с, к тому же для их складирования требовалось много места. Например, для размещения шкафов с перфокартами, на которой хранились записи обо всех работающих гражданах Америки, организации Social Security System понадобились буквально акры помещений. При этом было очевидно, что за счет уменьшения размера отверстий в самой перфокарте и наращивания плотности перфорации радикального увеличения скорости считывания данных добиться невозможно.

На потребительском рынке аудиосистем лента нашла самое широкое применение, но многие инженеры относились к возможности записи информации на магнитную ленту с предубеждением. Тем не менее производители ленточных устройств для ПК решились адаптировать технологию магнитной ленты с наклонно-строчной записью, которая первоначально создавалась для нужд потребительского рынка. Цифровые аудиоленты формата DAT пришли, если можно так сказать, из музыкального мира, став самым маленьким накопителем в подсистемах хранения данных.

В 1988 г. DEC произвела революцию на рынке, предложив новый класс ленточных накопителей с линейной записью серпантинного типа, обладающих высокой емкостью и скоростью записи, а также обратной совместимостью по записи и чтению с их предшественниками. Ленточная система TF85 TK70 (позднее названная DLT 260) стала первым приводом DLT, способным вместить 2,6 Гбайт на полудюймовой ленте длиной 365 м. Менее чем через два года после ее появления инженеры DEC сумели увеличить емкость памяти почти десятикратно. Самая важная особенность нового устройства состояла в использовании записывающей/считывающей головки с шестью валиками (Head Guide Assembly, HGA). Траектория движения ленты исключала крутые изгибы и скручивания, что повышало срок службы компонентов привода и самой ленты.

Данная разработка специалистов DEC, известная в отрасли как DLTtape, получила широкое признание. С середины и до конца 1990-х гг. эта технология заняла лидирующее положение на среднем сегменте рынка ленточных накопителей. Ее применение вышло далеко за рамки резервного копирования, охватив архивирование, восстановление после катастроф, иерархическое управление хранением данных, резервное копирование в режиме реального времени, распределение видеопрограмм и графических файлов.

На рынке одиночных систем начального уровня (стримеров, автозагрузчиков, а также автоматизированных библиотек для небольших компаний) широкое распространение получил формат хранения данных Digital Data Storage (DDS), разработанный в 1989 г. компаниями Hewlett-Packard и Sony на базе технологии Digital Audio Tape (DAT). В последние годы эта технология, казалось бы, исчерпала свои возможности, однако после долгого перерыва появились картриджи и использующие их приводы нового поколения DAT72, емкостью 72 Гбайт в сжатом виде. Достоинства нового формата - почти вдвое большая вместимость данных по сравнению с предшественником DAT40/ DDS-4, совместимость по чтению/записи с системами DDS-3 и DDS-4 и относительно низкая цена. К недостаткам следует отнести невысокую скорость - 6 Мбайт/c со сжатием, а также меньшую надежность (из-за того, что лента изгибается вокруг вращающейся головки) и меньшую наработку на отказ. Тем не менее до сих пор технология DDS занимает бо?льшую часть рынка инсталлированных систем начального уровня и не собирается сдавать свои позиции ввиду того, что емкость картриджа будет увеличиваться при невысокой цене за 1 Кбайт хранимой информации. Между тем разрабатывается формат DAT160, который по своей емкости и скорости должен превзойти текущий формат DAT 72 минимум вдвое, но разработчики не дают разъяснений ни по срокам, ни даже по возможности появления данного накопителя.

Разработанная Sony технология AIT/SuperAIT помимо выпускаемых ею стримеров, автозагрузчиков и библиотек поддерживается также соответствующим оборудованием производства ADIC. Первые устройства AIT-1 емкостью 25 Гбайт со скоростью передачи данных 3 Мбайт/с появились в 1996 г., а к настоящему времени выпущено четвертое поколение AIT-4 емкостью 200 Гбайт и скоростью 24 Мбайт/c.

В 1994 г. корпорация Quantum приобрела у DEC технологию DLTtape. В процессе ее совершенствования был предложен новый формат хранения Super DLTtape (SDLT) на базе технологии Servo Tracking Optical Read and Write Magnetic (STORM). Благодаря использованию оптической полуавтоматической сервосистемы, STORM обеспечивает высокую плотность записи в соответствии с направляющим лазерным сервомеханизмом. В SDLT применяются недорогой магнитно-резистивный кластер головок и лента с более длительным сроком службы. По сравнению с DLTtape усовершенствованный формат предоставляет более быстрый доступ к данным и обратную совместимость по чтению с существующими картриджными системами DLTtape четвертого поколения.

ПРОТИВОСТОЯНИЕ

В 1997 г. Hewlett-Packard, IBM и Seagate, стремясь противостоять монополии Quantum, объединились для создания нового открытого формата хранения данных на ленте. Широкого распространения нового формата предполагалось добиться путем свободного лицензирования, чтобы он мог применяться любыми компаниями, специализирующимися на производстве накопителей или картриджей. Новый формат Liner Tape-Open (LTO) должен был обеспечить высокую скорость записи и чтения ленточными приводами файлов с картриджей высокой емкости.

Емкость картриджей LTO первого поколения составляла 100 Гбайт в несжатом виде, в каждом последующем поколении этот параметр удваивается (предполагается, что в LTO-4 он достигнет 800 Гбайт). Скорость записи и чтения несжатых данных, например в устройствах LTO-1, варьируется от 10 до 20 Мбайт/c, а в LTO-4 предполагается достигать значений от 80 до 160 Мбайт/c. Все картриджи LTO содержат дополнительную память 4 Кбайт, за счет чего обеспечивается быстрая одновременная передача специфических данных о самом картридже и тем самым минимизируется время доступа к файлам.

Устройство Quantum SDLT 320, представитель второго поколения приводов SDLT, появилось на рынке в июне 2002 г. Оно составило конкуренцию LTO - скорость записи достигла 16 Мбайт/c, а емкость картриджа SDLT-320 - 160 Гбайт. Однако довольно быстро приводы LTO-2, выпускаемые компаниями HP и IBM, вновь обогнали SDLT 320 как по емкости, так и по скорости передачи данных. «Перетягивание каната» между LTO и SDLT длилось довольно долго. В октябре 2003 г. Quantum выпустила привод SDLT 600, который превзошел LTO-2 во всех отношениях (300 Гбайт, 36 Мбайт/с). Большую емкость (500 Гбайт) обеспечивал только привод Sony формата SAIT, но он уступал по скорости (30 Мбайт/c).

К началу января 2004 г. «гонка вооружений» двух технологий на самом массовом рынке ленточных устройств среднего класса привела к тому, что LTO заняла 65%, а SDLT - остальные 35% рынка. Среди недорогих решений начального уровня доминирует технология DDS: более 50% автономных накопителей все еще комплектуется соответствующими картриджами. А вот технология Travan, по мнению специалистов, постепенно уходит со сцены. Если же рассматривать рынок в целом, включая одиночные устройства и сложные автоматизированные системы корпоративного уровня, то, по данным IDC, в первой половине 2004 г. 46% пришлось на поставки техники DDS/DAT, 16% - на LTO, 11% - на DLT, 6% - на SDLT, 10% - на Travan, 8% - на AIT/VXT.

На наиболее массовом среднем сегменте ленточных устройств происходит процесс перераспределения - SDLT вытесняет технологию DLT-4, а SDLT-2 приходит на замену SDLT-1. То же самое можно сказать о технологии LTO: уже в этом году LTO-3 (емкость картриджа 400 Гбайт, скорость передачи 80 Mбайт/с) выйдет на ведущие позиции, а с 2006 г. лидерство перейдет к LTO-4. Но, несмотря на внутренние перестановки, весь сегмент ленточных накопителей продолжает расти.

Относительно перспектив технологий SDLT и LTO существуют различные точки зрения. В январе 2005 г. Quantum приобрела производителя ленточных приводов LTO компанию Certance, специалисты рассматривают эту сделку как признание ключевой роли LTO в будущем. Выступая в мае на конференции SAN Accord 2005, организованной российским дистрибьютором ленточных систем Overland и Quantum компанией Storus, менеджер по продажам компании Quantum в регионе Центральной и Восточной Европы Юрген Стелтер озвучил позицию в отношении перспектив будущего развития двух технологий. В основной своей массе заказчики делятся на две категории - тех, кто в большей степени нуждается в хранении больших объемов данных, и тех, кому требуется более быстрый доступ к ним. В настоящее время обе технологии попеременно обеспечивают примерно равные показатели емкости хранения и скорости обмена данных. Однако в ближайшие несколько лет, как считают в Quantum, произойдет диверсификация: технология SDLT в большей степени будет нацелена на обеспечение емкости хранения, а LTO - на быстрый доступ к ним.

Рэнди Чалфант, вице-президент по развитию технологий компании StorageTek, полагает, что при создании продуктов нужно ориентироваться на те задачи, для выполнения которых предназначено устройство, правильно подбирая компоненты (например, носители и головки). Разумеется, если накопитель с циклом эксплуатации 4 ч в неделю будет использоваться для круглосуточной работы, очень скоро его компоненты начнут выходить из строя.

УПРАЖНЕНИЯ С ЛЕНТОЙ

Как утверждает Дмитрий Алексеев, представитель Fujifilm в России и странах СНГ, производители магнитных носителей ожидают всплеск спроса в России со стороны отечественных потребителей на системы резервного копирования и архивирования. Предпосылкой для этого служит принятие законодательных актов о необходимости хранения определенных категорий информации в течение длительного срока, а также планируемое вступление нашей страны в ВТО, что может вынудить многие компании с большими информационными массивами модернизировать свои ресурсы хранения.

Основными поставщиками картриджей DLT-4 являются компании Fujifilm, HP, IBM, Imation, Maxell, Quantum, Sony. Картриджи SDLT предлагают Maxell, Fujifilm, Quantum, HP, Sony, Imation, TDK; LTO-1 и LTO-2 - HP, IBM, Fujifilm, Imation, Maxell, Sony, Certance; DDS - HP, IBM, Maxell, Sony, Fujifilm, TDK, Certance; DAT72 - Fujifilm Maxell, HP; AIT - Sony, Maxell, Imation; VS160 - Sony, Quantum.

В подавляющей массе ленточные устройства среднего сегмента оснащаются накопителями DLT/ SDLT и LTO. Основной поставщик приводов DLT/SDLT - Quantum, а ведущие производители LTO - HP, IBM и Certance. (К недостаткам приводов Certance специалисты относят отсутствие внешнего интерфейса Native Fibre Channel.) Картриджи SDLT/DLT и LTO производят главным образом компании Fujifilm и Maxell с примерно равными долями рынка. Компания Imation, представленная в этом сегменте преимущественно на американском рынке, пока не сертифицирована производителями накопителей и автоматизированных библиотек.

Емкости в 320 Гбайт и скорость передачи в 32 Мбайт/c формата SDLT-1 уже не достаточно для обеспечения потребностей современных приложений. Поэтому на смену ему приходит новое поколение SDLT-2, обеспечивающее емкость 600 Гбайт и скорость 72 Мбайт/c. В настоящее время Quantum разрабатывает следующее поколение приводов SDLT, в качестве ориентира поставлена цель добиться емкости 3 Тбайт и скорости обмена 200 Гбит/с для одного ленточного картриджа SDLT.

Высокопроизводительные приводы для библиотек старшего класса имеют не менее 16 параллельных каналов для одновременного чтения и записи (для IBM 3592 - восемь каналов), в них используются дорогие картриджи повышенной надежности, а по стоимости эти магнитофоны намного превосходят ленточные накопители среднего класса. Такие приводы выпускают IBM и StorageTek. В этом классе продуктов StorageTek предлагает собственные приводы T9840 и T9940, а IBM - приводы IBM TotalStorage 3590 и IBM TotalStorage 3592. Устройство T9840 отличает короткое время загрузки картриджа и поиска нужной ленты, как и T9940, оно поддерживает подключение по каналам FICON, ESCON, Native FC, SCSI.

Приводы IBM TotalStorage 3590 поставляются с 1995 г., к настоящему времени установлено свыше 100 тыс. таких устройств в автоматизированных ленточных библиотеках компании IBM и других производителей. Разработанные позже приводы IBM TotalStorage 3592 комплектуются картриджами максимальной емкости 300 Гбайт в несжатом виде (коэффициент сжатия 1:3), а максимальная скорость передачи данных достигает 40 (120) Мбайт/c. Внешнее подключение по каналам ESCON, FICON, Native FC позволяет использовать эти устройства для установки в крупные автоматизированные библиотеки в среде мэйнфреймов или при подключении к крупным сетям хранения.

Следует заметить, что с точки зрения производительности библиотеки такой важный параметр, как скорость передачи данных накопителя, следует рассматривать в комплексе с другими показателями, поскольку неудовлетворительные параметры времени монтирования ленты, загрузки кассеты, поиска нужного блока данных, перемотки ленты, выгрузки и размонтирования могут нивелировать преимущества высокой скорости передачи данных. Например, накопители LTO-2 обеспечивают емкость 200 Гбайт и скорость передачи 35 Мбайт/c, а T9940 - 200 Гбайт и 30 Мбайт/c, однако общая производительность библиотеки, укомплектованной T9940, существенно выше, поскольку скорость доступа к блокам данных у этого привода в два раза превосходит аналогичный показатель приводов LTO-2.

С целью предотвращения уничтожения или перезаписи данных на ленточный картридж компания StorageTek предложила технологию безопасного хранения данных VolSafe (прототип технологии WORM). К записанным на ленту данным может быть добавлена дополнительная информация, однако VolSafe защищает сделанную на ленте запись от изменений, модификации или уничтожения.

Производители ленточных картриджей уже выпускают накопители LTO и SDLT с поддержкой технологии Write Once Read Many (WORM) в целях обеспечения физической невозможности изменения или удаления данных. Развивая линейку 3590, IBM представила специализированную модель J1A накопителя 3592, для которого Fujifilm разработала картриджи, выпускаемые и в обычном (340 Гбайт), и в экономичном варианте (60 Гбайт), в том числе с поддержкой технологии WORM. Пока технология WORM адаптирована для привода 3592 и LTO, а к концу 2005 г. или началу 2006 г. она станет доступна и для SDLT. Накопители T9840 предоставляют практически мгновенный доступ к данным WORM, сопоставимый по скорости с возможностями оптических дисков.

Производители магнитных лент и картриджей вкладывают большие средства в разработку новых технологий. Например, картриджи Fujifilm DLT-4, SDLT и LTO-1, LTO-2 выполнены с применением технологии ATOMM, где размер частиц магнитного слоя составляет 100-200 нм. Суть предложенной специалистами этой же компании технологии NANOCUBIC заключается в следующем. Чтобы запись была плотной и надежной, частицы должны быть как можно более мелкими и плотнее прилегать друг к другу. Чем больше частиц помещается на единицу поверхности и чем тоньше магнитный слой, тем выше плотность записи, и она в меньшей степени подвержена размагничиванию. Кроме того, технология NANOCUBIC не требует соблюдения жестких условий производства (стерильности и т. п.).

Новая технология совсем недавно была применена в картриджах для накопителей IBM 3592 и в LTO-3, размер частиц составляет 40-100 нм. Летом 2005 г. ожидается выпуск картриджей для специализированных накопителей старшего класса компании StorageTek. Специалисты убеждены, что в 2006 г., когда удастся добиться размера частиц по меньшей мере 4-40 нм, емкость сжатой информации картриджа LTO-4 достигнет 1,6 Тбайт, а скорость передачи 160 Мбайт/с.

ПОП-МЕХАНИКА

Когда компания оперирует информацией большого объема, во избежание путаницы с лентами требуется устройство для упорядочивания и ускорения доступа к данным. Все самостоятельные ленточные устройства можно разделить на три класса - стримеры, автозагрузчики и автоматизированные библиотеки. Стример - это одиночный привод с набором устанавливаемых вручную картриджей в одном корпусе. Автозагрузчик отличается наличием автоматического механизма выбора кассеты, правда, его плата управления не обладает развитыми интеллектуальными функциями, свойственными автоматизированным библиотекам.

Демонстрация работы автоматизированной ленточной библиотеки на любой выставке ИТ собирает множество зрителей. Ее роботизированный механизм способен развивать скорость поезда - свыше 80 км/ч. В каждом картридже имеется встроенная флэш-память, куда в целях оптимизации доступа к данным помещаются служебная информация о содержимом ленты и карта распределения данных. При инициализации библиотеки картриджи один за другим вынимаются из слотов и вставляются в накопитель, при этом считываемый идентификатор кассеты заносится в программу, которая устанавливает соответствие между слотами и лентами. Для более быстрого поиска и выбора нужной кассеты на внешнюю поверхность картриджа наносится штрих-код, а на робот крепится сканирующее устройство. Данный способ улучшает сохранность ленты благодаря тому, что для идентификации не требуется всякий раз считывать метку с ленты.

Способ перемещения робота в различных системах реализован по-разному. Например, при объединении библиотек ADIC Scalar i2000 боковые стенки снимаются, а роботизированный механизм помимо уже имеющейся вертикальной направляющей получает общее горизонтальное шасси, а вместе с ней и дополнительную степень свободы. Таким образом исключается обмен картриджами через Thru Ports (см. ниже) и повышается общая производительность библиотеки. По мере присоединения новых шкафов (максимально до четырех штук) горизонтальное шасси наращивается.

При необходимости расширения ленточной библиотеки ADIC 10K возможна установка дополнительного модуля с вращающейся «каруселью», которая для выбора кассеты поворачивается к роботу нужной стороной. Как пояснил Андрей Синютин, заместитель департамента сетевых технологий компании «Интерпроком ЛАН», в последней модели ADIC 10K при расширении библиотеки, дабы она не увеличивалась в длину, в центре могут быть установлены две крутящиеся башни, обслуживаемые соответственно двумя роботами.

Емкость и производительность библиотек HP StorageWorks MSL для среднего сегмента рынка можно наращивать путем объединения вертикально установленных друг на друга модулей (до восьми модулей 5U или до четырех модулей 10U). При этом роботизированный механизм внутри каждого устройства перемещается горизонтально, но управление всей конструкцией осуществляется централизованно и согласованно. Робот выдерживает до 2 млн операций загрузки и выгрузки кассет. При объединении библиотек HP StorageWorks ESL серии E (максимально до пяти шкафов) роботы обмениваются кассетами между шкафами посредством кросс-механизма, для чего в каждом устройстве предусмотрен сквозной внутренний порт.

В крупной автоматизированной модульной библиотеке StorageTek SL8500 (см. Рисунок 1) слоты располагаются на четырех ярусах (полках) по периметру внутренних стенок корпуса, а также на установленной в центре шкафа панели. На каждой из полок для надежности и увеличения скорости могут быть установлены по два роботизированных устройства. При объединении шкафов обмен картриджами между шкафами происходит через специальные порты Pass Thru Ports, максимальное количество которых - 31. Один корпус SL8500 вмещает 1456 слотов и 64 привода и может наращиваться как вширь, так и вглубь, при этом управление всей конструкцией осуществляется как единым устройством.

Практически у всех производителей ленточных библиотек предусмотрен обмен кассетами с внешним миром в оперативном режиме. Если библиотека перегружена и нужно заменить ленты, не прерывая ее работу, то используется специальный «карман» Cartridge Access Ports (другое название - Mail Box), через который производится загрузка/выгрузка кассет в процессе резервного копирования, восстановления или архивирования. В крупных библиотеках усовершенствованные «карманы» могут вмещать сразу несколько десятков кассет с лентами.

Важная особенность устройства - возможность прямого внешнего подключения по Fibre Channel (Native Fiber). Это служит гарантией того, что для подключения библиотеки к сети хранения не придется задействовать дополнительный шлюз для перехода от SCSI к FC. В противном случае производительность библиотеки окажется неудовлетворительной при передаче интенсивных потоков данных.

Как правило, кроме интерфейсов SCSI или FC библиотеки имеют еще порт Ethernet, через который производится мониторинг библиотеки системами управления (HP OpenView, IBM Tivoli, CA BrightStor и т. д.). Если в библиотеке происходит сбой или нештатная ситуация, система управления посылает на консоль администратора тревожные сигналы. Вместе с библиотекой производители поставляют бесплатное или очень недорогое ПО управления, которое устанавливается на управляющую станцию администратора и позволяет более детально отслеживать, какие компоненты отказали или близки к этому. В интеллектуальных моделях предусмотрены средства проактивного мониторинга, анализа и предупреждения отказов.

Желательно, чтобы средства мониторинга обеспечивали полный контроль всех компонентов библиотеки: путей передачи данных, состояния приводов, картриджей, температуры, напряжения и прочих параметров. Для удобства работы администратора в системе управления обычно предусматриваются механизмы настройки правил: задания пороговых значений, учет пользовательских предпочтений, ведение журнала событий и т. д. Как правило, тревожные сообщения можно отправить по электронной почте, в виде сообщений SMS, на страницу Web службы поддержки и немедленно с ней связаться.

В чрезвычайно ответственных областях применения ленточных устройств, где выход оборудования из строя категорически недопустим, используются ленточные библиотеки повышенной надежности, с возможностью резервирования и «горячей» замены в оперативном режиме практически всех компонентов - накопителей, источников питания, вентиляторов, и даже устройств управления ввода/вывода при полном сохранении функциональности библиотеки.

РЫНОК ПРЕДЛАГАЕТ

На российском рынке представлен широкий спектр поставщиков ленточных библиотек, однако реальных производителей этих устройств не так уж много: ADIC, Exabyte, IBM, Overland Storage, StorageTek, Quantum и некоторые другие, продукты которых поставляются в рамках OEM-соглашений компаниями Dell, EMC, Fujitsu Siemens, HP, Sun Microsystems, Tandberg Data и проч.

В начале июня Sun Microsystems, в чьей линейке систем хранения до сих пор были представлены ленточные библиотеки L500, L180, L700, L8500 (StorageTek), позиционируемые для российского рынка как «тяжелые» системы, библиотеки среднего класса L25, L100 (Quantum) и «легкие» системы L8 (ADIC), объявила о намерении приобрести за 4,1 млрд долларов компанию StorageTek, оборот которой за 2004 г. превысил 2 млрд долларов. Благодаря этой сделке Sun Microsystems становится крупным игроком рынка систем хранения, в том числе в среде мэйнфреймов: все ленточные библиотеки StorageTek корпоративного уровня L180, L1400M, SL8500, PowderHorn 9310, L5500, куда могут устанавливаться накопители T984 (ESCON, FICON, Native FC), T9940 (ESCON, FICON, Native FC), удовлетворяют требованиям со стороны мэйнфреймов к их производительности и емкости.

В 2004 г. ленточные устройства StorageTek принесли 77% ее оборота. При всем разнообразии их линейки компания StorageTek более всего известна как ведущий игрок на рынке крупных автоматизированных библиотек. Ее флагманский продукт - виртуальная модульная ленточная библиотека StorageTek SL8500 - состоит из базового модуля и двух модулей расширения. Максимальная конфигурация при соединении нескольких шкафов вмещает до 300 тыс. слотов и до 2048 накопителей T9840, T9940, LTO Ultrium и SDLT в любой комбинации, а наибольшая емкость такой конструкции при использовании картриджей LTO-3 достигает 120 Пбайт.

Библиотека SL8500 стала первым в отрасли устройством, где можно свободно смешивать различные типы картриджей благодаря реализации архитектуры Any Cartridge Any Slot. Наличие универсальных слотов предоставляет большую гибкость и сохраняет инвестиции при миграции с одной технологии на другую. Доступ к библиотеке может осуществляться со стороны различных серверов и приложений, и при этом разделение всей емкости на разделы и закрепление разделов за теми или иными приложениями не требуется. Балансировку нагрузки между ленточными приводами и сетевыми устройствами выполняет Virtual Storage Manager - приложение, отвечающее за эффективное использование ресурсов устройства.

Управление всей электроникой системы интегрировано на единой плате, которая в том числе регулирует трафик между накопителями и, например, сетью хранения. Роботизированные механизмы, накопители, блоки питания, электронные платы SL 8500 могут заменяться в оперативном режиме без прерывания работы. Библиотекой можно управлять и удаленно: все основные функции, имеющиеся в распоряжении локального оператора, будут доступны через Ethernet. Путем варьирования компонентов можно подобрать практически любую конфигурацию для обеспечения требуемой емкости и производительности.

Рисунок 2. IBM TotalStorage 3494 масштабируется до 5,6 Пбайт.

IBM поставляет на российский рынок ленточные библиотеки IBM TotalStorage 3494 (см. Рисунок 2) и IBM TotalStorage 3584, предназначенные в основном для крупных вычислительных центров, для работы в среде мэйнфреймов и открытых систем. Модульная система IBM TotalStorage 3494 основана на архитектуре Multi-Path с поддержкой множественных путей доступа, поэтому благодаря делению на разделы сотрудники разных подразделений и филиалов одной компании могут пользоваться ею одновременно. Комбинируя модели IBM TotalStorage 3494, можно создать единую библиотеку, включающую до 16 конструктивов, общей численностью свыше 6000 перезаписываемых картриджей или картриджей WORM для накопителей IBM TotalStorage 3590 и 3592 емкостью до 5,6 Пбайт данных. Для библиотеки IBM TotalStorage 3584 поставляются накопители 3592 Tape Drive Model J1A, которые могут использоваться в смешанной конфигурации вместе с накопителями LTO Ultrium-3 (накопитель IBM TotalStorage 3588 модель F3A) в одной и той же системе, но в различных корзинах. Обратная совместимость с LTO Ultrium-1 и LTO Ultrium-2 обеспечивает защиту инвестиций.

Ленточные библиотеки среднего класса IBM поставляет по OEM-соглашению с ADIC. Кроме того, библиотеки ADIC в рамках OEM-соглашений предлагают компании Dell, EMC, Fujitsu Siemens Computers. В одном модуле библиотеки корпоративного класса ADIC Scalar i2000 можно установить до 360 слотов LTO, 255 слотов SDLT, минимальная конфигурация начинается со 100 картриджей. При расширении допускается объединение до восьми стоек, в которые можно поместить до 3492 картриджей LTO и до 48 накопителей, так что максимальная емкость библиотеки достигнет 2,8 Пбайт. Библиотеки Scalar i2000 и Scalar10K позволяют производить разбиение на виртуальные библиотеки, а также поддерживают смешанные носители, когда в одной библиотеке одновременно возможна работа с лентами разных технологий. Большинство компонентов iScalar дублировано и может заменяться в «горячем» режиме.

Рисунок 3. HP StorageWorks ESL E-Series Tape Library интегрируется в архитектуру HP StorageWorks ETLA.

Возможность использования накопителей и картриджей различных типов в одном устройстве реализована и в библиотеках HP StorageWorks MSL, но в рамках каждого из двух магазинов картриджи не смешиваются. Например, одна корзина может быть укомплектована перезаписываемыми картриджами LTO Ultrium 460, а другая - картриджами WORM. Устройство, ориентированное на средний сегмент рынка, готово к работе с технологиями HP LTO Ultrium 960 и SDLT 600. MSL 6000 может масштабироваться не только внутри одного семейства, но и наращиваться модулями семейства MSL 5000 до 240 слотов и 16 приводов в максимальной конфигурации.

Один шкаф HP StorageWorks ESL E-серии (см. Рисунок 3) способен вместить от 322 до 712 картриджей LTO или от 286 до 630 картриджей SDLT. В него допускается устанавливать накопители Ultrium 960 (FC), Ultrium 460 (SCSI), Ultrium 460 (FC), а также SDLT 600 и/или SDLT 320; для каждого типа картриджей используется свой магазин. Контроль над доступом к ресурсам библиотеки HP StorageWorks ESL E-Series со стороны серверов осуществляется посредством ПО Secure Manager. Возможность деления на разделы позволяет организовать до шести виртуальных ленточных библиотек. Обмен кассетами между модулями обеспечивает сквозной механизм Pass Thru.

Решения HP StorageWorks ESL и EML интегрируются в архитектуру HP StorageWorks Extended Tape Library Architecture (ETLA), обеспечивающую более простое выполнение резервного копирования благодаря усовершенствованному управлению всей библиотекой. ETLA реализует возможности удаленного управления, чем упрощаются конфигурирование, управление и мониторинг всех компонентов библиотеки из любой точки.

Потребность в организации надежного, эффективного и менее затратного процесса резервного копирования и восстановления данных нашла отражение в концепции ILM, для реализации компонентов которой производители предлагают аппаратные и программные решения (о внедрении стратегии ILM на предприятии нефтегазовой отрасли см. врезку .). В частности, некоторые из них уже выпустили продукты на базе гибридной технологии, когда в едином конструктиве устанавливаются как дисковые накопители, так и ленточные картриджи. Такие решения, как Disk-to-Disk-to-Tape (D2D2T), обеспечивают иерархическое размещение данных: в зависимости от ценности информации ее хранят на соответствующих по стоимости носителях.

В начале июня StorageTek выпустила систему IntelliStore под кодовым названием Trinity, предназначенную для архивного хранения и поиска данных. Особенность интеллектуальной новинки, где используются как дисковые накопители, так и ленточные приводы и картриджи, заключается в возможности хранения и поиска данных по контенту. До появления на рынке этого архива подобный сервис обеспечивала лишь дисковая система EMC Centerra. Учитывая, что стоимость дискового пространства все еще существенно дороже ленточных аналогов (цена недорогих дисковых систем SATA колеблется в пределах 3-15 долларов за 1 Кбайт, стоимость же 1 Гбайт хранения данных на ленте составляет всего от 0,5 до 3 доллара), а в законодательных актах европейских стран и Америки ужесточены требования к архивному хранению данных, новинка появилась в нужное время.

ВЫБОР СИСТЕМЫ

Библиотека - это лишь верхушка айсберга, и само по себе приобретение ленточной библиотеки не решает всех проблем резервного копирования или архивирования, предупреждает Вячеслав Слободчук, руководитель отдела инженерной поддержки продаж компании «Классика». Для того чтобы после покупки библиотеки и ПО заказчик не обнаружил вдруг, что предполагавшаяся изначально схема резервного копирования реально не работает (слишком много времени занимает передача информации, плохая совместимость оборудования, необъяснимые эпизодические сбои, никто из поставщиков не берется поддерживать весь комплекс в целом) - необходима тщательная подготовка проекта с участием квалифицированных специалистов, которые могут взять на себя ответственность за работоспособность и заявленную функциональность предлагаемых конфигураций и схем.

Как поясняет Вячеслав Логачев, руководитель отдела серверных технологий российского системного интегратора «Белмонт Групп», специфика проектов, в рамках которых предполагается поставка ленточных библиотек, состоит в правильном расчете типов и количества накопителей и картриджей, а также соответствующих каналов передачи данных. Еще на начальном этапе следует определить объем и тип информации, частоту резервирования данных, размер окна резервного копирования и правила ротации носителей. Расчет библиотеки требует учесть и такие нюансы, как полное или инкрементальное копирование, а также необходимость максимальной автоматизации процесса резервного копирования.

Исходя из этого определяется количество считывающих/записывающих устройств и рассчитывается пропускная способность канала, по которому библиотека соединяется с внешней инфраструктурой. Выбор типа ленты представляется важным с точки зрения экономии. Если, к примеру, для резервной копии набора данных не требуется ленты емкостью в 300 Гбайт, а достаточно 70 Гбайт, то более целесообразно использовать модели приводов предыдущих поколений (DLT, LTO-1 и т. д.), что и практикуют подразделения ИТ многих компаний.

Ввиду того, что производительные дисковые системы становятся дешевле и на массовом рынке уже появился новый класс недорогих дисков FATA и SATA, способных со временем составить ценовую конкуренцию ленточным устройствам, некоторые специалисты поспешили сделать пессимистические прогнозы относительно будущего ленточных технологий. Однако цена хранения 1 Гбайт информации на магнитной ленте резко снижается по мере увеличения отношения количества картриджей к количеству накопителей, а емкость картриджей растет быстрее емкости дисков.

Оптические же носители разумно применять там, где требуется быстрый доступ к небольшим объемам данных: дороговизна единицы оптического носителя компенсируется невысокой ценой оборудования. Но там, где объемы данных огромны, - лучшего способа хранения, чем на ленточных носителях, пока еще не придумано.

Наталья Жилкина - научный редактор «Журнала сетевых решений/LAN». C ней можно связаться по адресу: [email protected] .

ILM для нефти и газа

Специфика нефтегазовой отрасли, особенно в области разведки месторождений, сопряжена с накоплением огромных объемов данных. За восемь лет работы тюменского предприятия «Сибирский научно-аналитический центр» и его подразделения «Недра Ямала» в Салехарде объем данных составил несколько сотен терабайт (компания занимается сбором, анализом, хранением и обработкой данных физической разведки нефтяных и газовых месторождений). В 1998 г. для резервного копирования и архивирования данных была приобретена ленточная библиотека StorageTek 9740 с 10 накопителями DLT и 490 слотами для картриджей (сейчас эта система уже не выпускается, но зарекомендовала себя в эксплуатации как надежное устройство). Со временем накопители DLT были заменены на более усовершенствованные SDLT.

Весь накопленный объем данных хранился частично на сервере Sun Solaris, а частично на локальных машинах. Библиотека, на которую производилось резервное копирование, была подключена напрямую к серверу, данные размещались как в самой ленточной библиотеке, так и в автономных хранилищах. Запись и восстановление данных, которые располагались на сервере Sun Solaris, осуществлялись с помощью ПО Legato Networker. В целом система была достаточно запутанная, поскольку локальное хранение больших объемов данных неизбежно сопряжено с трудностями администрирования и обеспечения их безопасности.

В 2003 г. было решено повысить эффективность хранения путем внедрения концепции ILM на базе иерархической схемы. Однако в то время, когда приобреталась библиотека, не предусматривалась возможность ее совместного использования несколькими процессами записи: имеющиеся ресурсы не позволяли выполнять запросы к библиотеке одновременно со стороны сервера резервного копирования и сервера ILM. Дабы сэкономить средства заказчика, специалисты российского отделения австрийской компании S&T International предложили решение по раздельному доступу различных приложений (резервного копирования и ILM) к единой библиотеке было реализовано с помощью программного продукта StorageTek ACSLS 7.1 (Automated Cartridge System Library Software).

Сервер ACSLS реализует виртуальный слой управления роботизированным механизмом, позволяя отделить путь управления библиотекой от пути передачи данных. Он осуществляет прием команд управления, постановку их в очередь и выдачу в правильном порядке на физическое устройство, т. е. реализует диспетчеризацию доступа к библиотеке. Поток данных между накопителем и внешними устройствами идет независимо от команд управления роботизированным устройством SCSI.

В процессе реализации проекта был установлен мост SCSI/FC, что позволило включить библиотеку в формируемую инфраструктуру сети хранения предприятия. Для промежуточного хранения данных в иерархической схеме была приобретена StorageTek BladeStor - не самая скоростная, но довольно емкая система хранения с дисками ATA. В качестве программного продукта «прото-ILM» выбрана система Legato DiskXtender, благодаря которой хранение данных организуется в виде прозрачного пула, откуда они перемещаются на более медленные диски и ленты.

В ходе выполнения проекта сервер резервного копирования заменили на сервер ACSLS, который самостоятельно передает данные в нужном порядке и имеет собственный командный язык для управления библиотекой. Тем самым было обеспечено одно из условий внедрения схемы иерархического хранения, а именно - сохранение имеющейся системы архивного хранения в сотни терабайт данных. Совместное использование роботизированной ленточной библиотеки двумя прикладными системами позволило сэкономить средства бюджета на ИТ: для целей внедрения ILM не пришлось закупать новую библиотеку, а для резервного копирования использовали уже эксплуатирующуюся на предприятии систему.

Как пояснил Роман Хмелевский, консультант S&T International, принимавший участие в реализации данного проекта, очень часто руководство предприятий с трудом соглашается на модернизацию имеющихся систем, и связано это не столько с затратами, сколько с необходимостью изменения начальных схем хранения бесценной информации и опасения ее потерять. Используя приведенную схему, функциональность можно добавлять без риска потери данных, и при этом серьезных затрат не потребуется.

Бурный рост критически важных и ответственных приложений с одной стороны и увеличение объемов данных в сегодняшних условиях требуют особого, более внимательного отношения к системам хранения данных, так как информация имеет свою (и порой достаточно высокую) цену и любая потеря данных может обернуться ощутимыми финансовыми потерями. Вот почему подсистемы хранения данных приобретают все большее и большее значение.

Традиционно системы хранения можно разделить на следующие три класса.

  1. Быстрые системы с произвольным доступом. Это «жесткие диски» и RAID системы. Имеют небольшое время доступа и самую высокую удельную стоимость хранения.
  2. Относительно медленные системы с последовательным доступом. Это отдельно стоящие приводы магнитных лент, библиотеки магнитных лент и достаточно редко используемые RAIT системы. Обладают наибольшим временем доступа, наибольшей емкостью и наименьшей удельной стоимостью хранения данных. Используются также в системах иерархического хранения данных.
  3. Системы с произвольным доступом, которые по емкости, стоимости, скорости занимают промежуточное положение. Это системы, построенные на базе магнитооптики, DVD и CD (R, RW) технологий. В настоящее время используются для организации небольших архивов и промежуточного хранения, в системах иерархического хранения данных.

Существует еще один класс устройств - это твердотельные диски. Используются для организации буферов данных. Но из-за высокой стоимости их применение ограничено.

В данной статье пойдет речь технологиях и системах хранения данных на магнитных лентах. Традиционно магнитные ленты были и остаются наименее дорогим и достаточно надежным (сохранность записи более 30 лет) носителем для организации архивов и резервного копирования данных.

Чтобы проще было разобраться в разнообразии представленных на рынке устройств - сначала немного теории. Несмотря на то, что приводов магнитных лент и картриджей разной конструкции достаточно много, базовых технологий, используемых во всех устройствах, всего две. Это линейная запись (запись с неподвижной магнитной головкой) и наклонно-строчная запись . Оба метода пришли из аналоговой магнитной записи.

Итак, начнем с линейной магнитной записи, так как появилась она раньше. Аналоговые магнитофоны появились достаточно давно, а для записи данных эта технология использовалась уже в ЭВМ ЕС и СМ.

Суть состоит в том, что используется достаточно широкая лента с большим числом расположенных по всей длине ленты параллельных дорожек и многоканальная магнитная головка. Лента протягивается лентопротяжным механизмом мимо головки. При этом считывается часть (группа) дорожек. При достижении окончания ленты головка перепозиционируется на следующую группу дорожек, лентопротяжный механизм реверсирует движение ленты (лента движется обратно и записываются/считываются другие дорожки). Этот процесс повторяется, пока не будут считаны или записаны все дорожки. Такой метод записи называют серпантиновым.

Линейная система записи имеет свои характерные особенности. Чтобы обеспечить необходимую плотность записи лента должна двигаться мимо магнитной головки со скоростью порядка 160 дюймов/с (порядка 70 см/с). Чем быстрее достигается рабочая скорость движения ленты, тем меньше задержек при неизбежном старт-стопном движении ленты. Поэтому, чем более быстродействующий лентопротяжный механизм, тем больше механическая нагрузка на ленту и применение современных тонких лент AME в этом случае недопустимо.

Еще одна особенность - это обеспечение оптимального взаимного положения магнитной дорожки и рабочего зазора магнитной головки. Дело в том, что при движении ленты неизбежна некоторая девиация положения магнитной дорожки по высоте. Причина в неизбежном перемещении ленты в вертикальной плоскости при движении из-за некоторого люфта направляющих стоек или роликов и не абсолютная параллельность краев самой ленты. Это не критично при невысоких плотностях цифровой записи и для традиционной аналоговой записи, где ширина дорожки несколько больше ширины магнитного зазора и разница эта не меньше возможной девиации положения ленты по вертикали при движении по лентопротяжному тракту. Однако для удовлетворения современных потребностей требуется дальнейшее увеличение емкости картриджа. Так как нельзя просто намотать больше ленты (объем картриджа ограничен) и нельзя бесконечно уменьшать толщину ленты - остается только увеличение количества дорожек (плотность расположения) и использование более прогрессивных методов магнитной записи (RLL, PRML). Поэтому очевидно, что для увеличения количества дорожек на ленте требуется специальная система слежения и коррекция положения головки.

Основные изготовители устройств с линейной записью - это Quantum Corp. и Tandberg Data ASA. Оба имени достаточно известны, Quantum занимается производством жестких дисков и приводов магнитных лент DLT. Tandberg Data ASA выпускает устройства DLT, а также имеет фирменную технологию SLR на базе четвертьдюймовых лент (QIC). Технические характеристики приводов DLT и SLR перечислены в сводной таблице.

Особенности DLT

Используется лента шириной 0,5 дюйма и однокатушечный картридж (приемный барабан несъемный и находится в самом устройстве). Лента закреплена одним концом в подающем барабане в картридже, а на другом конце находится специальная петля, лидер, за которую ЛПМ (лентопротяжный механизм) вытаскивает ленту из картриджа и заправляет в приемный барабан. Таким образом, более полно используется объем картриджа (весь объем заполнен лентой), но сам привод магнитных лент получается несколько больших размеров. Технология DLT в настоящее время наиболее широко используется в системах среднего и более высокого уровня. На рынке представлены DLT4000, 7000, 8000. Поставки SuperDLT компанией Tandberg Data по дистрибьюторским каналам начались с апреля 2001.

Представленные на рынке устройства DLT4000, 7000, 8000 принципиальных отличий друг от друга не имеют, все отличия, скорее, количественные. Устройства же SuperDLT принадлежат уже к новому поколению, где используется другая, более совершенная лента, другие магнитные гоовки (CMR, кластер магниторезистивных головок), оптическая система позиционирования дорожек и др. Правда, в устройствах SDLT не удалось получить совместимость со старыми картриджами DLT. Объясняется это тем, что новые головки не могут работать со старыми плотностями записи и старыми плотностями расположения дорожек. Поэтому для обеспечения совместимости требуется установка дополнительного блока магнитных головок, что приведет к существенному изменению и усложнению конструкции лентопротяжного механизма.

Еще следует упомянуть о поставляемом Tandberg Data приводе DLT1. Это устройство по емкости соответствует DLT8000, но производительность в два раза меньше и совместимо оно по чтению только с DLT4000. Однако, это компенсируется чрезвычайно низкой ценой, соизмеримой с устройствами более низкого класса (DDS-4).

Особенности SLR

Приводы магнитных лент SLR производятся Tandberg Data ASA и имеют следующие особенности.

  1. Используется лета шириной четверть дюйма. Полностью закрытый картридж с массивным металлическим основанием имеет двухкатушечную конструкцию (приемный и подающий барабаны находятся в внутри картриджа). Оба барабана приводятся в движение специальным ремнем, размещенным внутри картриджа. Картридж имеет лишь небольшое окошко для контакта головки чтения/записи с лентой и ролик, который сообщается с приводным ремнем внутри картриджа и с тонвалом привода. Таким образом, лентопротяжный механизм имеет минимальное количество движущихся частей (головка и тонвал), а, следовательно надежность такой конструкции максимальна.
  2. Головка. Многоканальная головка закреплена не жестко, а подвешена при помощи магнитной катушки наподобие диффузора громкоговорителя. На ленте при изготовлении нанесены специальные синхро-дорожки, которые всегда считываются при движении ленты (как при чтении, так и при записи), а сервосистема на основе считанного синхросигнала постоянно корректирует положение магнитной головки по высоте. Кроме того, головка чтения-записи имеет дополнительный рабочий зазор, который позволяет считывать только что сделанную запись. Применительно к аналоговой записи это называют сквозным каналом записи - воспроизведения. Использование такой сервосистемы позволяет существенно увеличить количество дорожек на ленте, не прибегая ни к каким другим приемам. Приводы SLR имеют несколько меньшую стоимость, чем DLT и младшие модели могут быть использованы в системах начального уровня, там где традиционно господствуют устройства DDS.

Особенно в этом отношении интересно новое устройство SLR7 от Tandberg Data. Техические данные приведены в общей таблице, а стоимость этого устройства ниже, чем DDS4.

Следует остановиться еще на одном формате. Это открытый формат LTO (Linear Tape Open format), результат объединения усилий IBM, HP и Seagate, лицензии на который уже получены многими изготовителями как магнитных лент, так и устройств. Технология: серпантиновая запись на ленту шириной 0,5 дюйма. Предполагается два типа устройств.

  1. Ориентированнные на минимальное время доступа и максимальную скорость Accelis с двухкатушечным катриджем. Причем для получения минимального времени доступа исходное положение ленты в катридже - не начало (как у других устройств) , а середина ленты.
  2. Ориентированные на максимальную емкость устройства Ultrium. Конструкция картриджа и привода напоминает DLT. Емкость картриджа для устройств первого поколения составляет 100 Гбайт, а для устройств третьего поколения через 2-3 года предполагается кмкость порядка 800 GB.

Поставки Ultrium первого поколения начались в 2001 году. Это устройство доступно в настоящее время по крайней мере от IBM и HP, автоматизированные библиотеки доступны от Exabute, HP и др. Картриджи Ultrium доступны также от HP и Exabyte.

Опыт пользования устройствами Ultrium пока еще не накоплен, отзывы пользователей в Европе пока еще противоречивы.

Другой метод магнитной записи - это наклонно-строчная магнитная запись. В середине 50-х годов фирмой Ampex был начат выпуск первых (естественно, аналоговых) видеомагитофонов с наклонно-сторочной записью. Суть метода состоит в том, что лента протягивается с небольшой скоростью (несколько сантиметров в секунду) мимо вращающегося в высокой скоростью цилиндра, на котором закреплены головки чтения-записи. За счет вращения блока головок получается высокая относительная скорость между лентой и головкой. Преимущества этого метода следующие. Так как абсолютная скорость движения ленты невелика, процессы старта и останова занимают меньше времени и оказывают меньшие механические нагрузки на ленту. Следовательно, можно использовать более тонкие ленты (например, новые более тонкие металлонапыленные ленты AME). Кроме того, при наклонно-строчной записи плотность расположения дорожек (измеряется в количестве дорожек на 1 дюйм) в несколько раз выше, чем при линейной записи. Это является результатом того, что длина одной магнитной дорожки сравнительно невелика, с одной стороны, и применения специального механизма подстройки положения вращающегося барабана с магнитными головками с другой стороны, а также использованием более совершенных носителей.

Конечно, помимо преимуществ у наклонно-строчной записи есть и недостатки. Это, прежде всего, ожидаемый более быстрый износ как ленты, так и головок. На самом деле, этого не происходит, так как при вращении барабана между рабочей поверхностью ленты и головкой создается некоторая воздушная прослойка, существенно снижающая трение ленты о головку чтения/записи. С другой стороны, современные магнитные ленты с металлонапылением имеют специальное углеродное покрытие, обладающее высокой прочностью и практически нулевым коэффициентом трения. Кроме того, на лентах AME есть еще поверхностный слой сухой смазки. Поэтому, к примеру, механизмы Mammoth, Mammoth-2 не уступают и даже несколько превосходят по долговечности механизмы DLT.

В настоящее время на рынке представлено 2 основных класса устройств, где реализована технология наклонно-строчной записи. Это устройства, использующие картриджи с лентой шириной 4 мм и устройства, работающие с лентой 8 мм. Есть еще класс устройств на базе механизма Betacam фирмы Sony (дальнейшее развитие формата Betamax, также предложенного фирмой Sony) и использующие кассеты типа Betacam. Это библиотеки для хранения видеоархивов, емкость которых измеряется десятками петабайт.

4-миллиметровые устройства

Это технология DAT предложенная в свое время фирмой Sony для цифровой записи звука. Приводы магнитных 4-мм лент подразделяются на поколения: DDS-1, DDS-2, DDS-4 и DDS-4. Основной поставщик 4-мм устройств - это фирма Sony.

8-миллиметровые устройства

Технология аналоговой наклонно-строчной, а впоследствии и цифровой записи на магнитную ленту шириной 8 мм была предложена в 80-х годах, опять же, фирмой Sony. Однако, впервые эта технология была адаптирована и оптимизирована для записи цифровых данных фирмой Exabyte. На рынке представлены 8-мм устройства Exabyte (Eliant, Mammoth, Mammoth-2), Ecrix (VXA) и Sony (AIT, AIT-2). Технические данные всех упомянутых устройств указаны в сводной таблице. Упомянутые 8-мм устройства имеют достаточно много общих черт, но есть и некоторые отличия. *

Лентопротяжный механизм. У Sony в основе лежит ЛПМ, аналогичный используемым в камкодерах, где линейное движение осуществляется при помощи узла тонвал-прижимной ролик. Это очень ответственный узел, в результате малейшего отклонение положения тонвала от нормы лента начинает смещаться вверх или вниз, что, как правило, приводит к механическому повреждению носителя. В ЛПМ, разработанном и используемом Exabyte такого узла нет и линейное движение ленты осуществляется только за счет приемного и подающего барабана и несколько упрощен тракт движения ленты. В результате увеличилась надежность механизма, уменьшился износ ленты и появилась возможность использовать более тонкие и «скользкие» улучшенные металонапыленные ленты AME.

  • Магнитные носители. За счет особенностей конструкции ЛПМ Exabyte используются более совершенные магнитные ленты, чем в других устройствах.
  • Производительность (скорость чтения-записи). Обусловлено конструкцией блока вращающихся головок. На сегодняшний день устройство Mammoth-2 превосходит все остальные сравниваемые накопители.
  • Фирменные особенности. Приводы Exabyte имеют патентованную систему автоматической чистки тракта движения ленты SmartClean, что делает ненужным применение чистящих картриджей, а у Sony кроме автоматической системы очистки головок (специальный чистящий картридж тоже не нужен) есть фирменная технология (MIC, Memory In Cassette) ускоренного чтения каталогов картриджей за счет размещения твердотельной памяти прямо в картридже. Считывание этой памяти происходит практически мгновенно. Благодаря этому значительно снижается время доступа к данным на картридже. Если по каким либо причинам эта память выходит из строя (статические заряды, к примеру), то считывание каталога происходит обычным образом.

Теперь, собственно сравнение существующих технологий. Само разнообразие представленных на рынке устройств говорит о том что идеального привода, подходящего для всех случаев в природе не существует. Для оценки различных технологий используются определенные критерии. Это линейная плотность записи, эффективность формата, плотность расположения дорожек.

Линейная плотность записи - количество информации, записываемой на единице длины магнитной дорожки, измеряется Кб/дюйм

Максимальную линейную плотность записи имеют устройства Super DLT, DDS и Travan. У DLT и Mammoth есть некоторый запас для развития.

* Поставки Super DLT первого поколения OEM и в дистрибьюторские каналы начались в начале 2001 года.

Эффективность формата. Это соотношение между общим числом бит, записанных на ленту и числом битов данных. Две эти величины не совпадают, так как на ленту помимо самих данных записываются корректирующие коды, биты четности и другая служебная информация. Измеряется в процентах. Оптимальной считается эффективность 75%.

DLT и Travan обладают оптимальной и практически предельной эффективностью формата, 8-мм и 4-мм устройства еще имеют некоторый запас для развития. Объясняется это тем, что наклонно-строчная запись более молодая и не до конца оптимизирована для записи цифровых данных, в то время как технология линейной записи прошла несколько более длинный путь развития и лучше оптимизирована для цифровых данных.

Плотность расположения дорожек была рассмотрена несколько ранее. Самая высокая и практически предельная для нынешних носителей и магнитных головок плотность расположения дорожек у устройств DDS. Для устройств с линейной записью есть некоторый запас для дальнейшего увеличения емкости.

Видно, что каждая технология имеет свои достоинства и недостатки. К достоинствам DLT технологии, безусловно, можно отнести огромный парк работающих устройств и библиотек, а также совместимость между разными моделями DLT. Это делает возможным свободный обмен носителями между многими пользователями. Но, с другой стороны, необходимость поддерживать совместимость с более ранними моделями сдерживает развитие формата DLT в сторону увеличения емкости и скорости.

Наклонно-строчная запись появилась позже, чем линейная. Поэтому с самого начала в основе были заложены более прогрессивные технологические решения. В результате те же объемы записываются на гораздо меньшей площади поверхности ленты. Преимущества устройств, построенных на базе наклонно-строчной записи в том, что сами устройства компактнее, картриджи меньше, используется более совершенная магнитная лента, позволяющая хранить больше данных более длительное время.

Привод магнитных лент Mammoth-2 является наиболее быстрым в своем классе (и дорогим) среди всех представленных на рынке устройств, да и емкость картриджа Mammoth-2 на сегодняшний день выше, чем у любого другого устройства в этом классе. Правда, по емкости устройство Mammoth-2 уступает SDLT и Ultrium, но эти два устройства принадлежат к следующему поколению и сравнивать их с Mammoth-2 было бы не совсем корректно.

Бесплатно ничего не бывает. Поэтому за все эти достоинства приходится платить совместимостью. Устройства нового поколения обычно не совместимы со старым. Например, при переходе с Eliant 820 на Mammoth старые картриджи записывать нельзя, это обусловлено тем, что в для Mammoth используется магнитная лента нового поколения AME c другими параметрами записи. Кроме того, обмен картриджами даже между похожими устройствами (к примеру, между Mammoth, AIT или VXA) тоже невозможен из за различия форматов. С SDLT и Ultrium ситуация точно такая же.

Если говорить о более дешевых стандартизованных приводах DDS, то перенос картриджей даже одного класса (DDS -2, -3, -4) тоже не всегда возможен. Если говорить о долговременности хранения, то на первом месте будут устройства, работающие с наиболее совершенными на сегодняшний день лентами AME. Если прибавить к этому скорость и емкость, то безусловно чемпионом будет привод магнитных лент Mammoth-2. Превосходство Mammoth-2 над всеми остальными устройствами подтверждено многочисленными тестами, проводящимися разными независимыми экспертами. По своим техническим данным приводы магнитных лент уступают только SuperDLT и LTO Ultrium, но Mammoth-2 поставляется по дистрибьюторским каналам с начала 2000 года (в США поставки начались несколько раньше), а продажи SuperDLT по дистрибьюторским каналам начались более чем а год позже.

С точки зрения цен - дешевле всего приводы DDS и новые устройства SLR 7 от Tandberg Data. Они используются, в основном, в небольших рабочих станциях и серверах начального уровня.

Подводя итог, можно сказать следующее. Технология DDS (4мм) хороша там, где не требуется высоких скоростей, и не предполагается интенсивное (длительное непрерывное) использование устройства. Привод DDS очень компактен, занимает мало места и без проблем встраивается в любой компьютер. С точки зрения цены стоимость приводов DDS минимальна. Технология DLT и SLR рассчитана на тяжелые условия работы (длительное, практически круглосуточное использование). Устройства SLR имеют высокую скорость и емкость, высокую надежность, а невысокая стоимость позволяет использование в традиционно занимаемых DDS рыночных нишах. Учитывая гораздо лучшую (чем у DDS) переносимость носителей младшие устройства SLR могут быть использованы вместо DDS, а старшие - могут стать разумной альтернативой технологиям Mammoth и DLT, так как практически не уступают по техническим данным, а цена на них несколько ниже.

Технология DLT обладает высокой емкостью, скоростью, используется в системах среднего уровня как в автоматизированных библиотеках, так и в виде автономных устройств. Если уже есть парк катриджей и важна переносимость носителей - DLT будет лучшим выбором.

Устройства DLT1 совместимы по чтению только с DLT4000, но цена соизмерима со старшими DDS, а емкость - соответствует DLT8000.

SDLT, поставки которых начались с апреля 2001 года, в нынешнем своем виде не обладают совместимостью с DLT7000, 8000 и др., что практически ставит их в один ряд с LTO Ultrium. Преимущества SDLT перед Ultium незначительные: несколько больше емкость и чуть-чуть меньше цена.

По спецификациям скорость LTO Ultrium несколько больше, но опыта работы этих устройств в реальных условиях пока недостаточно, чтобы сделать вывод о их преимуществах или недостатках.

8-мм устройства (AIT, а особенно Mammoth) обладают наивысшей скоростью и емкостью (исключая Super DLT и Ultrium, реального опыта работы которых пока еще слишком мало). Если важна скорость, нет «наследственного» парка картриджей и непринципиальна переносимость носителей (с AIT на Mammoth, например) - оптимальным решением будет AIT -2 или Mammoth-2. Эти два устройства не сильно различаются по характеристикам, а стоимость AIT несколько меньше.

Сравнительные тесты работы устройств Mammoth-2, AIT-2, DLT в реальных условиях с разными прикладными программами под разными операционными системами проводились не раз и неизменно лучшие результаты показывал привод Mammoth-2.

Технологии AIT-2 и Mammoth-2 обеспечивает несколько меньшую, чем DLT или LTO удельную стоимость хранения данных. Кроме того, Mammoth-2 от Exabyte - единственный на рынке привод магнитных лент, который может иметь интерфейс Fibre Channel (оптический или «медный», в зависимости от установленного модуля GBIC). Это особенно важно при построении сетей хранения данных (SAN), где используется, в основном, интерфейс FC. В данном случае привод Mammoth-2 подключается к коммутатору или концентратору FC напрямую, без использования не прибавляющих надежности и производительности «мостов» FC - SCSI. Поставки этих приводов уже начались.

И в заключении - сводная таблица технических характеристик различных приводов магнитных лент.

Модель Емкоcть Cкорость Буфер Мб Надежность MTBF
нормаль- ная со сжатием нормаль- ная со сжатием
Наклонно-строчная запись
SONY
DDS-2 (4mm) 4 GB 8 GB 0.78 MB/s 1.56 MB/s 1MB 200000 h
DDS-3 (4mm) 12 GB 24 GB 1.2 MB/s 2.4 MB/s 2 MB 200000 h
DDS-4 (4mm) 20 GB 40 GB 2.4 MB/s 4.8 MB/s 8 MB 250000 h
AIT-1 (8mm) 35 GB 70 GB 3 MB/s 6 MB/s 4 MB 300000 h
AIT-2 (8mm) 50 GB 100 GB 6 MB/s 12 MB/s 10 MB 300000 h
AIT 130 (AIT-2) 50 GB 130GB 6 MB/s 15.6 MB/s 10 MB 300000 h
Ecrix
VXA-1 (8mm) 33 GB 66 GB 3 MB/s 6 MB/s 4 MB 300000 h
Exabyte
Eliant 820 (8mm) 7 GB 14 GB 1 MB/s 2 MB/s 1 MB 200000 h
Mammoth (8mm) 20 GB 40 GB 3 MB/s 6 MB/s 4 MB 250000 h
Mammoth LT (8mm) 14 GB 28 GB 2 MB/s 4 MB/s 4 MB 250000 h
Mammoth-2 (8mm) 60 GB 150 GB 12 MB/s 30 MB/s 32 MB 300000 h
Линейная запись
Quantum/ Tandberg
DLT4000 20 GB 40 GB 1.5 MB/s 3 MB/s 2 MB 200000 h
DLT7000 35 GB 70 GB 5 MB/s 10 MB/s 8 MB 200000 h
DLT8000 40 GB 80 GB 6 MB/s 12 MB/s 8 MB 250000 h
Super DLT 110 GB 220 GB 11 MB/s 22 MB/s Нет даных 250000 h
IBM
LTO Ultrium 100 GB 200 GB 15 MB/s 30 MB/s Нет данных Нет данных
HP
Ultrium 215 100 GB 200 GB 7.5 MB/s 15 MB/s Нет данных Нет данных
Ultrium 230 100 GB 200 GB 15 MB/s 30 MB/s Нет данных Нет данных
Tandberg
DLT1 40GB 80 GB 3 MB/s 6 MB/s нет данных 200000 h
SLR40 (QIC) 20 GB 40 GB 3 MB/s 6 MB/s 8 MB 300000 h
SLR50 (QIC) 25 GB 50 GB 2 MB/s 4 MB/s 2 MB 300000 h
SLR60 (QIC) 30 GB 60 GB 4 MB/s 8 MB/s 8 MB 300000 h
SLR100 (QIC) 50 GB 100 GB 5 MB/s 10 MB/s 8 MB 300000 h
Fujitsu (8»)
M2488 (18/36 track) 1.2 GB 2.4 GB 3 MB/s 2 MB 50000 h
M8100 (128 tracks) 10 GB 13 MB/s 16 MB 100000 h

Похоже, самые плохие предсказания сегодня становятся реальностью: для многих пользователей резервирование данных уже играет не столь важную роль. С одной стороны, присутствующие на рынке решения часто бывают слишком дороги - по крайней мере, на первый взгляд. С другой стороны, повсеместное распространение массивов RAID на серверах даёт обманчивое чувство безопасности. Итог бывает плачевен: череда ошибок - и данные потеряны.

Цель резервирования заключается в защите данных и системы от целого ряда потенциальных бедствий. Среди них отметим программные ошибки, атаки хакеров, вирусы, аппаратные сбои или многие другие сценарии страшного сна.

Иногда банальное выключение энергии или перепад напряжения в цепи способны мгновенно уничтожить самый мощный массив RAID.

Однако не следует забывать, что наиболее частая причина потери данных кроется в неправильных действиях самого пользователя. К примеру, случайное удаление ненужных, на первый взгляд, данных может быть замечено только через несколько дней или недель - и тогда бывает уже слишком поздно пытаться что-либо восстанавливать.

Для эффективного противостояния всем этим рискам пользователям (и администраторам) следует серьёзно подходить к резервированию данных. Жизненно важную информацию следует хранить на нескольких системах и лучше - в разных зданиях. Такой подход позволяет предусмотреть даже стихийные бедствия вроде пожара или наводнения.

Разные подходы

Если массивы данных у вас не превышают 4,7 Гбайт, то вы можете использовать перезаписываемые DVD+RW или защищённые DVD-RAM. Если же нужны носители больших объёмов, то единственным выбором остаются жёсткие диски и стримеры, которые способны справиться с объёмами в сотни гигабайт. Однако жёсткие диски слишком тяжелы для частого использования и слишком чувствительны к физическим воздействиям (к падению на землю, ударам и т.д.). С другой стороны, жёсткие диски обладают высокой скоростью передачи.

Собственно, поэтому продуманная стратегия резервирования данных по-прежнему опирается на ленточные приводы. По крайней мере, один раз в неделю необходимо делать резервирование на ленту и хранить её в домашнем сейфе или даже в банковской ячейке. Также не следует использовать ленты чаще, чем рекомендует производитель.

Цель подобного подхода заключается не только в резервировании существующих данных, но и в создании слепка рабочей системы. В результате, пользователь всегда сможет откатиться назад или использовать слепок как эталон, если данные были модифицированы.

На рынке присутствует множество стандартов систем хранения, от "крохотных" до "просто огромных" - всё зависит от ваших потребностей. Посмотрите на разнообразие форматов и технологий: QIC, Travan, 8 mm, Mammoth, AIT, DLT, SDLT, ADR, LTO и VXA. Но не переживайте. Мы обсудим все форматы и поможем найти подходящее решение для вашего случая.

Работает ли аварийное восстановление данных на самом деле?

Какой смысл в ежедневном резервировании данных на протяжении нескольких месяцев, если вы их не сможете полностью восстановить в случае аварии? Правило любой системы безопасности гласит: всегда проводите учебные тревоги, чтобы "пожар" не застал вас врасплох. Будет ли работать массив RAID 5 так, как должен? Уберите жёсткий диск из массива и проверьте сохранность данных после процесса реконструкции. То же самое относится и к решениям на стримерах: проведите тест и полностью восстановите данные - получите ли вы желаемый результат?

Учитывая современные сложные программы резервирования, необходимо проверить полное восстановление компьютера, включая операционную систему. Помните, что резервирование только тогда имеет смысл, когда оно позволяет надёжно выполнить восстановление данных.


Вчера и сегодня: кассета SLR75 по сравнению с Mini-QIC80. Подобный размер кассеты SLR обусловлен, по большей части, длиной плёнки, которая может изменяться от 94 до 351 метра.


Спиральная развёртка позволяет наиболее оптимально использовать имеющееся "пространство", однако она медленнее работает и больше подвержена дефектам, чем линейные варианты. Источник: Exabyte.

В целом, существует два способа записи на магнитную ленту: линейный, при котором данные записываются от начала плёнки до её конца, или диагональный способ - так называемая "спиральная развёртка". В любом случае на ленту записываются несколько параллельных дорожек, чтобы наиболее полно использовать имеющуюся пропускную способность.

Спиральная развёртка пришла в стримеры из мира видеомагнитофонов и используется, чаще всего, в системах DAT, AIT и VXA. Поскольку постоянную скорость чтения или записи обеспечить практически невозможно, устройства со спиральной развёрткой намного медленнее своих линейных собратьев (из-за непрерывной синхронизации с меняющимися потоками данных). Но зато они могут более эффективно использовать доступное пространство ленты, что приводит к большей ёмкости данных у устройств со спиральной развёрткой.

Наподобие систем VHS, лента выходит из кассеты и натягивается вокруг шпинделя, на котором размещаются головки чтения и записи. Вполне естественно, что эта процедура оказывает механическое воздействие на ленту - причём большее, чем в устройствах линейной записи, где лента намертво "сидит" в кассете.



Программа Retrospect от Dantz даёт слишком оптимистичные показатели.

При выборе стримера следует очень и очень внимательно присмотреться к ёмкости кассет, поскольку производители часто оценивают свои решения с учётом сжатия 2:1. Иногда они могут завысить коэффициент сжатия даже до 2,5:1. Однако следует помнить, что подобную степень сжатия можно получить только на хорошо пакуемых данных: офисных документах, базах данных или исходных текстов программы. Чем больше мультимедийных файлов вы будете резервировать, тем меньше будет общий коэффициент сжатия.

Уже запакованные файлы JPG или MPEG вряд ли можно сжать ещё сильнее, в отличие от картинок TIF или файлов WAV. Если вы сомневаетесь, всегда следует учитывать меньшую физическую ёмкость.

Стримеры Mini-QIC/ флоппи

Формат QIC появился ещё в далёком 1972 году, когда производителю 3M понадобилось решение для хранения больших массивов данных. В то время людей ещё не особо волновали проблемы резервирования - первоочередной потребностью были именно накопители с большими объёмами. Напомним, что жёсткие диски тогда были невероятно дороги, и их коммерческого использования ещё не было. Например, проект IBM Winchester Project ("Винчестер"), начатый в 1973 году, привёл к появлению жёсткого диска на 5 Мбайт только в 1979 году. По причине относительно низкой в то время цены устройств, стандарт QIC получил широкое признание.

Вообще, аббревиатура QIC расшифровывается как Quarter Inch Cartridge (картридж в четверть дюйма), что обозначает ширину магнитной ленты. Наиболее распространились в те годы компакт-кассеты DC2080 и DC2120. Кроме того, тогда существовало много стандартов плёнки, которая содержала от 20 до 50 дорожек. В начале 1990-х стали популярны стримеры QIC с интерфейсом для контроллера дисковода, хотя они и не слишком радовали потребителей своей производительностью (около 35 кбайт/с). Отметим, что сегодня любое DSL-подключение к Интернету работает и то быстрее.

К сожалению, проблемы совместимости между разными устройствами привели к тому, что флоппи-стримеры подходили только для полупрофессионального применения.

Travan

Стандарт Travan также базируется на QIC и представляет собой попытку внести ясность в хаос из более 120 стандартов QIC. Технически ленты Travan намного превосходят варианты QIC, поскольку они были специально разработаны для долговременного хранения и высокой надёжности. Но по этой же причине кассеты Travan стоят дороже.

TR-1 TR-2 TR-3 TR-4 TR-5 TR-6
Ёмкость 400 Мбайт 800 Мбайт 1,6 Гбайт 4 Гбайт 10 Гбайт 20 Гбайт
Максимальная скорость чтения 125 кбайт/с 125 кбайт/с 250 кбайт/с 1,16 Мбайт/с 1,83 Мбайт/с 4 Мбайт/с
Число дорожек 36 50 50 72 108 144

С введением первого стандарта Travan ленты сразу же стали существенно длиннее, в результате чего кассеты Travan оказались несколько больше Mini-QIC. Если вы встретите сокращение NS, то оно относится к Travan-системам от Imation, которые отличаются от 3M-Travan по аппаратному сжатию. Хорошие стримеры Travan поддерживают спецификации протокола SCSI, что позволяет относительно быстро получать доступ к содержимому кассеты.

DAT

DAT расшифровывается как Digital Audio Tape (цифровая аудио-кассета). Но на ленту записывается отнюдь не музыка, а данные в формате DDS (Digital Data Storage). Плёнка DAT имеет ширину 4 мм и, в отличие от QIC и Travan, использует спиральную развёртку. Поэтому стримеры DAT нельзя назвать очень быстрыми, но со своей задачей резервирования больших объёмов данных они справляются нормально. К тому же, цены на них отличаются от устройств QIC и Travan минимум в два раза.

Стандарт Ёмкость Максимальная скорость чтения
DDS 2 Гбайт 550 кбайт/с
DDS-1 2 Гбайт 1,1 Гбайт/с
DDS-2 4 Гбайт 1,1 Мбайт/с
DDS-3 12 Гбайт 2,2 Мбайт/с
DDS-4 20 Гбайт 4,8 Мбайт/с

Самая плохая особенность DAT заключается в высокой чувствительности. Сложный маршрут извлечения плёнки из кассеты и немалые силы трения (они создаются от соприкосновения шпинделя с плёнкой) приводят к износу и старению. Кроме того, головки чтения и записи быстро сбиваются с позиций, что приводит к возникновению частых ошибок.

8 mm / Mammoth / AIT

Магнитные ленты шириной 8 мм изначально были разработаны для видео. Подобно DAT, 8-мм плёнка тоже задействует спиральную развёртку, хотя она обеспечивает намного большую ёмкость.

8-мм плёнку используют два формата: Mammoth от Exabyte и AIT, решение от Sony и Seagate.

Стандарт Ёмкость Максимальная скорость чтения
8 mm 3,5 Гбайт 533 кбайт/с
8 mm 5 Гбайт 1 Мбайт/с
8 mm 7 Гбайт 1 Мбайт/с
8 mm 7 Гбайт 2 Мбайт/с
AIT-1 35 Гбайт 4 Мбайт/с
AIT-2 50 Гбайт 6 Мбайт/с
AIT-3 100 Гбайт 12 Мбайт/с
S-AIT 500 Гбайт 30 Мбайт/с
Mammoth 20 Гбайт 6 Мбайт/с
Mammoth 2 60 Гбайт 12 Мбайт/с

Помимо высокой ёмкости, ключевым преимуществом систем AIT можно считать дополнительный чип памяти в кассете под названием MIC (Memory in Cassette - "память в кассете"), который содержит, своего рода, таблицу содержания кассеты. В результате отпадает потребность в многократных процессах поиска - стример может сразу же переходить на нужную позицию. В то же время, приводам AIT не нужно считывать секторную информацию с ленты. Они точно высчитывают позицию по информации MIC. И ещё эта функция помогает гарантировать, что используется именно нужная плёнка.

SLR

Аббревиатура SLR расшифровывается как Scalable Linear Recording (линейная запись с масштабированием). Стандарт использует надёжный дизайн с минимумом движущихся частей, что позволяет гарантировать долговременную надёжность использования. С технической точки зрения, SLR базируется на стандартах QIC и ADR (см. описание ниже), с использованием нескольких головок. Предварительно записанные служебные дорожки позволяют точно позиционировать головки. К тому же, Tandberg подчёркивает способность выдерживать перепады температур и влажности.

Ёмкость Максимальная скорость чтения
SLR3 1,2 Гбайт 300 кбайт/с
SLR4 2,5 Гбайт 300 кбайт/с
SLR5 4 Гбайт 380 кбайт/с
SLR7 20 Гбайт 3 Мбайт/с
SLR50 25 Гбайт 2 Мбайт/с
SLR60 30 Гбайт 4 Мбайт/с
SLR75 38 Гбайт 4 Мбайт/с
SLR100 50 Гбайт 5 Мбайт/с
SLR140 70 Гбайт 6 Мбайт/с

DLT

Уже по расшифровке аббревиатуры DLT (Digital Linear Tape - лента для цифровой записи с последовательным доступом) видно, что здесь используется линейный способ записи. Ширина ленты составляет полдюйма, а запись ведётся попарно, дорожка за дорожкой. Каждая из 128 или 208 дорожек имеет такую же длину, что и вся лента. После перестройки головок процесс продолжается в обратном направлении.

Технология стримера DLT существенно отличается от других: здесь лента тоже раскручивается с одной бобины перед тем, как её намотает другая бобина. Однако целевая бобина находится не в кассете, а является частью привода. Благодаря хитрой прокладке ленты трение сводится к минимуму, поэтому плёнка никогда не испытывает сильных нагрузок. В результате износ кассет DLT минимален, хотя он всё же сильнее, например, чем у SLR.

В отличие от других форматов, DLT имеет средства автоматической очистки и использует специальные электронные компоненты для обеспечения продолжительного времени работы.

Стандарт Ёмкость Максимальная скорость чтения
DLT2000 15 Гбайт 1,25 Мбайт/с
DLT4000 20 Гбайт 1,5 Мбайт/с
DLT7000 35 Гбайт 5 Мбайт/с
DLT8000 40 Гбайт 6 Мбайт/с

Super DLT

Стандарт SDLT разработан для достижения единственной цели - ещё больших ёмкостей. Благодаря комбинации оптического и магнитного способов записи (LGRT - Laser Guided Magnetic Recording - магнитная запись с лазерной наводкой), он обеспечивает высокую точность.

SDLT 220 SDLT 320 SDLT 600 SDLT 1200 SDLT 2400
Ёмкость 110 Гбайт 160 Гбайт 300 Гбайт 600 Гбайт * 1,2 Тбайт **
Максимальная скорость чтения 11 Мбайт/с 16 Мбайт/с 36 Мбайт/с 50 Мбайт/с 100 Мбайт/с
Картридж SDLT I SDLT I SDLT II SDLT III SDLT IV
* 2005, ** 2006

Для получения дополнительной информации обратитесь на www.dlttape.com .

ADR

Стандарт ADR (Advanced Digital Recording - расширенная цифровая запись) продвигается Philips и подразделением On-Stream. Уникальной особенностью этой технологии с использованием 8-мм плёнки является одновременная запись/чтение восьми из 192 дорожек данных, что обеспечивает высокую скоростью передачи при низкой скорости движения ленты.

В итоге мы получаем замечательный побочный эффект - относительно низкий механический износ. К тому же, коррекция ошибок ECC может применяться как горизонтально, так и вертикально. К примеру, на плёнке может быть испорчено 24 дорожки из 192, но данные при этом не потеряются.

Без сжатия ленты ADR способны хранить до 25 Гбайт. В будущем планируется увеличить ёмкость.

Потенциал по ёмкости Потенциал по скорости чтения
Сегодня 25 Гбайт 2 Мбайт/с
Длина плёнки 2x Скорость плёнки 3,6x
Ширина плёнки 3x Параллелизация 3x
Плотность дорожек 4x Плотность дорожек 3x
Битовая плотность 3x Битовая плотность 3x
Максимум (прибл.) 3,6 Тбайт Максимум (прибл.) 130 Мбайт/с

LTO

Стандарт LTO (Linear Tape Open) был разработан в качестве альтернативы DLT. Линейная запись и множество технических особенностей делают стандарт LTO весьма привлекательным, причём базируется он на надёжной технологии.

Основные итерации стандарта - это Accelis и Ultrium, которые можно легко лицензировать. Ultrium обеспечивает впечатляюще высокую ёмкость и скорость передачи данных.

Ultrium-1 Ultrium-2 Ultrium-3 Ultrium-4
Ёмкость 100 Гбайт 200 Гбайт 400 Гбайт 800 Гбайт
Скорость чтения 20 Мбайт/с 40 Мбайт/с 80 Мбайт/с 160 Мбайт/с

Любая современная компания считает интеллектуальную собственность своим капиталом. Для бизнеса в любой отрасли существенен быстрый и надежный доступ к критическим данным. Результаты исследований ученых Техасского университета показали, что более 90% компаний, переживших полную (или катастрофическую) потерю данных, так и не смогли оправиться от потрясения и вернуться на рынок.

Не только в крупных корпорациях, но и на предприятиях малого бизнеса хорошо понимают необходимость резервного копирования и восстановления информации. В системах масштаба предприятия и сетях крупных департаментов, в небольших компаниях и у индивидуальных пользователей одинаковым успехом пользуются потоковые накопители, или стримеры. В основе их конструкции лежит лентопротяжный механизм, работающий в инерционном режиме. Накопители на магнитной ленте применяются вместе с компьютерами еще с начала 50-х годов - именно тогда они стали приходить на смену "бумажным" носителям информации - перфолентам и перфокартам. Немаловажный фактор, обеспечивающий столь продолжительный интерес к накопителям на магнитной ленте, - низкая стоимость хранения информации.

Основная проблема при использовании накопителей на магнитной ленте сегодня заключается в том, что множество таких устройств использует несовместимые друг с другом форматы записи данных на магнитной ленте. Это часто затрудняет не только выбор конкретного накопителя, но и обмен данными при его эксплуатации. Предпринято немало усилий для решения этой проблемы, но в целом можно констатировать, что кардинальных перемен пока не произошло (хотя некий прогресс в этом направлении есть).

Наиболее широко сегодня применяются такие технологии, как Travan, DLT (Digital Linear Type), DAT-DDS (Digital Audio Tape-Digital Data Storage), LTO (Linear Tape Open), Mammoth и AIT (Advanced Intelligent Tape). Для обоснованного выбора системы резервного копирования надо ясно представлять себе достоинства и недостатки разных устройств, которые во многом определяются емкостью системы, ее быстродействием, надежностью и ценой.

Основные стимулы к повышению производительности ленточных устройств среднего и старшего класса - это широкое использование Интернета и распространение корпоративных интрасетей, увеличение числа серверов (нужных, чтобы обеспечить рост этих сетей), а также ужесточение требований к хранению информации и ее восстановлению в случае аварий. Спрос на системы резервного копирования и хранения данных особенно подстегивается все более активным использованием таких приложений, как мультимедиа, видео по запросу, звуковое информационное наполнение, обработка изображений и т.п.

Прежде чем обсудить конкретные технологии, заметим, что применяются два метода записи на магнитную ленту: наклонный и линейный серпантинный. В системах наклонной записи несколько считывающих/записывающих головок размещают на вращающемся барабане, установленном под углом к вертикальной оси (аналогичная схема применяется в бытовой видеоаппаратуре). Движение ленты при записи/чтении возможно только в одном направлении. В системах линейной серпантинной записи считывающая/записывающая головка при движении ленты неподвижна. Данные на ленте записываются в виде множества параллельных дорожек (серпантина). Головка размещается на специальной подставке; по достижении конца ленты она сдвигается на другую дорожку. Движение ленты при записи/чтении идет в обоих направлениях. На самом деле таких головок обычно устанавливается несколько, чтобы они обслуживали сразу несколько дорожек (они образуют несколько каналов записи/чтения).

Технология Travan

Технология Travan, разработанная корпорацией 3М, а ныне перешедшая к ее подразделению, компании Imation (http://www.imation.com), стала новой ступенью развития устройств, базирующихся на стандартах QIC (Quarter Inch Committee). В 1983 г. появились первые приводы, базирующиеся на стандарте QIC-02. Картриджи этих устройств могли хранить 60 Мбайт информации на 300 футах (примерно 90 м) ленты. Стандарты QIC определяют интерфейс между компьютером и стримером, формат ленты, необходимое количество головок, методы кодирования, коды и алгоритмы коррекции данных, а также SCSI-команды для накопителей, использующих этот интерфейс. Наибольшее распространение получили накопители, соответствующие стандартам QIC-40 и QIC-80. Они подключались к компьютеру через уже существующий контроллер флоппи-дисков. Форматы записи допускали как CRC-, так и ECC-кодирование, что позволяло одновременно проводить контроль и исправление ошибок при очень высокой достоверности записи данных (один ошибочный бит из ста триллионов). Стандартом для четвертьдюймовых лент стали картриджи DC6000 и DC2000.

Внутри первых картриджей Travan находилась магнитная лента длиной 228 м и шириной 0,315 дюйма (0,8 см), изготовленная из ферроксидного материала с коэрцитивной силой 550 эрстед, который обеспечивал плотность намагничивания до 14 700 переходов на дюйм. Емкость картриджа TR-1 составляла около 400 Мбайт - это более чем вдвое превышало емкость самого распространенного серийного мини-картриджа QIC-80. TR-1 обладал обратной совместимостью с QIC-80-MC. Вслед за TR-1 были выпущены картриджи TR-2 емкостью 800 Мбайт и TR-3 емкостью 1,6 Гбайт - модификации стандартных форматов QIC-3010 и QIC-3020, имеющих емкости 340 и 670 Мбайт. В 1995 г. 3М запустила в серийное производство мини-картридж TR-4 с максимальной емкостью 4 Гбайт (совместимый с QIC-3095-MC). Первые модели стримеров Travan не потребовали никаких конструкционных изменений носителей информации: в их устройстве применялась уже существовавшая электроника привода и технология изготовления головок.

Компания Imation выпускает два семейства картриджей: Travan - для накопителей настольных компьютеров и Travan NS - для стримеров серверов. Последнее семейство включает три модели: Travan NS 8, Travan NS 20 и Travan NS 36, обеспечивающие хранение 8, 20 и 36 Гбайт сжатых данных соответственно. Среди ведущих производителей Travan-накопителей можно отметить корпорации Seagate Technology (http://www.seagate.com) и Hewlett-Packard (http://www.hp.com). В частности, хорошо известны такие семейства, как Hornet и TapeStore Travan (NS) от Seagate.

Стоит отметить, что новую жизнь в QIC-накопители вдохнула корпорация Tandberg Data (http://www.tandberg.com). Она усовершенствовала многоканальную технологию линейной записи MLR (Multichannel Linear Recording) и начала выпускать накопители SLR (Scalable Linear Recording), отличающиеся более высокой плотностью записи и быстродействием. Например, подобный стример - SLR60 может хранить на ленте 30 Гбайт несжатых данных и передавать их со скоростью 4 Мбайт/с. Одно из основных преимуществ SLR-накопителей Tandberg - высокая надежность: среднее время безотказной работы составляет 300 тыс. часов при 100%-ной загрузке.

Технология DAT-DDS

По данным Dataquest, несомненный лидер в производстве устройств с технологией DAT-DDS - корпорация Hewlett-Packard. Кроме нее в консорциум производителей устройств DAT-DDS (http://www.dds-tape.com) входят такие известные компании, как Sony, Seagate Technology, Tecmar, MKE/Panasonic и Aiwa.

Основой для разработки технологии DDS послужила методика записи высококачественного звука DAT (Digital Audio Tape), поэтому подчеркнем, что DAT и DDS - вовсе не одно и то же. Для DAT-картриджей с лентой шириной 4 мм (точнее 3,81 мм) чаще всего используется формат DDS (Digital Data Storage), разработанный фирмами Sony (http://www.sony.co.jp) и Hewlett-Packard в 1987 г. Он основан на технологии Helical Scan, которая известна как наклонно-строчная запись. Обязательный в данном случае атрибут лентопротяжного механизма - блок вращающихся головок (БВГ), выполненный в виде цилиндра (барабана). В зависимости от используемого формата записи лента обертывается вокруг БВГ под некоторым углом, причем ось самого цилиндра БВГ также наклонена под небольшим углом к ленте.

Битам данных присваиваются числовые значения, после чего эти цифры транслируются в поток электронных импульсов, которые и помещаются на ленте. Эта технология во многом напоминает запись музыки на компакт-диск. Формат DDS, вообще говоря, использует лентопротяжный механизм DAT с четырьмя головками на БВГ: две головки записи и две--чтения после записи. Дорожки записываются парами (так называемыми фреймами), причем записи на дорожках частично перекрываются. Каждый фрейм содержит 8 Кбайт информации. Головки на БВГ расположены под различными азимутальными углами относительно ленты, поэтому каждая головка легко различает свою дорожку. С той же целью задействована система автоматического поиска дорожки ATF (Automatic Track Finding).

Лента обернута вокруг цилиндра БВГ под углом 90°, что уменьшает ее износ. Барабан вращается со скоростью примерно 2000 об./мин, а лента движется довольно медленно - 8,15 мм/с. Емкость картриджей зависит от версии формата DDS (см. табл. 1). Размеры всех картриджей одинаковы и составляют 5,3х7,4х1,0 см. С введением версии DDS/DC (DDS/Data Compression) форматы допускают сжатие данных.

Таблица 1. Характеристики форматов DDS

Формат DDS-1 DDS/DC DDS-2 DDS-3 DDS-4
Год выпуска 1989 1991 1993 1995 1998-99
Исходная емкость, Гбайт 1,3 2 4 12 20
Емкость при сжатии, Гбайт 2,6 4 8 24 40
Длина ленты, м 60 90 120 125 155
Скорость передачи данных, Мбайт/с 0,18 0,18 0,36-0,72 0,72-1,5 3-6

В накопителях DDS-4 технологические улучшения коснулись не только блока вращающихся головок записи-чтения, но и носителя. Надо особо отметить, что во всех стримерах, применяющих технологию Helical Scan, есть возможности верификации данных типа "чтение после записи" и коррекции ошибок непосредственно во время записи.

Дальнейшего развития технология DAT-DDS уже, видимо, не получит. Все ведущие производители, включая Hewlett-Packard, Sony и Seagate Technology, заявили о том, что разработка продуктов категории DDS-5 не планируется.

Технология DLT

Вместе с машиной MicroVAX II от DEC в 1995 г. была анонсирована система резервного копирования, сменным носителем в которой служил небольшой картридж, имевший, в отличие от известных уже картриджей QIC, только одну катушку с лентой. Роль приемной катушки исполнял механизм самого привода. Это позволило сэкономить место в картридже и значительно увеличить длину ленты. Устройство получило название ТК50; на одном его носителе могло храниться 94 Мбайт информации. Но только накопитель TF85, разработанный в 1989 г. инженерами Digital Equipment, можно было назвать первой DLT-системой. Данное устройство, впоследствии названное DLT260, обеспечивало запись 2,6 Гбайт на ленте длиной 1200 футов (360 м) в картридже CompactTape III (ныне известен как DLTtape III).

Основной особенностью нового привода был запатентованный 6-роликовый ведущий механизм с блоком головок HGA (Head Guide Assembly). Он обеспечивал мягкий и плавный ход ленты с минимальным трением. Путь ленты был значительно меньше, чем на приводах с 8-миллиметровой лентой, и это снижало ее износ и повреждения. Благодаря HGA плотность записи на полудюймовой ленте была увеличена с 48 дорожек до 122.

В 1991 г. Digital выпустила привод TF86 (впоследствии названный DLT600), который на картридже DLTtape III мог хранить уже 6 Гбайт данных. Два года спустя появился накопитель, известный сегодня как DLT2000. Емкость кассеты возросла до 10 Гбайт, а скорость передачи данных достигла 1,25 Мбайт/с. Устройство было оснащено 2 Мбайт кэш-памяти.

Отметим, что магниторезистивная головка считывания представляет собой резистор, сопротивление которого меняется в зависимости от напряжения магнитного поля, причем амплитуда сигнала практически не зависит от скорости изменения поля. Это позволяет намного надежнее считывать информацию с ленты и в результате значительно повысить предельную плотность записи. Основной недостаток индуктивных головок - сильная зависимость амплитуды сигнала от скорости перемещения магнитного покрытия и высокий уровень шумов, затрудняющий обнаружение слабых сигналов. В метод же PRML (максимальное правдоподобие при неполном отклике) для считывания информации применяется ряд положений теории распознавания образов. При традиционном декодировании, когда отслеживается амплитуда, частота или фаза считываемого сигнала, эти параметры должны были значительно меняться, чтобы обеспечить надежность. В частности, при записи подряд двух или более совпадающих разрядов их приходилось специальным образом кодировать, что снижало плотность записи. В методе PRML для декодирования применяются шаблоны, с которыми сравнивается считанный сигнал. Это позволяет повысить плотность записи данных на 30-40%.

Благодаря тому, что магнитное кодирование данных происходит на одной стороне ленты, а лазерное кодирование служебной информации - на другой (для позиционирования ленты и контроля скорости), для управления перемещением ленты не требуется отдельной магнитной головки. Головки объединяются в группы (кластеры), резко увеличивая возможную емкость ленты.

Особый фактор - встроенное микропрограммное обеспечение. Оно управляет такими важными функциями и параметрами, как коммуникации по шине SCSI, обнаружение и коррекция ошибок, сжатие данных, скорость ленты, форматирование данных. Кроме того, микропрограммное обеспечение реализует функции протокола SCSI (включая сообщения, команды и параметры).

На одном картридже для модели Super DLTtape 220N хранится 110 Гбайт данных в неуплотненном виде (220 Гбайт при сжатии), а скорость передачи данных достигает 11 Мбайт/с (22 Мбайт/с при сжатии). Плотность записи обеспечивается на уровне 896 треков на дюйм. Максимальная скорость по шине SCSI в пакетном режиме - 80 Мбайт/с. Среднее время наработки на отказ при 100%-ной нагрузке составляет 250 тыс. ч. Использование технологии Super DLT обеспечивает обратную совместимость с накопителями DLT 8000, DLT 7000 и DLT 4000 и картриджами типа DLTtape IV.

Технологию DLT активно поддерживают такие компании, как Breece Hill Technologies, Compaq, Dell, Exabyte, Hewlett-Packard, IBM, StorageTek, Tandberg Data, и другие.

Технология LTO

В ноябре 1997 г. три крупнейших компании, производящих накопители на магнитной ленте, - IBM (http://www.ibm.com), Hewlett-Packard и Seagate Technology объявили о соглашении, результатом которого стало создание новой технологии для стримеров, используемых в больших компьютерных системах. Новая технология, получившая название LTO (Linear Tape Open), объединила преимущества линейных многоканальных двунаправленных форматов записи и улучшенные сервосистему, способ сжатия данных, размещение дорожек, метод коррекции ошибок, производительность и надежность. Ее основные особенности - многоканальная серпантинная запись и высокая плотность записи (до 100 Мбит/кв. дюйм).

На базе LTO-технологии созданы два формата: Ultrium (интенсивная запись) и Accelis (интенсивное чтение). В настоящее время на рынке доступны только устройства, поддерживающие первый формат. При использовании LTO-технологии полная ширина ленты делится на несколько более узких областей. Количество таких областей зависит от типа формата: для Ultrium выделяется четыре области, а для Accelis - две. Блок головок охватывает только одну из имеющихся областей и заполняет их последовательно. На верхней и нижней границах каждой области данных записывается сервоинформация. Форматы Ultrium и Accelis используют одинаковые магниторезистивные головки, сервосистемы и конструкцию отдельных механических и электронных блоков. Однако в Ultrium для большей емкости применяется более широкая лента.

Формат Ultrium использует однокатушечный картридж размером 105х102х21 мм. Это меньше, чем у любого из существующих в индустрии однокатушечных картриджей. На ленте предусмотрено место для 384 дорожек данных, которые распределены на четыре области по 96 дорожек. Скорость передачи данных не превышает 10 -- 20 Мбайт/с.

Таблица 2. Поколения форматов Ultrium

Высокая целостность данных при записи в обоих форматах достигается благодаря двухуровневой коррекции ошибок. Алгоритм контроля и коррекции ошибок обеспечивает надежное восстановление информации даже при потере данных одной из восьми дорожек. Кроме того, существует возможность чтения во время записи - RWW (Read While Write), что позволяет выполнять верификацию данных в реальном масштабе времени. Динамическая перезапись сбойных блоков обеспечивает качественное копирование информации даже при выходе из строя одной или нескольких головок. Сдвоенная сервосистема гарантирует (за счет избыточности) нормальное функционирование накопителя даже в случаях выхода из строя одной из систем или повреждения части сервоинформации, записанной на магнитной ленте.

В картриджи Ultrium и Accelis встраивается специальный модуль LTO-CM (LTO Catridge Memory), который содержит 4 Кбайт энергонезависимой памяти.

Технологии Mammoth и AIT

Первые стримеры с шириной ленты 8 мм были выполнены на базе лентопротяжных механизмов аналоговых видеомагнитофонов VCR (Video Cassette Recorder), подобных выпущенному в свое время Sony. Кроме трех головок - серво-, записи и чтения после записи - имеется отдельная головка для стирания всей информации с ленты. Барабан вращается со скоростью около 1800 об./мин, а лента движется со скоростью примерно 10 мм/с. Каждая дорожка записывается индивидуально и содержит 8 Кбайт информации. Лента обертывается вокруг БВГ больше чем наполовину. Емкость 2-часового картриджа в формате NTSC может составлять до 10 Гбайт. В среднем же одна 8-миллиметровая кассета вмещает от 5 до 7 Гбайт цифровой информации в зависимости от алгоритма сжатия и модели механизма. Первая кассета типа D8 была разработана в 1987 г. фирмой Sony.

Одной из проблем подобных устройств была не очень высокая надежность, поэтому интерес к этому формату после определенного всплеска быстро сошел на нет. Учтя эти проблемы, компания Exabyte (http://www.exabyte.com) в 1996 г. на базе данного формата разработала спецификацию Mammoth, которая поддерживала кассеты емкостью 20 Гбайт и скорость передачи данных до 3 Мбайт/с.

В конце 1999 года Exabyte выпустила накопитель Mammoth-2. На одну ленту он записывает 60 Гбайт несжатых данных и передает их со скоростью 12 Мбайт/с. При использовании средств сжатия данных емкость ленты увеличивается до 150 Гбайт, а производительность накопителя - до 30 Мбайт/с. Среднее время безотказной работы составляет не менее 300 тыс. ч. Срок службы магнитных головок этого накопителя при 100%-ной загрузке достигает 50 тыс. ч. В настоящее время компания Exabyte занята разработкой технологии Mammoth-3, реализация которой позволит хранить на одном носителе 120 Гбайт несжатых данных и обеспечит производительность 18 Мбайт/с.

Корпорация Sony, сотрудничая с Exabyte, разработала собственную технологию AIT. Она также построена на использовании 8-миллиметровых лент, однако, в отличие, например, от DAT, в ней используются барабаны большего диаметра с меньшей скоростью вращения. В картриджах AIT находится высокотехнологичная лента AME (Advanced Metal Evaporated), обеспечивающая повышенную плотность и скорость записи. Хотя ширина носителя в AIT также составляет 8 мм, накопители этого стандарта полностью несовместимы с классическими 8-миллиметровыми устройствами.

Характерная черта картриджей AIT - наличие в них встроенной памяти (Memory-In-Cassette). В MIC хранятся сведения о месторасположении на ленте пользовательских файлов, а также другая, в том числе системная, информация. Это позволяет сократить среднее время доступа к файлу.

Первая версия AIT-1 позволяла хранить на одной кассете 25 Гбайт несжатой информации при скорости обмена 3 Мбайт/с. В дальнейшем для AIT-1 стали выпускаться кассеты с большей длиной ленты, что позволило хранить 35 Гбайт несжатой информации. Современный метод сжатия данных ALDC (Adaptive Lossless Data Compression) позволяет достигнуть коэффициента сжатия 2,6:1. Объем памяти MIC в AIT-1 составляет 16 Кбайт.

Поколение накопителей AIT-2 позволяет хранить на одной кассете 50 Гбайт несжатой информации и обеспечивает производительность 6 Мбайт/с. Объем памяти MIC увеличен до 64 Кбайт. Третье поколение технологии, AIT-3 представлено сегодня накопителем Sony SDX-700C с емкостью носителя 100 Мбайт. Стоит отметить, что в отличие от классических накопителей AIT-устройства не требуют регулярной чистки благодаря встроенной системе AHC (Active Head Cleaner), которая постоянно контролирует их состояние и при необходимости автоматически включает механизм очистки.

Похожие статьи