Оборудование вычислительных сетей. Устройство и основные понятия локальной сети. Оборудование электрической сети

24.06.2020

Модель взаимосвязи открытых систем

Топология сетей

При физическом соединении двух или более компьютеров образуется компьютерная сеть . В общем случае, для создания компьютерных сетей необходимо специальное аппаратное обеспечение - сетевое оборудование и специальное программное обеспечение - сетевые программные средства.

Уже сейчас есть сферы человеческой деятельности, которые принципиально не могут существовать без сетей (например работа банков, крупных библиотек и т. д. Сети также используются при управлении крупными автоматизированными производствами, газопроводами, электростанциями и т.п. Для передачи данных компьютеры используют самые разнообразные физические каналы, которые обычно называются средой передачи .

Назначение всех видов компьютерных сетей определяется двумя функциями:

· обеспечение совместного использования аппаратных и программных ресурсов сети;

· обеспечение совместного доступа к ресурсам данных.

Например, все участники локальной сети могут совместно использовать одно общее устройство печати - сетевой принтер или, например, ресурсы жестких дисков одного выделенного компьютера - файлового сервера. Аналогично можно совместно использовать и программное обеспечение. Если в сети имеется специальный компьютер, выделенный для совместного использования участниками сети, он называется файловым сервером .

Группы сотрудников, работающих над одним проектом в рамках локальной сети, называются рабочими группами . В рамках одной локальной сети могут работать несколько рабочих групп. У участников рабочих групп могут быть разные права для доступа к общим ресурсам сети. Совокупность приемов разделения и ограничения прав участников компьютерной сети называется политикой сети . Управление сетевыми политиками называется администрированием сети . Лицо, управляющее организацией работы участников локальной компьютерной сети, называется системным администратором

1.1. Основные характеристики и классификация компьютерных сетей

По территориальной распространенности сети могут быть локальными, глобальными, и региональными.

Локальная сеть (LAN - Local Area Network) - сеть в пределах предприятия, учреждения, одной организации.

Региональная сеть (MAN - Metropolitan Area Network) - сеть в пределах города или области.

Глобальная сеть (WAN - Wide Area Network) – сеть на территории государства или группы государств.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные:

· низкоскоростные сети - до 10 Мбит/с;

· среднескоростные сети- до 100 Мбит/с;

· высокоскоростные сети - свыше 100 Мбит/с.

По типу среды передачи сети разделяются на:



· проводные (на коаксиальном кабеле, на витой паре, оптоволоконные);

· беспроводные с передачей информации по радиоканалам или в инфракрасном диапазоне.

По способу организации взаимодействия компьютеров сети делят на одноранговые и с выделенным сервером (иерархические сети).

Все компьютеры одноранговой сети равноправны. Любой пользователь сети может получить доступ к данным, хранящимся на любом компьютере.

Главное достоинство одноранговых сетей – это простота установки и эксплуатации. Главный недостаток состоит в том, что в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров и там, где вопрос защиты данных не является принципиальным.

В иерархической сети при установке сети заранее выделяются один или несколько серверов - компьютеров, управляющих обменом данных по сети и распределением ресурсов. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией .

Сервер в иерархических сетях - это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, винчестерами большой емкости и высокоскоростной сетевой картой.

Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных. К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:

1. Необходимость дополнительной ОС для сервера.

2. Более высокая сложность установки и модернизации сети.

3. Необходимость выделения отдельного компьютера в качестве сервера

По технологии использования сервера различают сети с архитектурой файл -сервер и сети с архитектурой клиент -сервер . В первой модели используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции .

В системах с архитектурой клиент-сервер обмен данными осуществляется между приложением-клиентом и приложением-сервером. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль за доступом к ресурсам и данным. Рабочая станция получает только результаты запроса .

К основным характеристикам сетей относятся:

Пропускная способность – максимальный объем данных, передаваемых сетью в единицу времени. Пропускная способность измеряется в Мбит/с.

Время реакции сети - время, затрачиваемое программным обеспечением и устройствами сети на подготовку к передаче информации по данному каналу. Время реакции сети измеряется миллисекундах.


1.2. Топология сетей

Топологией сети называется физическую или электрическую конфигурацию кабельной системы и соединений сети. В топологии сетей применяют несколько специализированных терминов:

· узел сети - компьютер, либо коммутирующее устройство сети;

· ветвь сети - путь, соединяющий два смежных узла;

· оконечный узел - узел, расположенный в конце только одной ветви;

· промежуточный узел - узел, расположенный на концах более чем одной ветви;

· смежные узлы - узлы, соединенные, по крайней мере, одним путём, не содержащим никаких других узлов.

Существует всего 5 основных типов топологии сетей:

1. Топология “Общая Шина”. В этом случае подключение и обмен данными производится через общий канал связи, называемый общей шиной:

Общая шина является очень распространенной топологией для локальных сетей. Передаваемая информация может распространяться в обе стороны. Применение общей шины снижает стоимость проводки и унифицирует подключение различных модулей. Основными преимуществами такой схемы являются дешевизна и простота разводки кабеля по помещениям. Самый серьезный недостаток общей шины заключается в ее низкой надежности: любой дефект кабеля или какого-нибудь из многочисленных разъемов полностью парализует всю сеть. Другим недостатком общей шины является ее невысокая производительность, так как при таком способе подключения в каждый момент времени только один компьютер может передавать данные в сеть. Поэтому пропускная способность канала связи всегда делится здесь между всеми узлами сети.

2. Топология “Звезда”. В этом случае каждый компьютер подключается отдельным кабелем к общему устройству, называемому концентратором , который находится в центре сети:

В функции концентратора входит направление передаваемой компьютером информации одному или всем остальным компьютерам сети. Главное преимущество этой топологии перед общей шиной - существенно большая надежность. Любые неприятности с кабелем касаются лишь того компьютера, к которому этот кабель присоединен, и только неисправность концентратора может вывести из строя всю сеть. Кроме того, концентратор может играть роль интеллектуального фильтра информации, поступающей от узлов в сеть, и при необходимости блокировать запрещенные администратором передачи.

К недостаткам топологии типа звезда относится более высокая стоимость сетевого оборудования из-за необходимости приобретения концентратора. Кроме того, возможности по наращиванию количества узлов в сети ограничиваются количеством портов концентратора. В настоящее время иерархическая звезда является самым распространенным типом топологии связей как в локальных, так и глобальных сетях.

3. Топология “Кольцо”. В сетях с кольцевой топологией данные в сети передаются последовательно от одной станции к другой по кольцу, как правило, в одном направлении:

Если компьютер распознает данные как предназначенные ему, то он копирует их себе во внутренний буфер. В сети с кольцевой топологией необходимо принимать специальные меры, чтобы в случае выхода из строя или отключения какой-либо станции не прервался канал связи между остальными станциями. Преимущество данной топологии - простота управления, недостаток - возможность отказа всей сети при сбое в канале между двумя узлами.

4. Ячеистая топология. Для ячеистой топологии характерна схема соединения компьютеров, при которой физические линии связи установлены со всеми рядом стоящими компьютерами:

В сети с ячеистой топологией непосредственно связываются только те компьютеры, между которыми происходит интенсивный обмен данными, а для обмена данными между компьютерами, не соединенными прямыми связями, используются транзитные передачи через промежуточные узлы. Ячеистая топология допускает соединение большого количества компьютеров и характерна, как правило, для глобальных сетей. Достоинства данной топологии в ее устойчивости к отказам и перегрузкам, т.к. имеется несколько способов обойти отдельные узлы.

5. Смешанная топология. В то время как небольшие сети, как правило, имеют типовую топологию - звезда, кольцо или общая шина, для крупных сетей характерно наличие произвольных связей между компьютерами. В таких сетях можно выделить отдельные произвольно подсети, имеющие типовую топологию, поэтому их называют сетями со смешанной топологией:


1.3. Модель взаимосвязи открытых систем

Основной задачей, решаемой при создании компьютерных сетей, является обеспечение совместимости оборудования по электрическим и механическим характеристикам и обеспечение совместимости информационного обеспечения (программ и данных) по системе кодирования и формату данных. Решение этой задачи относится к области стандартизации и основано на так называемой модели OSI (модель взаимодействия открытых систем - Model of Open System Interconnections). Модель OSI была создана на основе технических предложений Международного института стандартов ISO (International Standards Organization).

Согласно модели OSI архитектуру компьютерных сетей следует рассматривать на разных уровнях (общее число уровней - до семи). Самый верхний уровень - прикладной. На этом уровне пользователь взаимодействует с вычислительной системой. Caмый нижний уровень - физический. Он обеспечивает обмен сигналами между устройствами. Обмен данными в системах связи происходит путем их перемещения с верхнего уровня на нижний, затем транспортировки и, наконец, обратным воспроизведением на компьютере клиента в результате перемещения с нижнего уровня на верхний.

Для обеспечения необходимой совместимости на каждом из семи возможных уровней архитектуры компьютерной сети действуют специальные стандарты, называемые протоколами . Они определяют характер аппаратного взаимодействия компонентов сети (аппаратные протоколы ) и характер взаимодействия программ и данных (программные протоколы ). Физически функции поддержки протоколов исполняют аппаратные устройства (интерфейсы ) и программные средства (программы поддержки протоколов). Программы, выполняющие поддержку протоколов, также называют протоколами.

Каждый уровень архитектуры подразделяется на две части:

Спецификацию услуг;

Спецификацию протокола.

Спецификация услуг определяет, что делает уровень, а спецификация протокола - как он это делает, причем каждый конкретный уровень может иметь более одного протокола.

Рассмотрим функции, выполняемые каждым уровнем программного обеспечения:

1. Физический уровень осуществляет соединения с физическим каналом, так, отсоединения от канала, управление каналом. Определяется скорость передачи данных и топология сети.

2. Канальный уровень добавляет в передаваемые массивы информации вспомогательные символы и контролирует правильность передаваемых данных. Здесь передаваемая информация разбивается на несколько пакетов или кадров. Каждый пакет содержит адреса источника и места назначения, а также средства обнаружения ошибок.

3. Сетевой уровень определяет маршрут передачи информации между сетями, обеспечивает обработку ошибок, а так же управление потоками данных. Основная задача сетевого уровня - маршрутизация данных (передача данных между сетями).

4. Транспортный уровень связывает нижние уровни (физический, канальный, сетевой) с верхними уровнями, которые реализуются программными средствами. Этот уровень разделяет средства формирования данных в сети от средств их передачи. Здесь осуществляется разделение информации по определенной длине и уточняется адрес назначения.

5. Сеансовый уровень осуществляет управление сеансами связи между двумя взаимодействующими пользователями, определяет начало и окончание сеанса связи, время, длительность и режим сеанса связи, точки синхронизации для промежуточного контроля и восстановления при передаче данных; восстанавливает соединение после ошибок во время сеанса связи без потери данных.

6. Представительский - управляет представлением данных в необходимой для программы пользователя форме, производит компрессию и декомпрессию данных. Задачей данного уровня является преобразование данных при передаче информации в формат, который используется в информационной системе. При приеме данных данный уровень представления данных выполняет обратное преобразование.

7. Прикладной уровень взаимодействует с прикладными сетевые программами, обслуживающими файлы, а также выполняет вычислительные, информационно-поисковые работы, логические преобразования информации, передачу почтовых сообщений и т.п. Главная задача этого уровня - обеспечить удобный интерфейс для пользователя.

На разных уровнях обмен происходит различными единицами информации: биты, кадры, пакеты, сеансовые сообщения, пользовательские сообщения.

1.4. Сетевое оборудование

Основными компонентами сети являются рабочие станции , серверы , передающие среды (кабели ) и сетевое оборудование .

Рабочими станциями называются компьютеры сети, на которых пользователями сети реализуются прикладные задачи.

Серверы сети - это аппаратно-программные системы, выполняющие функции управления распределением сетевых ресурсов общего доступа. Сервером может быть любой подключенный к сети компьютер, на котором находятся ресурсы, используемые другими устройствами локальной сети. В качестве аппаратной части сервера используется достаточно мощные компьютеры.

Сети можно создавать с любым из типов кабеля.

1. Витая пара (TP - Twisted Pair)– это кабель, выполненный в виде скрученной пары проводов. Он может быть экранированным и неэкранированным. Экранированный кабель более устойчив к электромагнитным помехам. Витая пара наилучшим образом подходит для малых учреждений. Недостатками данного кабеля является высокий коэффициент затухания сигнала и высокая чувствительность к электромагнитным помехам, поэтому максимальное расстояние между активными устройствами в ЛВС при использовании витой пары должно быть не более 100 метров.

2. Коаксиальный кабель состоит из одного цельного или витого центрального проводника, который окружен слоем диэлектрика. Проводящий слой алюминиевой фольги, металлической оплетки или их комбинации окружает диэлектрик и служит одновременно как экран против наводок. Общий изолирующий слой образует внешнюю оболочку кабеля.

Коаксиальный кабель может использоваться в двух различных системах передачи данных: без модуляции сигнала и с модуляцией. В первом случае цифровой сигнал используется в таком виде, в каком он поступает из ПК и сразу же передается по кабелю на приемную станцию. Он имеет один канал передачи со скоростью до 10 Мбит/сек и максимальный радиус действия 4000 м. Во втором случае цифровой сигнал превращают в аналоговый и направляют его на приемную станцию, где он снова превращается в цифровой. Операция превращения сигнала выполняется модемом; каждая станция должна иметь свой модем. Этот способ передачи является многоканальным (обеспечивает передачу по десяткам каналов, используя для этого всего лишь один кабель). Таким способом можно передавать звуки, видео сигналы и другие данные. Длина кабеля может достигать до 50 км.

3. Оптоволоконный кабель является более новой технологией, используемой в сетях. Носителем информации является световой луч, который модулируется сетью и принимает форму сигнала. Такая система устойчива к внешним электрическим помехам и таким образом возможна очень быстрая, секретная и безошибочная передача данных со скоростью до 2 Гбит/с. Количество каналов в таких кабелях огромно. Передача данных выполняется только в симплексном режиме, поэтому для организации обмена данными устройства необходимо соединять двумя оптическими волокнами (на практике оптоволоконный кабель всегда имеет четное, парное кол-во волокон). К недостаткам оптоволоконного кабеля можно отнести большую стоимость, а также сложность подсоединения.

4. Радиоволны в микроволновом диапазоне используются в качестве передающей среды в беспроводных локальных сетях, либо между мостами или шлюзами для связи между локальными сетями. В первом случае максимальное расстояние между станциями составляет 200 - 300 м, во втором - это расстояние прямой видимости. Скорость передачи данных - до 2 Мбит/с.

Беспроводные локальные сети считаются перспективным направлением развития ЛС. Их преимущество - простота и мобильность. Также исчезают проблемы, связанные с прокладкой и монтажом кабельных соединений - достаточно установить интерфейсные платы на рабочие станции, и сеть готова к работе.

Выделяют следующие виды сетевого оборудования.

1. Сетевые карты – это контроллеры, подключаемые в слоты расширения материнской платы компьютера, предназначенные для передачи сигналов в сеть и приема сигналов из сети.

2. Терминаторы - это резисторы номиналом 50 Ом, которые производят затухание сигнала на концах сегмента сети.

3. Концентраторы (Hub ) – это центральные устройства кабельной системы или сети физической топологии "звезда", которые при получении пакета на один из своих портов пересылает его на все остальные. В результате получается сеть с логической структурой общей шины. Различают концентраторы активные и пассивные. Активные концентраторы усиливают полученные сигналы и передают их. Пассивные концентраторы пропускают через себя сигнал, не усиливая и не восстанавливая его.

4. Повторители (Repeater )- устройства сети, усиливает и заново формирует форму входящего аналогового сигнала сети на расстояние другого сегмента. Повторитель действует на электрическом уровне для соединения двух сегментов. Повторители ничего распознают сетевые адреса и поэтому не могут использоваться для уменьшения трафика.

5. Коммутаторы (Switch ) - управляемые программным обеспечением центральные устройства кабельной системы, сокращающие сетевой трафик за счет того, что пришедший пакет анализируется для выяснения адреса его получателя и соответственно передается только ему.

Использование коммутаторов является более дорогим, но и более производительным решением. Коммутатор обычно значительно более сложное устройство и может обслуживать одновременно несколько запросов. Если по какой-то причине нужный порт в данный момент времени занят, то пакет помещается в буферную память коммутатора, где и дожидается своей очереди. Построенные с помощью коммутаторов сети могут охватывать несколько сотен машин и иметь протяженность в несколько километров.

6. Маршрутизаторы (Router )- стандартные устройства сети, работающие на сетевом уровне и позволяющее переадресовывать и маршрутизировать пакеты из одной сети в другую, а также фильтровать широковещательные сообщения.

7. Мосты (Bridge )- устройства сети, которое соединяют два отдельных сегмента, ограниченных своей физической длиной, и передают трафик между ними. Мосты также усиливают и конвертируют сигналы для кабеля другого типа. Это позволяет расширить максимальный размер сети, одновременно не нарушая ограничений на максимальную длину кабеля, количество подключенных устройств или количество повторителей на сетевой сегмент.

8. Шлюзы (Gateway ) - программно-аппаратные комплексы, соединяющие разнородные сети или сетевые устройства. Шлюзы позволяет решать проблемы различия протоколов или систем адресации. Они действует на сеансовом, представительском и прикладном уровнях модели OSI.

9. Мультиплексоры – это устройства центрального офиса, которое поддерживают несколько сотен цифровых абонентских линий. Мультиплексоры посылают и получают абонентские данные по телефонным линиям, концентрируя весь трафик в одном высокоскоростном канале для передачи в Internet или в сеть компании.

10. Межсетевые экраны (firewall, брандмауэры) - это сетевые устройства, реализующие контроль за поступающей в локальную сеть и выходящей из нее информацией и обеспечивающие защиту локальной сети посредством фильтрации информации. Большинство межсетевых экранов построено на классических моделях разграничения доступа, согласно которым субъекту (пользователю, программе, процессу или сетевому пакету) разрешается или запрещается доступ к какому-либо объекту (файлу или узлу сети) при предъявлении некоторого уникального, присущего только этому субъекту, элемента. В большинстве случаев этим элементом является пароль. В других случаях таким уникальным элементом является микропроцессорные карточки, биометрические характеристики пользователя и т. п. Для сетевого пакета таким элементом являются адреса или флаги, находящиеся в заголовке пакета, а также некоторые другие параметры. Таким образом, межсетевой экран - это программный и/или аппаратный барьер между двумя сетями, позволяющий устанавливать только авторизованные межсетевые соединения. Обычно межсетевые экраны защищают соединяемую с Internet корпоративную сеть от проникновения извне и исключает возможность доступа к конфиденциальной информации.

Локальная вычислительная сеть - это понятие, знакомое многим не понаслышке. Практически каждое предприятие использует эту технологию, поэтому можно утверждать, что каждый человек так или иначе сталкивался с ней. Локальные сети существенно ускорили производственные процессы, тем самым дав резкий скачок дальнейшему их применению по всему земному шару. Все это позволяет прогнозировать дальнейший рост и развитие подобной системы передачи данных, вплоть до внедрения ЛВС на каждом, даже самом небольшом предприятии.

Понятие локальной сети

Локальная вычислительная сеть представляет собойнекое количество компьютеров, соединенных между собой специальным оборудованием, позволяющим осуществлять полноценный обмен информацией между ними. Важной особенностью этого вида передачи данных является относительно небольшая территория размещения узлов связи, то есть самих вычислительных машин.

Локальные сети не только существенно облегчают взаимодействие между пользователями, но и выполняют некоторые другие функции:

  • Упрощают работу с документацией. Сотрудники могут редактировать и просматривать файлы на своем рабочем месте. При этом надобность в коллективных собраниях и совещаниях отпадает, что экономит драгоценное время.
  • Позволяют работать над документами совместно с коллегами, когда каждый находится за своим компьютером.
  • Дают возможность доступа к приложениям, установленным на сервере, что позволяет экономить свободное пространство на установленном жестком диске.
  • Экономят пространство на жестком диске, позволяя сохранять документы на главном компьютере.

Виды сетей

Локальная вычислительная сеть может быть представлена двумя моделями: одноранговой сетью и иерархической. Различаются они способами взаимодействия узлов связи.

Одноранговая сеть основана на равноправии всех машин, а данные распределены между каждой из них. По сути, пользователь одного компьютера может получить доступ к ресурсам и информации другого. Эффективность работы одноранговой модели напрямую зависит от числа рабочих узлов, а уровень ее безопасности неудовлетворителен, что вкупе с достаточно сложным процессом управления делает такие сети не слишком надежными и удобными.

Иерархическая модель включает в себя один (или больше) главный сервер, где хранятся и обрабатываются все данные, и несколько узлов-клиентов. Этот тип сетей используется гораздо чаще первого, имея преимущество в быстродействии, надежности и безопасности. Однако скорость работы такой ЛВС во многом зависит от сервера, что при определенных условиях можно считать недостатком.

Составление технических требований

Проектирование локальной вычислительной сети представляет собой достаточно сложный процесс. Начинается он с разработки технического задания, которое следует тщательно продумать, так как недочеты в нем грозят последующими трудностями в построении сети и дополнительными финансовыми затратами. Первичное проектирование можно произвести с помощью специальных конфигураторов, которые позволят подобрать оптимальное сетевое оборудование. Особенно удобны такие программы тем, что можно исправлять различные значения и параметры непосредственно во время работы, а также составлять отчет по окончании процесса. Только после этих действий можно будет приступить к следующему этапу.

Эскизное проектирование

Этот этап заключается в сборе данных о предприятии, где планируется монтаж локально вычислительной сети, и анализе полученной информации. Определяется количество:

  • Пользователей.
  • Рабочих станций.
  • Серверных помещений.
  • Портов подключения.

Важным моментом является наличие данных о путях прокладки магистралей и планирование определенной топологии. В целом же необходимо придерживаться ряда требований, которые предъявляет стандарт IEEE 802.3. Однако, несмотря на эти правила, иногда может понадобиться произвести расчеты задержек распространения сигнала или же проконсультироваться у производителей сетевого оборудования.

Основные характеристики ЛВС

Выбирая способ размещения узлов связи, необходимо помнить об основных требованиях, предъявляемых к локальным сетям:

  • Производительности, которая сочетает в себе несколько понятий: пропускную способность, время реакции, задержку передачи.
  • Совместимости, т.е. способности подключить разное оборудование локальных вычислительных сетей и программное обеспечение.
  • Безопасности, надежности, т.е. возможности предотвращения несанкционированного доступа и полной защиты данных.
  • Масштабируемости - способности увеличения количества рабочих станций без ухудшения производительности сети.
  • Управляемости - возможности контроля главных элементов сети, профилактики и устранения проблем.
  • Прозрачности сети, заключающейся в представлении для пользователей единым вычислительным устройством.

Основные топологии локально-вычислительных сетей: достоинства и недостатки

Топология сети представляет собой физическое ее расположение, значительно влияя на основные характеристики. На современных предприятиях в основном используются три вида топологий: "Звезда", "Шина" и "Кольцо".

Топология «Звезда» является самой распространенной, имеет множество преимуществ перед остальными. Такой способ монтажа отличается высокой надежностью; если какой-либо компьютер вышел из строя (кроме сервера), на работу остальных это никак не повлияет.

Топология «Шина» представляет собой единый магистральный кабель с подключенными вычислительными машинами. Подобная организация локальной вычислительной сети экономит финансы, но не подходит для объединения большого количества компьютеров.

Топология «Кольцо» отличается низкой надежностью за счет особого расположения узлов - каждый из них соединен с двумя другими с помощью сетевых карт. Поломка одного компьютера приводит к остановке работы всей сети, поэтому такой вид топологии применяется все реже.

Рабочее проектирование сети

Локальная вычислительная сеть предприятия включает в себя также различные технологии, оборудование и кабели. Поэтому следующим этапом станет подбор всех этих элементов. Принятие решения в пользу того или иного программного либо аппаратного обеспечения определяется целью создания сети, количеством пользователей, перечнем используемых программ, размерами сети, а также ее месторасположением. В настоящее время чаще всего используются оптоволоконные магистрали, отличающиеся большой надежностью, быстродействием и доступностью.

О видах кабеля

Кабели используются в сетях для передачи сигналов между рабочими станциями, у каждого из них есть свои особенности, что необходимо учитывать при проектировании ЛВС.

  • Витая пара состоит из нескольких пар проводников, покрытых изоляцией и скрученных между собой. Невысокая цена и простота монтажа являются выгодными преимуществами, что делает такой кабель самым популярным для монтажа локальных сетей.
  • Коаксиальный кабель включает в себя два проводника, вставленных один в другой. Локальная вычислительная сеть с применением коаксиала уже не так распространена - ее заменила витая пара, однако она встречается в некоторых местах до сих пор.
  • Оптоволокно представляет собой стеклянную нить, способную переносить свет посредством его отражения от стенок. Кабель из этого материала передает данные на огромные расстояния и отличается высоким быстродействием по сравнению с витой парой и коаксиалом, однако стоит недешево.

Необходимое оборудование

Сетевое оборудование локальных вычислительных сетей включает множество элементов, наиболее часто используемыми среди которых являются:

  • Концентратор или хаб. Он объединяет некоторое количество устройств в один сегмент при помощи кабеля.
  • Коммутатор . Использует специальные процессоры для каждого порта, обрабатывающие пакеты обособленно от других портов, за счет чего обладают высокой производительностью.
  • Маршрутизатор . Это устройство, принимающее решения о рассылке пакетов на основе данных о таблицах маршрутизации и некоторых правил.
  • Модем . Широко применяется в системах связи, обеспечивая контакт с другими рабочими станциями посредством кабельной или телефонной сети.

Конечное сетевое оборудование

Аппаратное обеспечение локальной вычислительной сети в обязательном порядке включает серверную и клиентскую части.

Сервер - это мощный компьютер, имеющий высокую сетевую значимость. Функции его заключаются в хранении информации, баз данных, обслуживании пользователей и обработке программных кодов. Серверы находятся в специальных помещениях с регулируемой постоянной температурой воздуха - серверных, а корпус их оснащен дополнительной защитой от пыли, случайного выключения, а также мощной охлаждающей системой. Как правило, доступ к серверу имеют только системные администраторы либо руководители предприятия.

Рабочая станция представляет собой обычную вычислительную машину, подключенную к сети, то есть ею является любой компьютер, запрашивающий услуги у главного сервера. Для обеспечения связи на таких узлах используется модем и сетевая плата. Поскольку обычно рабочими станциями используются ресурсы сервера, клиентская часть оснащена слабыми планками памяти и жесткими дисками небольшого объема.

Программное обеспечение

Оборудование локальных вычислительных сетей не сможет полноценноосуществлять свои функции без подходящего программного обеспечения. К программной части относятся:

  • Сетевые операционные системы на серверах, составляющие основу любой сети. Именно ОС управляет доступом ко всем сетевым ресурсам, координирует маршрутизацию пакетов, разрешает конфликты устройств. В таких системах имеется встроенная поддержка протоколов TCP/IP, NetBEUI, IPX/SPX.
  • Автономные ОС, управляющие клиентской частью. Ими являются обычные операционные системы, к примеру, Windows XP, Windows 7.
  • Сетевые службы и приложения. Эти программные элементы позволяют производить различные действия: просмотр удаленной документации, печать на сетевом принтере, рассылка почтовых сообщений. Традиционные службы HTTP, POP-3, SMTP, FTP и Telnet являются основой этой категории и реализуются при помощи программного обеспечения.

Нюансы проектирования локальных сетей

Проектирование локальной вычислительной сети требует долгого и неспешного анализа, а также учета всех тонкостей. Важно предусмотреть возможность роста предприятия, что повлечет за собой и увеличение масштабов локальной сети. Составлять проект необходимо таким образом, чтобы ЛВС в любой момент была готова к подключению новой рабочей станции или другого устройства, а также модернизации любого ее узла и компонента.

Не менее важны и вопросы безопасности. Кабеля, применяемые при построении сети, должны быть надежно защищены от несанкционированного доступа, а магистрали размещены вдали от потенциально опасных мест, где они могут быть повреждены - нечаянно либо умышленно. Компоненты ЛВС, размещаемые за пределами помещения, в обязательном порядке следует заземлить и надежно закрепить.

Разработка локально вычислительной сети - это достаточно трудозатратный процесс, однако при правильном подходе и проявленной должной ответственности ЛВС будет работать надежно и стабильно, обеспечивая бесперебойную работу пользователей.

Определение 1

Сетевое оборудование – устройства, необходимые для функционирования компьютерной сети.

Сетевое оборудование разделяют на активное и пассивное оборудование.

Активное сетевое оборудование

Активное оборудовани е содержит электронные схемы, которые питаются от электрической сети или других источников и выполняют функции усиления, преобразования сигналов и др. Активное оборудование обрабатывает сигнал по специальным алгоритмам. Передача данных в сетях происходит пакетами данных, каждый из которых содержит также дополнительную техническую информацию (сведения о его источнике, цели, целостности информации и др.), которая позволяет доставить пакет по назначению. В задачи активного сетевого оборудования входит не только уловить и передать сигнал, но и обработать эту техническую информацию, вследствие чего перенаправить и распределить поступающие потоки в соответствии со встроенными в память устройства алгоритмами. Именно эта особенность и питание от сети является признаком активного оборудования.

Замечание 1

К активному оборудованию относятся следующие типы устройств:

Сетевая плата, сетевая карта, сетевой адаптер, Ethernet-адаптер – дополнительное устройство, которое устанавливается в ПК и обеспечивает его взаимодействие с другими устройствами сети.

В современных ПК и ноутбуках контроллер и компоненты, которые выполняют функции сетевой карты, в основном уже интегрированы в системные платы. Также существуют:

  • внутренние сетевые платы – отдельные платы, которые подключаются через $ISA$, $PCI$ или $PCI-E$ слот;
  • внешние сетевые платы, которые подключаются через $LPT$, $USB$ или $PCMCIA$ интерфейс (в основном используются в ноутбуках).

Рисунок 1. Внутренняя сетевая плата

Рисунок 2. Внешняя сетевая плата

Определение 2

Концентратор (активный хаб, многопортовый репитер) – сетевое устройство с $4-48$ портами, которое применяется для объединения ПК в сеть с применением кабеля «витая пара».

Концентраторы также имеют разъёмы для подключения к сетям на базе коаксиального кабеля. В настоящее время вытеснены сетевыми коммутаторами.

Рисунок 3.

Определение 3

Репитер, повторитель – сетевое оборудование, предназначенное для увеличения длины сетевого соединения путём повторения сигнала на физическом уровне.

Бывают однопортовые и многопортовые репитеры.

От концентратора отличается тем, что у репитера гораздо меньше время задержки, т.к. он, как правило, имеет два разъема для подключения кабеля. Ему не нужно где-то концентрировать сигнал и распространять на остальные выходы. Многопортовые повторители для витой пары принято называть сетевыми концентраторами (хабами), а коаксиальные – повторителями (репитерами).

Рисунок 4.

Определение 4

Мост – сетевое устройство с $2$ портами, которое предназначено для объединения нескольких сегментов компьютерной сети в единую сеть, осуществляет фильтрацию сетевого трафика, разбирая сетевые (MAC) адреса.

Рисунок 5.

Определение 5

Коммутатор (свитч) – сетевое устройство, которое предназначено для объединения нескольких узлов компьютерной сети.

Коммутаторы разработаны с использованием мостовых технологий, потому часто называются многопортовыми мостами. Отличается от концентратора, который распространяет трафик от одного подключённого устройства ко всем остальным, тем, что он передаёт данные только непосредственно получателю. Таким образом, сегменты сети, которым не предназначались данные, избавляются от необходимости их обрабатывать, что, безусловно, приводит к повышению производительности и безопасности сети. Исключением может быть широковещательный трафик для всех узлов сети и трафик для устройств, исходящий порт коммутатора которых неизвестен.

Рисунок 6.

Определение 6

Маршрутизатор (роутер) – специализированный сетевой компьютер, который имеет $2$ или больше сетевых интерфейса и пересылает пакеты данных между различными сегментами сети.

Роутер позволяет осуществлять фильтрацию сетевого трафика, разбирая сетевые ($IP$) адреса. В основном используется для объединения сетей разных типов, которые часто бывают несовместимыми по архитектуре и протоколам. Например, чтобы объединить локальные сети Ethernet и WAN-соединения. Часто роутер используют для обеспечения доступа из локальной сети в Интернет. Роутеры для домашнего использования обычно являются малопортовыми и обеспечивают подключение домашней сети ПК к каналу связи провайдера Интернета.

Рисунок 7.

Определение 7

Медиаконвертер (преобразователь среды) – сетевое устройство, которое преобразует среду распространения сигнала из одного типа в другой. Обычно средой распространения сигнала являются медные провода и оптические кабели.

Как правило, медиаконвертер имеет $2$ порта.

Рисунок 8.

Определение 8

Сетевой трансивер – устройство, которое предназначено преобразования интерфейса передачи данных $(RS232-V35$, $AUI-UTP)$. Обычно имеет $2$ порта.

Рисунок 9.

По мнению некоторых специалистов повторитель (репитер) и концентратор (хаб) не относятся к активному сетевому оборудованию, т.к. они просто повторяют сигнал, а не проводят обработку его по определенным алгоритмам. Но управляемые концентраторы все же относятся к активному сетевому оборудованию даже при таком подходе.

Пассивное сетевое оборудование

Определение 9

Пассивное сетевое оборудование – сетевое оборудование, которое не питается от электросети или других источников, и предназначено для выполнения функций распределения или снижения уровня сигналов.

Пассивным сетевым оборудованием является:

Структурированная кабельная система (СКС) состоит из набора кабелей и коммутационного оборудования, включает методику их совместного использования, которая позволяет создавать регулярные расширяемые структуры связей в локальных сетях различного назначения. СКС является физической основой инфраструктуры здания, которая позволяет свести в единую систему множество сетевых информационных сервисов разного назначения: локальные вычислительные сети и телефонные сети, системы безопасности, видеонаблюдения и т.д.

Рисунок 10.

Коммутационная панель (кросс-панель, патч-панель) – составная часть СКС, выполненная в виде панели с множеством соединительных разъёмов, которые расположены на лицевой стороне панели. На тыльной ее стороне размещены контакты, которые предназначены для фиксированного соединения с кабелями и соединены с разъёмами электрически.

Рисунок 11.

Вилка/розетка ($RG58$, $RJ45$, $RJ11$, $GG45$) Балун для коаксиальных кабелей ($RG-58$) и т.д.

В любой организации, где есть два и более компьютера, их целесообразно объединить в локальную сеть . Сеть позволяет сотрудникам быстро обмениваться между собой информацией и документами, служит для совместного использования общего доступа в интернет, оборудования и устройств хранения информации.
Для объединения компьютеров нам понадобится определенное сетевое оборудование . В сегодняшней статье мы рассмотрим, какое оборудование применяется при создании проводной локальной сети .

Сетевое оборудование – устройства, из которых состоит компьютерная сеть. Условно выделяют два вида сетевого оборудования:

  • Активное сетевое оборудование – оборудование, которое способно обрабатывать или преобразовывать передаваемую по сети информацию. К такому оборудованию относятся сетевые карты, маршрутизаторы, принт-серверы.
  • Пассивное сетевое оборудование – оборудование, служащее для простой передачи сигнала на физическом уровне. Это сетевые кабели, коннекторы и сетевые розетки, повторители и усилители сигнала.

Для монтажа проводной локальной сети нам в первую очередь понадобятся:

  • сетевой кабель и разъемы (называемые коннекторами );
  • сетевые карты – по одной в каждом ПК сети, и две на компьютере, служащем сервером для выхода в интернет;
  • устройство или устройства, обеспечивающие передачу пакетов между компьютерами сети. Для сетей из трех и более компьютеров нужно специальное устройство – , который объединяет все компьютеры сети;
  • дополнительные сетевые устройства. Простейшая сеть строится и без такого оборудования, однако при организации общего выхода в интернет, использовании общих сетевых принтеров дополнительные устройства могут облегчить решение подобных задач.

Теперь рассмотрим подробнее всё перечисленное выше оборудование:

Сетевые проводники

В эту группу входят различные сетевые кабели (витая пара, коаксиальный кабель, оптоволокно).

Коаксиальный кабель – это первый кабель, который применялся для создания сетей. От его использования при построении локальных компьютерных сетей уже давно отказались.

Оптоволоконный кабель – наиболее перспективный в плане скоростных показателей, но и более дорогой по сравнению с коаксиальным кабелем или витой парой. К тому же монтаж оптоволоконных сетей требует высокой квалификации, а для оконцовки кабеля необходимо дорогостоящее оборудование. По этим причинам широкого распространения данный вид кабеля пока не получил.

Витая пара – самый распространенный на сегодняшний день вид кабеля, применяемый для построения локальных сетей. Кабель состоит из попарно перевитых медных изолированных проводников. Типичный кабель несет в себе 8 проводников (4 пары), хотя выпускается и кабель с 4 проводниками (2 пары). Цвета внутренней изоляции проводников строго стандартны. Расстояние между устройствами, соединенными витой парой, не должно превышать 100 метров.
Существует несколько категорий кабелей типа витая пара, которые маркируются от CAT1 до CAT7. В локальных сетях стандарта Ethernet используется витая пара категории CAT5 .

Для работы с кабелем витая пара применяются коннекторы RJ-45 .

Сетевые карты

Сетевые карты отвечают за передачу информации между компьютерами сети. Сетевая карта состоит из разъема для сетевого проводника (обычно, витой пары) и микропроцессора, который кодирует/декодирует сетевые пакеты. Типичная сетевая карта представляет собой плату, вставляемую в разъем шины PCI. Практически во всех современных компьютерах электроника сетевого адаптера распаяна непосредственно на материнской плате.Вместо внутренней сетевой карты можно использовать внешний сетевой адаптер USB: Он представляет собой переходник USB-LAN и имеет схожие функции со своими PCI-аналогами. Главным достоинством сетевых карт USB является универсальность: без вскрытия корпуса системного блока такой адаптер можно подключить к любому ПК, где есть свободный порт USB. Также USB адаптер будет незаменим для ноутбука, в котором вышел из строя единственный встроенный сетевой разъем, или возникла необходимость в двух сетевых портах.

Сетевые коммутаторы

Не так давно для построения локальных сетей применялись сетевые концентраторы (или, в просторечии, хабы ). Когда сетевая карта отсылает пакет данных с компьютера в сеть, хаб просто усиливает сигнал и передает его всем участникам сети. Принимает и обрабатывает пакет только та сетевая карта, которой он адресован, остальные его игнорируют. По сути, концентратор – это усилитель сигнала.

В настоящее время в локальных сетях применяются (или, как их называют, свитчи ). Это более “интеллектуальные” устройства, где есть свой процессор, внутренняя шина и буферная память. Если концентратор просто передает пакеты от одного порта ко всем остальным, то коммутатор анализирует адреса сетевых карт, подключенных к его портам, и переправляет пакет только в нужный порт. В результате бесполезный трафик в сети резко снижается. Это позволяет намного увеличить производительность сети и обеспечивает большую скорость передачи данных в сетях с большим количеством пользователей.Коммутатор может работать на скорости 10, 100 или 1000 Мбит/с. Это, а также установленные на компьютерах сетевые карты, определяет скорость сегмента сети. Другая характеристика коммутатора – количество портов. От этого зависит количество сетевых устройств, которые можно подключить к коммутатору. Помимо компьютеров, ими являются принт-серверы, модемы, сетевые дисковые накопители и другие устройства с LAN-интерфейсом.

При проектировании сети и выборе коммутатора нужно учитывать возможность расширения сети в дальнейшем – лучше приобретать коммутатор с несколько большим количеством портов, чем число компьютеров в вашей сети на данный момент. Кроме того, один порт нужно держать свободным на случай объединения с другим коммутатором. В настоящее время коммутаторы соединяются обычной витой парой пятой категории, точно такой же, которая используется для подключения каждого компьютера сети к коммутатору.

Коммутаторы бывают двух видов – управляемые и неуправляемые. Управляемые обладают дополнительной функциональностью. Так, появляется возможность управления коммутатором с помощью веб-интерфейса, объединения нескольких коммутаторов в один виртуальный со своими правилами коммутации пакетов и т.д. Стоимость управляемых коммутаторов гораздо выше стоимости неуправляемых, поэтому в малых и средних сетях используются неуправляемые коммутаторы.

Дополнительное сетевое оборудование

В локальной сети можно использовать различное дополнительное оборудование, например, чтобы объединить две сети или обеспечить защиту сети от внешних атак. Кратко рассмотрим сетевое оборудование, которое применяется при построении компьютерных сетей.

Принт-сервер , или сервер печати – это устройство, которое позволяет подключить принтер, не имеющий собственного сетевого порта к сети. Проще говоря: принт-сервер – это коробка, к которой с одной стороны подключается принтер, а с другой стороны — сетевой провод. При этом принтер становится доступным в любое время, поскольку не привязан к какому-либо компьютеру сети. Существуют принт-серверы с разными портами: USB и LPT; так же встречаются и комбинированные варианты.Повторитель предназначен для увеличения расстояния сетевого соединения путем усиления электрического сигнала. Если вы будете использовать в локальной сети кабель витая пара длиной более 100 метров, повторители должны устанавливаться в разрыв кабеля через каждые 100 метров. Питание повторителей обычно осуществляется по тому же кабелю. С помощью повторителей можно соединить сетевым кабелем несколько отдельно стоящих зданий.Маршрутизатор (или ) – сетевое устройство, которое на основании информации о структуре сети по определенному алгоритму выбирает маршрут для пересылки пакетов между различными сегментами сети.

Маршрутизаторы применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам (например, для подсоединения Ethernet к сети WAN). Также маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя при этом функции межсетевого экрана.Маршрутизатор может быть представлен не только в аппаратном виде, но и в программном. Любой компьютер сети, на котором установлено соответствующее программное обеспечение, может служить маршрутизатором.

Цель: знакомство с оборудованием локальных компьютерных сетей, их видами и характеристиками.

Задачи урока

Обучающие:

  • познакомить студентов со структурой локальных сетей;
  • познакомить с оборудованием локальных сетей.

Развивающие:

  • формировать навыки выделения топологии сети;
  • расширение кругозора;
  • умение слушать объяснение преподавателя, вести конспект.

Воспитательные

  • прививать интерес к предмету.
  • формировать навыки самостоятельности и дисциплинированности, основ коммуникативного общения.

Оборудование: ЛВС класса, компьютер, проектор, презентация по теме.

Ход урока:

1. Введение

Занятие сопровождается демонстрацией презентации (Приложение 1).

Преподаватель: Здравствуйте! Тема сегодняшнего занятия «Оборудование локальных сетей» (Слайд1) . Записать тему в тетрадь

2. Изучение нового материала

Преподаватель: Компьютерные сети представляют собой вариант сотрудничества людей и компьютеров, обеспечивающего ускорение доставки и обработки информации. Соединенные в сеть компьютеры обмениваются информацией и совместно используют периферийное оборудование и устройства хранения информации. В зависимости от расстояния между компьютерами сети бывают: локальные, региональные и глобальные (слайд 2 ). Сегодня поговорим более подробно о локальных сетях.

Локальная компьютерная сеть - это сеть, объединяющая компьютеры, расположенные на небольших расстояниях – внутри одного здания или в нескольких зданиях, расположенных недалеко друг от друга. (слайд 3 )

Локальную сеть еще называют ЛВС - локальная вычислительная сеть, но это название скорее относится к временам, когда компьютеры называли вычислительными машинами, но иногда эта аббревиатура еще используется.

Обычно локальные сети устраиваются внутри какой-либо организации, предприятия или учебного заведения. Например, если в компьютерном классе компьютеры объединены в сеть, то эта сеть будет называться локальной.

Состав сети:

  • компьютеры,
  • сетевые кабели (каналы связи),
  • сетевое оборудование (записать в тетрадь).

Преподаватель: для чего нужны каналы связи?

Студенты: каналы связи - это физическая среда (кабели или окружающее пространство), по которой передается информация между компьютерами.

Преподаватель: Рассмотрим подробнее, какие каналы связи существуют. (слайд 6 -нарисовать схему в тетради).

(В процессе объяснения следующего материала преподавателем студенты кратко записывают в тетрадь основную информацию)

В настоящее время распространение получили два основных типа сетей с использование проводных и беспроводных каналов связи.

1. Локальные сети, коммутация в которых выполняется посредством проводного или, (редко), оптоволоконного кабеля. Такой тип сетей сочетает в себе надежность и высокую скорость работы, позволяет связывать между собой даже довольно удаленные компьютеры.

Витая пара – вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения связи проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников (слайды 7, 8, 9 ).

Коаксиальный кабель – вид электрического кабеля. Состоит из двух цилиндрических проводников, соосно вставленных один в другой. Чаще всего используется центральный медный проводник, покрытый пластиковым изолирующим материалом, поверх которого идёт второй проводник - медная оплётка или алюминиевая фольга с оплёткой из медных лужёных проволок.

Коаксиальный кабель обеспечивает передачу данных на большие расстояния, использовался при построении компьютерных сетей (пока не был вытеснен витой парой).

Используется в сетях кабельного телевидения, для систем связи, авиационной, космической техники, компьютерных сетей, бытовой техники и т. д.

Благодаря совпадению центров обоих проводников потери на излучение практически отсутствуют; одновременно обеспечивается хорошая защита от внешних электромагнитных помех. (слайды 10, 11, 12)

Оптоволоконный кабель – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения.

Оптоволокно может быть использовано как средство для дальней связи и построения компьютерной сети, вследствие своей гибкости, позволяющей даже завязывать кабель в узел. Основное преимущество этого типа кабеля – чрезвычайно высокий уровень помехозащищенности и отсутствие излучения. Несанкционированное подключение очень сложно.

Основные недостатки оптоволоконного кабеля – это сложность его монтажа, небольшая механическая прочность и чувствительность к ионизирующим излучениям. (слайд 13, 14, 15 )

2. Беспроводные локальные сети.

Этот тип сетей, чаще всего, организуется с использованием технологии WI-FI. Преимуществом таких сетей является сравнительная простота их развертывания, для радиосигнала не нужно вести провода, сверлить стены и перекрытия. Не всем может понравиться сплетение проводов на полу или короба с проводкой идущие по стенам, как это бывает в случае применения кабеля. Но у беспроводной технологии есть и свои минусы. Например, радиосигнал чувствителен к помехам, может плохо работать во время осадков. Скорость передачи данных в беспроводных сетях обычно ниже, чем в сетях с использованием кабеля.

Стандартом беспроводной связи для локальных сетей является технология Wi-Fi . Wi-Fi – (аббревиатура от "Wireless Fidelity" – беспроводная высокая точность) – это набирающий обороты формат передачи цифровых данных по радиоканалам.
Технология Wi-Fi постоянно совершенствуется, что позволяет передавать больший поток данных, обеспечивает более надежную связь и защиту.
Последнее время Wi-Fi технологиями снабжаются ноутбуки, сотовые телефоны, КПК, игровые приставки и даже компьютерные мыши.
Применения Wi-Fi достаточно универсальны, она может быть использована там, где нежелательно или нет возможности сделать проводную сеть. Wi-Fi обеспечивает подключение в двух режимах: точка-точка (для подключения двух ПК) и инфраструктурное соединение (для подключения несколько ПК к одной точке доступа). Скорость обмена данными до 11 Mбит/с при подключении точка-точка и до 54 Мбит/с при инфраструктурном соединении. Скорость зависит от количества подключенных компьютеров и от расстояния до точки доступа.

Радиоканалы Bluetooht - Bluetooth - название, данное новому стандарту современной технологии беспроводной передачи данных, использующему радиоволны на близком расстоянии, заменяющему кабель для соединения мобильных и/или установленных электронных устройств. Этот стандарт позволяет соединять друг с другом при минимальном пользовательском участии практически любые устройства: мобильные телефоны, ноутбуки, принтеры, цифровые фотоаппараты и даже холодильники, микроволновые печи, кондиционеры. Соединить можно все, что соединяется, то есть имеет встроенный микрочип Bluetooth. Изначально технология Bluetooth создавалась лишь для радиосвязи, и никаких планов по созданию беспроводных локальных сетей на ее основе не было. Но такие проекты вскоре появились, и теперь существует понятие Bluetooth-сети. это технология передачи данных на короткие расстояния (не более 10 м) и может быть использована для создания домашних сетей. Скорость передачи данных не превышает 1 Мбит/с. (слайд 17 )

Каналы связи обладают следующими характеристиками (слайды 18, 19 - записать в тетрадь ).

  • Пропускная способность (скорость передачи данных): Мбит, Кбит в секунду
  • Надежность (способность передавать информацию без искажения и потерь)
  • Стоимость

Сравнительная характеристика представлена в таблице (Приложение 2).

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной. (слайд 20 ).

Топология Шина (слайд 21 ). При построении сети по шинной схеме каждый компьютер присоединяется к общему кабелю, на концах которого устанавливаются терминаторы.

Сигнал проходит по сети через все компьютеры, отражаясь от конечных терминаторов.

Преимущества сетей шинной топологии:

  • отказ одного из узлов не влияет на работу сети в целом;
  • сеть легко настраивать и конфигурировать;
  • сеть устойчива к неисправностям отдельных узлов.

Недостатки сетей шинной топологии:

  • разрыв кабеля может повлиять на работу всей сети;
  • ограниченная длина кабеля и количество рабочих станций;
  • трудно определить дефекты соединений

Топология Кольцо (слайд 22 ). Эта топология представляет собой последовательное соединение компьютеров, когда последний соединён с первым.

Каждый компьютер работает как повторитель, усиливая сигнал и передавая его дальше.

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети. Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

Топология Звезда (слайд 23 ). Каждый компьютер подсоединяется к сети при помощи отдельного соединительного кабеля.

Преимущества сетей топологии звезда:

  • легко подключить новый ПК;
  • имеется возможность централизованного управления;
  • сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

  • отказ хаба влияет на работу всей сети;
  • большой расход кабеля.

Для соединения компьютеров в локальную сеть используется коммуникационное оборудование.

Сетевые платы (адаптер, сетевой адаптер)- это платы расширения, вставляемые в порты расширения на системной плате компьютера. О сновная функция - передача и прием информации по сети. (слайд 24 )

Коцентратор (Hub) - сетевое устройство, предназначенное для объединения компьютеров (устройств) в общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна. устройство, соединяющее параллельно компьютеры в локальной сети. Также оно играет роль повторителя, препятствующего затуханию сигнала, что позволяет увеличить максимальную общую длину кабеля между компьютерами Концентраторы – это аппаратные устройства множественного доступа, которые объединяет в одной точке отдельные физические отрезки кабеля, образуют общую среду передачи данных или физические сегменты сети. (слайд 25 )

Мост (dridge) - устройство сопряжения локальных сетей. Позволяет всем компьютерам одной локальной сети свободно работать с компьютерами другой локальной сети. (слайд 26 )

Маршрутизатор (router) - устройство, используемое для организации крупных локальных сетей. Обеспечивает трафик между локальными сетями, имеющими разные сетевые адреса. Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN-соединений, использующих протоколы xDSL, PPP, ATM, Frame relay и т. д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана. (слайд 27 )

Повторитель (repeater) - устройство, позволяющее избежать затухания сигнала при очень большой длине соединительных кабелей. Повторитель улучшает электрические характеристики сигналов и их синхронность, и за счет этого появляется возможность увеличивать общую длину кабеля между самыми удаленными в сети станциями. Обычно это устройство устанавливается в середине линии связи, что бы обеспечить устойчивую двустороннюю связь. Бывают как пассивные, так и активные повторители, а также преобразующие повторите ли, которые применяются для соединения, например, "витой пары" с оптоволокном. Роль повторителя может играть специально настроенный компьютер. (слайд 28 )

Переключатель (switch) - устройство, переключающее линию связи между всеми компьютерами, причем этот делается в реальном времени, что позволяет устранить снижение производительности из-за встречных потоков данных. Также оно играет роль повторителя, препятствующего затуханию сигнала.

При построении локальных сетей самыми распространенными являются две технологии - Ethernet и Token Ring .

Технология Ethernet была разработана Робертом Меткалфом (Bob Metcalfe) и Дэвидом Боггсом (David Boggs) в Исследовательском центре Palo Alto (PARC) американской корпорации XEROX в начале 70-х.

Первая локальная сеть, созданная по этой технологии объединила компьютеры Xerox Alto и лазерный принтер. Скорость передачи данных была 2.94 Мбит/с

В июле 1976 года Меткалф и Боггс опубликовали в журнале "Communications of the Association for Computing Machinery" (ACM) статью "Ethernet: Распределение пакетов в локальной компьютерной сети" .13 декабря 1977 года корпорация XEROX получила патент на технологию, а также название Ethernet.

В 1995 году на основе Ethernet была реализована технология, позволяющая обмениваться данными по локальной сети со скоростью 100 Мбит/с Эту технологию назвали Fast Ethernet (Быстрый Ethernet).

В 1998 году была реализована технология Gigabit Ethernet со скоростью передачи информации 1000 Мбит/с.

Технология Token Ring была разработана корпорацией IBM в 70-х годах. В настоящее время эта технология по популярности уступает только Ethernet.

Самостоятельная работа студентов по группам.

Преподаватель : Вам предлагается сравнить различные технологии локальных сетей (Ethernet, Token Ring, FDDI, ArcNet). Для этого вся группа разбивается на команды. Каждая команда занимается поиском информации об отдельной технологии. Результат представить в виде презентаций.

Студенты выполняют самостоятельную работу и затем показывают результат на проекторе.

В ходе показа презентаций все студенты заполняют таблицу.

Используемые материалы

1. Е.И.Гребенюк, Н.А.Гребенюк «Технические средства информатизации» - М.: Изд. центр «Академия», 2007

2. Л.З. Шауцукова «Информатика 10-11» - М.: «Просвещение», 2004

3. http://lessons-tva.info/ - Обучение в Интернет

Похожие статьи