Модули мастер кит с инфракрасным управлением. Использование ик для управления техникой в системах автоматизации

02.09.2019

В июньском номере Railway Modeller за 2007г. была статья про 0-масштабный макет Бодмина (Bodmin), сделанный Рэем Грином (Ray Green) с использованием инфракрасного пульта управления поездами. Неужели мои молитвы были услышаны? Я занялся поисками и спустя несколько дней навестил Стива Лейланда (Steve Leyland) из компании MicroMotive, которая расположена в Клэй-Кросс, Дербишир (Clay Cross Derbyshire), чтобы увидеть их инфракрасную систему Красная Стрела” (“Red Arrow”). Естественно, домой я вернулся с инфракрасной системой: пультом управления и сумкой деталей, необходимых для оснастки двух локомотивов.

Пульт управления

Детали - (слева направо)

  • Блок управления
  • Геркон
  • ИК-приёмник
  • Резисторы ограничительного выключателя

(внимание : аккумулятор и соединитель к нему в комплект не входят.)


Испытательная установка

Прочитав несколько раз инструкцию, я собрал испытательную установку, чтобы проверить детали, перед тем как оснащать ими локомотив.



Для испытаний я использовал всего один 3х-вольтовый моторчик, но всё отлично заработало.

Настал черёд разделывания локомотива и тендера - самый кощунственный процесс, где приходится фактически разрушать то, что годами хранилось как сокровище. Я назвал это хирургической операцией и постарался причинить модели как можно меньше вреда.

На фото показан блок управления, помещённый сверху тендера Jubilee Bachmann , для того, чтобы наглядно увидеть соотношение размеров.


Блок управления на тендере

Первое, что я сделал, было удаление из локомотива токосъёмников, так как я оснащал его новым источником питания (позже я понял, что это следовало сделать в конце, т.к. ели бы мне не удалось установить блок управления и аккумулятор в тендер - это действие оказалось бы напрасным. Это урок на будущее).

Что же, для меня это оказалось непростой задачей. Разбирая Jubilee, я вскоре понял, что в нём нет как таковых токосъёмников, вместо них использовались два разделённых металлических шасси с двумя пружинами, прижимающими контакты мотора. Уфф.

Разделённые шасси



Как показано на снимке, две маленькие пружинки располагались в отверстиях. Они прижимались к контактам, расположенным на корпусе мотора. Я решил удалить пружинки (сохранив их на будущее), заизолировать контакты и вывести два провода из локомотива к тендеру.

Заизолированные контакты


Показанные на фото резиновые изоляторы не подошли, так как они оказались слишком громоздкими и мешали поставить шасси на своё место. Я заменил их на два кусочка изоляции, снятой с сетевого кабеля.

Питание мотора в сборе


Я собрал локомотив и просто подключил его к 9-вольтовому аккумулятору. Первое, что я заметил (я использовал новый стандартный PP3 аккумулятор), была явная потеря мощности, и локомотив ехал медленнее, чем обычно. Я снова разобрал и собрал локомотив - результат был прежним, тогда я поставил его на рельсы, и он поехал со своей обычной скоростью, возможно проблема была в том, что я подключил 9- вместо 12- вольтового аккумулятора. Это может стать проблемой для длинного состава, но, так как у меня оставалось ещё много работы, поверку мощности я отложил на потом.

Теперь разделывание, простите, оперирование тендера.

Внутри тендера распложены три металлические пластины, используемые в качестве балласта. Первым этапом была замена средней пластины на пластиковую, разделённую посредине, что образовало отверстие, через которое можно было провести кабельную стяжку, чтобы закрепить ярусное расположение всех компонентов.


Отверстие для кабельной стяжки


На пластины я положил батарейку и блок управления, поместив их друг на друга. Похоже на это:

Ярусное расположение (обратите внимание на маленькую деталь, приклеенную к концу связки - это монтажная пластина - см. дальше)


Кроме этих деталей мне ещё нужно было установить ИК-приёмник, геркон, резисторы ограничительного выключателя, выпрямительный мост, соединители и пр. - хватит ли у меня места?

С герконом проблем не возникло. В моём комплекте оказался бесконтактный герконовый мангнитоуправляемый переключатель. В нормальном положении контакты замкнуты, что замыкает всю цепь. Кладём на него магнит - контакты размыкаются, что, в свою очередь, размыкает всю цепь. Проверка показала, что магнит достаточно мощный, чтобы работать через стенки корпуса тендера.

Герконовый переключатель
При помощи двустороннего скотча переключатель был прикреплён к задней стенке нижней части корпуса тендера.


Чтобы отключить питание, мне нужно всего лишь положить магнит сверху тендера, как показано ниже.



После этого мне нужно было смонтировать выпрямительный мост и резисторы (по-моему, на 120Ом) Большой необходимости в этом нет, но это избавляет от разборки тендера каждый раз, когда аккумулятор разряжается. Я хотел иметь возможность заряжать аккумулятор, не снимая локомотив с рельсов.

Поэтому чуть позже я собрал этот элемент (на монтажной пластине veroboard, показанной выше), установил все детали на шасси тендера и попытался надеть верхнюю часть.... Ничего не вышло - детали не вмещались.

Я перебирал разные варианты.

И тут я вспомнил любимый совет своего папы, который он мне всегда давал, когда я что-нибудь чинил: “Если деталь не становится на своё место - переверни её другой стороной и попробуй снова.”

Точно, папа, спасибо. Я пытался установить все детали на шасси в надежде, что верхняя часть станет на место. Теперь же я все детали разместил в обратном порядке в корпусе тендера, что оказалось гораздо проще.

Но места всё равно не хватало, поэтому я убрал балластные пластины и их держатели, а также расположил ИК-приёмник на крыше, но с краю от центра.


Детали, заключённые в корпус тендера


На этом фото видно, что ИК-приёмник приклеен (эпоксидным клеем) к крыше тендера, но смещён в сторону, чтобы оставалось достаточно места для аккумулятора.

Внутренний вид


и ещё одно изображение сверху - мне ещё нужно почистить верх, так как клей выступил через зазоры.

Вид сверху


Ура Всё подошло - но будет ли это работать?


Испытания в работе

На снимке показано испытание паровоза, к которому ещё не присоединён тендер. ЗАРАБОТАЛО С ПЕРВОГО РАЗА. Фотоаппарат не смог передать быстрое вращение колёс.
(обратите внимание: Зелёные провода нужны для системы подзарядки аккумулятора).

В процессе работы я столкнулся с парой проблем. Но я вполне доволен, потому что, кроме опыта сборки нескольких цепей с диодами, у меня нет никаких знаний в электронике.

Проблемы, возникшие в процессе работы и требующие решения:


1) Явная нехватка напряжения (9В вместо 12В) - хватит ли его, чтобы тянуть состав?
2) Система позволяет запрограммировать 99 локомотивов. По умолчанию в заводских настройках запрограммировано 27, и я не смог их перепрограммировать. Больше 27 не получилось.

3) Прочитав инструкцию, я узнал, что мне нужен ещё и радиатор для транзистора. У меня очень смутное представление как о том, что это такое и для чего он нужен, так и какого он размера, где его устанавливать и где его взять.
4) Ещё нужно установить токосъемные контакты для подзарядки аккумулятора. Сделать их на колёсах тендера (что проще), или же прикрепить к разделённым шасси локомотива (что эффективнее)?
5) У паровоза Jubilee закрытый корпус тендера формируется за счёт формованной крышки, создающей эффект наполненности углём. А как быть с паровозами, тендеры которых пустые или в них мало угля?
6) Плохо ли скажется на аккумуляторе постоянная подзарядка?
7) После присоединения, паровоз и тендер будут связаны навсегда проводами. Найду ли я для этого подходящий микроконнектор?

Я также пришёл к выводу, что:
1) Данная конструкция не подойдёт для паровозов без тендера.
2) Данная конструкция не подойдёт для паровозов, мотор которых установлен в тендере.


был сделан модуль управления роботом по ИК каналу. Вот о нём я бы и хотел написать поподробнее. Так как применений этому можно найти очень много.

Собственно, что такое ИК-управление - объяснять, думаю, не нужно. Сейчас более распространено управление по Wi-Fi, Bluetooth, ZigBee. Но если вам требуется простое устройство, которое можно собрать «на коленке» при минимальных затратах, то эта статья для вас. =)


Я не буду привязывать эту статью к определённому микроконтроллеру, а опишу общие принципы работы ИК прёмо-передатчика с AVR МК.

1. Что потребуется
При создании простого ИК-управления, негласным стандартом является использование приёмника от компании Vishay TSOPxxxx и диода TSALxxxx в качестве передатчика.

В обозначении приёмников TSOP последние две цифры означают частоту (в кГц) на которой воспринимается передаваемый сигнал. Сложностей в работе с этими компонентами особых нет. Можно писать свой протокол передачи, можно воспользоваться уже готовыми решениями. В моём случае я решил связать два микроконтроллера ИК-каналом, используя USART. Принцип такой же, как если бы мы соеденили два МК обычными проводами. Нюанс только в модулировании несущей частоты и в настройке таймера.

2. Схемки
Чтобы не городить огородов, воспользуемся схемой включения TSOP из его даташита:

Выход TSOPа нужно подключить напрямую к входу (RX) USART МК.

С подключением передатчика ситуация немного другая. Так как приёмник работает только на определённой частоте, то нужно задать эту же частоту на излучателе. Это сделать не сложно запрограммировав таймер. Для ATmega16 это будет выглядить вот так:
TCCR1A=0x40;
TCCR1B=0x09;
OCR1AH=0x00;
OCR1AL=0x84;

Нужную частоту можно выразить из формулы:

OCRn - будет искомое значение, которое нужно перевести в шестнадцатеричный формат и записать в регистр OCR1A (для случая с МК ATmega16).

Теперь TSOP будет принимать наш сигнал. Но чтобы можно было использовать USART, нужно промодулировать наш сигнал. Чтобы это можно было делать - подключим ИК-диод по схеме:

3. Немного кода
Прошивки я писал в CodeVision AVR.

Вот так будет выглядеть код для передатчика:
#include
#include

Void main(void)
{
PORTB=0x00;
DDRB=0x02;

DDRC=0x00;
PORTC=0xFF;

TCCR1A=0x40;
TCCR1B=0x09;
OCR1AH=0x00;
OCR1AL=0x84; // Сюда вписываем значение для вашей частоты

// Communication Parameters: 8 Data, 1 Stop, No Parity
// USART Mode: Asynchronous
// USART Baud Rate: 2400
UCSRA=0x00;
UCSRB=0x08;
UCSRC=0x86;
UBRRH=0x00;
UBRRL=0xCF;

While (1)
{

If (PINC.4 == 0x00) { putchar("S");}/* В данном случае при нажатии на кнопку, которая висит на PINC.4 МК отсылает символ "S". Который передаётся на другой контроллер через ИК.*/
};
}

Код приёмника не привожу, т.к. занимает много места, а для восприятия общих принципов кода передатчика будет, думаю, достаточно.

Помимо дистанционного управления (хотя это и так обширная область применений), можно использовать этот метод для датчиков припятствий\прохождения объектва и если таковых датчиков у вас много, а работаю они на одной частоте, то чтобы они не засвечивали друг друга можно передавать разные пакеты.

Желаю удачи! Буду рад любым вопроса\критике\предложениям;)

UPD. Решил выложить фото самого пульта, чтобы было видно, что работает девайс не только как китайские приёмники, которые подключаются к ПК. Возможности гораздо шире и универсальнее.

15:45 20.03.2002

Три способа управления компьютером через любой ИК пультДанный материал содержит в основном теоретическую информацию относительно использования инфракрасных пультов от телевизоров и прочей бытовой техники для управления компьютером. Найти реальное применение такой возможности не так уж и сложно. Можно управлять запуском программ; движением курсора мыши и имитировать нажатие ее кнопок; имитировать нажатие клавиш клавиатуры; управлять WinAmp-ом; выключать и перезагружать компьютер.

Будет рассмотрено три способа. Все они предполагают наличие ИК-приемника подключенного к компьютеру. Последние два способа содержат примитивные схемы, спаять самостоятельно которые не составит большого труда.

Начнем с самого простого варианта - работы через обычные инфракрасные адаптеры, которые продаются во многих магазинах по цене от 15 до 40 долларов. Подключаются они посредством шины USB или последовательного порта RS-232 (обычный COM-порт). Последний вариант для нашей затеи выглядит предпочтительнее, т.к. рассмотренный софт скорее всего не будет работать с USB версиями адаптеров. Кроме того, они стоят дешевле. В нашем случае мы использовали адаптер TEKRAM IRmate IR-210B, подключенный через COM-порт. Сразу нужно предупредить о том, что найденные и описанные нами программы не требуют установки драйверов для каких-либо адаптеров. Программы сами напрямую работают с COM-портом. Установленные драйвера будут мешать нормальной работе. Если использовать USB версии адаптеров, то тут ситуация обратная - драйвера необходимы но, как уже упоминалось ранее, в настройках всех программ не значилась поддержка устройств такого рода.

Программа распространяется на условиях Shareware. В демонстрационном режиме возможно использование только четырех команд с пульта. Поддерживает различные адаптеры, в том числе и работающие через WinLirc (об этом будет рассказано отдельно). Поддерживаются напрямую пульты AVerMedia TV-tuner. Полный список поддерживаемых устройств можно найти на сайте разработчиков.

Программа оказалась достаточно простой в использовании. Имеется поддержка русского языка. Описание работы с программой начнем с настроек.

Они располагаются в меню "Файл". Изначально, нужно указать к какому порту подключен адаптер. Для нашего IRMate 210 была ремарка в описании программы: работает только на скорости порта 2400 бит/с. Подчиняемся указаниям, в остальном, все настройки вполне оптимальны. Логика работы с этой программой, впрочем, и с остальными тоже, подразумевает, что Вы должны завести в программе сначала источник - пульт управления. В нашем примере мы назвали его "Samsung". Затем к источнику добавляются команды, они располагаются под именем пульта. При их добавлении программа присваивает их значениям сигналы с пульта ДУ. Что бы назначить кнопке ПДУ действие, достаточно перетащить мышкой нужную команду в окошко "Срабатываемые команды" и в закладке "Список действий" указать все, что необходимо. Не зарегистрированная версия программы не даст создать более четырех действий на одной схеме.

Описание работы с этой программой начнем с ее настройки. При первом запуске программы Вы попадаете в раздел основного меню "General Config". В нем необходимо выбрать тип используемого адаптера. В нашем случае это Generic Serial IR Receiver. Далее перемещаемся в пункт "Hardware Setup".

Аналогично предыдущей программе, щелкаем в пустом поле правой кнопкой мыши и выбираем из меню пункт "New Remote Control". Мы назвали его Samsung. Далее с помощью правой кнопки мыши начинаем добавлять клавиши с ИК пульта ("New remote Button"). В процессе определения кнопок пульта возникла проблема - программе все коды кнопок казались одинаковыми. Код кнопки отображается справа в окошке "Signature" и является простым набором данных, прочитанных из COM-порта. Решилось все просто: на скриншоте рядом с указанием порта есть кнопочка "Setup". Она вызывает окно настроек, где нужно выбрать вторую закладку с названием "Device Settings". В нем в значении параметра "IR code length" поставить большее значение, например, 32 байта.
Для назначения уже определенным кнопкам пульта действий нужно перейти в третий раздел "Actions". Добавить наш пульт и добавить кнопки, которые мы определили в предыдущем разделе, только теперь выбор будет из ниспадающего меню, вызываемого правой кнопкой мыши. Действия к командам добавляются в правом окошке.

Выставив галочку в пункте "Disable OSD" Вы избавитесь от окна, которое будет выскакивать на экран при нажатии этой кнопки на пульте.

Субъективно, uICE пришлась мне по вкусу больше, чем PCRemote. Но лучше попробовать обе, т.к. у них есть несколько отличий. Кроме того, если Вы собираетесь пользоваться незарегистрированными версиями, то uICE через 30 дней полностью потеряет свою работоспособность, в то время как PCRemote будет работать с вышеупомянутыми ограничениями.

Работа с самодельными ИК-приемниками

Рассмотренный выше способ подойдет тем, у кого уже есть ИК-адаптер или приобретение такового не вызывает каких либо затруднений. В ином случае простейший ИК-приемник, подключаемый через стандартный RS-232 порт, соорудить самому совсем не сложно. Более того, существует намного больше программ, работающих именно с самодельными ИК-приемниками. Самой популярной такой программой является WinLirc. Правильнее ее будет назвать не программой, а интерфейсом работы с COM-портом. Этим интерфейсом пользуются все остальные программы, которые будут описаны далее.

Это интерфейс для устройств, описанных выше. Работает он под управлением Windows 95/98/ME/NT/2000. Изначально создавался для Unix, так что поклонники этой операционной системы найдут все, что им нужно на этом сайте www.lirc.org . Сама по себе эта программа способна только принимать и обрабатывать сигналы, принятые из COM-порта от нашего устройства. Для того, что бы с помощью пульта ДУ совершать какие либо действия на компьютере необходимы другие программы, которые в свою очередь будут получать все данные от WinLIRC. Все уже вышеописанные программы способны работать с WinLIRC.

Версия 2.0 вышла буквально на днях. Программа распространяется на условиях Shareware, но для граждан бывшего СССР есть бесплатная регистрация. Возможности у программы достаточно широки: начиная эмуляцией клавиатуры и управлением WinAmp-ом до управления внешними устройствами. Все эти возможности появляются только после установки соответствующих плагинов. Все они распложены на сайте автора.

В нашем случае нам придется работать с этой программой через WinLIRC. Плагины для работы с обычными ИК адаптерами, по заверению автора, ссейчас только разрабатываются. Признаться, сам я не паял эту схему, поэтому эти и дальнейшие высказывания лучше отнести к теоретической части. По этому, разумнее дальше без лишних слов дать несколько аннотированных ссылок.

История дистанционного управления

Один из самых ранних образцов устройств для дистанционного управления придумал и запатентовал Никола Тесла в 1893 году .

Первый пульт ДУ для управления телевизором был разработан американской компанией Zenith Radio Corporation в начала 1950-х . Он был соединён с телевизором кабелем . В 1955 году был разработан беспроводной пульт Flashmatic , основанный на посылании луча света в направлении фотоэлемента . К сожалению, фотоэлемент не мог отличить свет из пульта от света из других источников. Кроме того, требовалось направлять пульт точно на приёмник.

Пульт ДУ Zenith Space Commander 600

Универсальный пульт Harmony 670

Военное дело

  • В Первой мировой войне немецкий флот применял специальные лодки для борьбы с прибрежным флотом. Они приводились в движение двигателями внутреннего сгорания и управлялись дистанционно с береговой станции

по кабелю длиной несколько миль, привязанному к катушке на корабле. Самолёт использовался для их точного наведения. Эти лодки несли большой заряд взрывчатки в носу и ходили на скорости 30 узлов .

  • Рабоче-крестьянская Красная армия использовала дистанционно-управляемые танки в Советско-финской войне 1939-1940 годов и в начале Великой Отечественной войны . Телетанк управлялся по радиосвязи из управляющего танка на расстоянии 500-1500 м, таким образом, получалась телемеханическая группа. Красная армия выставила по меньшей мере два телетанковых батальона в начале ВОВ. Также у Красной армии были дистанционно-управляемые катера и экспериментальные самолёты. Между тем, немецкие танковые батальоны были полностью радиофицированы, каждый танк имел на своем борту рацию, что говорит об огромном превосходстве немецкой техники и промышленности к началу войны.
  • Подробная информация о применении ПДУ для средств спецназначения в наше время носит преимущественно закрытый характер

Авиация

Практически все средства авионики и другое бортовое оборудование ЛА управляются с помощью пультов ДУ в кабине пилотов, ДУ имеется также в наземном оборудовании

Водный транспорт

Значительная часть судового оборудования управляется с помощью ПДУ

Железная дорога и метро

ПДУ применяются для управления оборудованием поездов, путевым оборудованием, оборудованием станций (эскалатор, освещение и т. д.)

Промышленное производство и строительство

Некоторые виды производственного и строительного оборудования могут управляться с помощью ПДУ

Научно-исследовательские и производственно технические лаборатории

Некоторые виды лабораторного оборудования управляются с помощью ПДУ

Космос

  • Технология дистанционного управления также использовалась в исследованиях космоса. Советский Луноход дистанционно управлялся с Земли. Прямое дистанционное управление космическими аппаратами на бо́льших расстояниях непрактично из-за возрастающей задержки сигнала.
  • Для управления оборудованием и двигателями космического корабля в кабине космонавтов имеются пульты ДУ

Связь и другие системы информационных технологий

Дистанционное управление могут иметь ретрансляторы, радиомаяки, а также связные радиостанции, радиолокаторы и другие системы

Электроэнергетика

В электроэнергетике ПДУ используются для управления объектами энергосистемы и управления энергопотреблением

Завязка или «Как начинался девайс»

…Когда я пришёл, Виктория сидела на диване, уставившись в телевизор. День выдался тяжёлый, поэтому ей не хотелось ничего делать. Несколько минут мы смотрели какой-то попсовый сериал, потом он закончился, и Вика выключила телевизор. В комнате стало темно. На улице шумел дождь, и от этого казалось, что дома тоже холодно.
Вика поднялась с дивана и принялась, на ощупь, искать выключатель от светильника. Настенный светильник висел, почему-то, не у дивана, а на другой стене и приходилось топать через всю комнату, чтобы зажечь свет. Когда она, наконец, включила его, комната наполнилась тёплым светом лампочки накаливания.
Около меня, на помятой простыне, лежал пульт от телевизора. Нижние кнопки без опознавательных знаков и, скорее всего, не использовались. И тут у меня возникла интересная мысль…
— Вик, а хочешь, я сделаю так, что твой светильник можно будет пультом от ящика включить? Там даже кнопки лишние есть…

Концепция
Наше устройство должно уметь принимать сигнал с ИК-пульта, отличать «свою» кнопку от других, и управлять нагрузкой. Первый и последний пункты простые, как топор. А вот со вторым немного интереснее. Я решил не ограничиваться каким-то конкретным пультом (Почему? – «Не интересно так!»), а сделать систему, которая может работать с разными моделями пультов от разной техники. Лишь бы ИК-приёмник не спасовал, и уверенно ловил сигнал.

Ловить сигнал будем с помощью фотоприёмника . Причем не каждый приёмник подойдёт – несущая частота должна совпадать с частотой пульта. Несущая частота приёмника указана в его маркировке: TSOP17xx – 17 это модель приёмника, а хх – частота в килогерцах. А несущую частоту пульта можно найти в документации или в инете. В принципе, сигнал будет приниматься, даже если частоты не совпадают, но чувствительность будет фиговой – придётся тыкать пультом прямо в приёмник.

Каждая компания, выпускающая бытовую технику, вынуждена соблюдать стандарты при изготовлении «железа». И частоты модуляции у пультов, тоже стандартные. Зато разработчики отрываются на программной части – разнообразие протоколов обмена между пультом и устройством просто поражает. Поэтому, пришлось придумать универсальный алгоритм, которому плевать на протокол обмена. Работает он так:

В памяти устройства хранятся контрольные точки. Для каждой такой точки нужно записать время и состояние выхода с ИК-приёмника – 0 или 1.
При получении сигнала с пульта, МК будет последовательно проверять каждую точку. Если все точки совпали – то это была та самая кнопка, на которую устройство запрограммировали. А если выход с приёмника хотя-бы в одной точке не совпал с шаблоном, то устройство никак не отреагирует.

Впрочем, баги никто не отменял! Возможно, что, сигнал будет отличаться от шаблона, но
в контрольных точках значения будут одинаковые. Получится ложное срабатывание. Казалось-бы – редкостное западло, и бороться с ним пипец сложно! Но на самом деле не всё так плохо (а местами даже хорошо).

Во-первых, у нас ведь цифровой сигнал, а значит, импульсы идут с постоянными задержками (таймингами) и просто-так не возникают. Поэтому, если точки стоят достаточно плотно, то можно не бояться, что какой-нибудь импульс будет пропущен.

Во-вторых мелкий шум (обычно выглядит, как редкие короткие импульсы) в большинстве случаев идёт лесом – ибо если он не попадёт прямо на контрольную точку, то нифига не повлияет на систему. Значит у нас есть естественная защита от шума.

Второй тип ошибок (aka «Пропуск команды») бывает из-за того, что точка расположена слишком близко к фронту импульса (к тому месту, где сигнал на выходе приёмника меняет свой уровень).
Представь себе, что через несколько микросекунд после контрольной точки сигнал должен меняться с HIGH на LOW. А теперь представь, что пульт выдал команду чуть быстрее, чем обычно (довольно часто случается). Фронт импульса сдвинулся во времени, и теперь он происходит ДО контрольной точки! Выход с приёмника не совпадёт с шаблоном и система сбросится.
Чтобы этого не происходило, нужно размещать контрольные точки подальше от фронтов.

«Всё круто» — скажешь ты – «Но откуда мне взять контрольные точки?». Вот и я над этим долго тупил. В результате решил доверить расстановку точек тебе.
На устройстве есть джампер J1. Если при включении он замкнут – устройство будет тупо передавать через UART всё, что выдаёт ИК-приёмник. На другой стороне провода эти данные принимает моя программа, которая выдаёт на экран компа импульсы с TSOP’а. Тебе остаётся только мышкой раскидать по этому графику контрольные точки, и прошить их в EEPROM. Если возможности использовать UART нету, то на помощь приходит джампер J2. Когда он замкнут – устройство не выдаёт данные по UART, а складывает их в EEPROM.


Схема
Простая до безобразия. В качестве контроллера я взял ATTiny2313. Частота 4 мегагерца, от кварца, или внутренней RC цепочки.
На отдельный разъём выведены линии RX и TX для связи, и питание. Туда – же выведен RESET для того чтобы можно было перепрошивать МК, не вынимая из устройства.
Выход фотоприёмника подключается к INT0, он подтянут к питанию через резистор в 33к. Если будут сильные помехи, то можно поставить туда резистор поменьше, например, 10к.
На пинах D4 и D5 висят джамперы. Jumper1 на D5 и Jumper2 на D4.

К пину D6 подцеплен силовой модуль. Причём симистор я взял самый мелкий из тех, что у меня были – BT131. Ток у него 1А – не круто, но зато корпус не слишком большой — ТО92. Для мелкой нагрузки самое то. Опторазвязку я сделал на MOC3023 – у неё нет датчика пересечения нуля, а значит она подходит для плавного управления нагрузкой (здесь я это так и не реализовал).

Порт B почти полностью выведен на разъём – туда можно прицепить индикатор или ещё что-нибудь. Этим-же разъёмом я пользуюсь при прошивке девайса. Пин B0 занят светодиодом.

Питается всё это дело через LM70L05 и диодный мост. То есть на вход можно подавать переменное напряжение, например, с трансформатора. Главное, чтобы оно не превышало 25 Вольт, а то умрёт либо стабилизатор, либо кондер.

Плата получилась вот такая:


Да, она немного отличается от той платы, которая лежит в архиве. Но это не значит, что я сделал себе убер-продвинутую плату, а вам подсунул демо версию:). Напротив, моя плата имеет пару недостатков, которых нет в конечной версии: у меня не выведена на штырёк ножка RESET, и светодиод висит на PB7. А это не очень способствует внутрисхемному программированию.

Прошивка
Устройство может работать в двух режимах. В первом – когда J2 замкнут – оно просто передаёт импульсы с фотоприёмника в UART. С него и начнём:

UART работает на скорости 9600, т.е, при частоте 4МГц в регистр UBRR записываем 25.

…ждём, пока не дёрнется ножка фотоприёмника. Как только она опустилась (изначально-то она болтается на pull-up резисторе) мы запускаем таймер (TIMER/COUNTER1, тот, что на 16 бит) и врубаем прерывание INT0 на любое изменение входа – any logical change (ICS00 = 1). Таймер тикает… ждём.

Импульс с пульта кончился – выход с фотоприёмника взметнулся вверх, прерывание сработало. Теперь записываем в память значение таймера и сбрасываем таймер. Ещё нужно инкрементировать указатель записи, чтобы в следующем прерывании записать в другую ячейку памяти.

Ещё импульс… выход дёргается… прерывание… запись значения таймера в память… сброс таймера… указатель + 2 (мы пишем два байта за раз)…

И так будет продолжаться до тех пор, пока не станет ясно, что конец (оперативки) близок. Или, пока сигнал не кончится. В любом случае, мы стопорим таймер и отключаем прерывания. Потом, не спеша выкидываем всё, что насобирали, в UART. Или, если J2 замкнут – в EEPROM.

В конце можно затупить в бесконечный цикл и ждать ресета – миссия выполнена.
А на выходе получится последовательность чисел. Каждое из них – время между изменениями состояния выхода TSOP’a. Зная, с чего началась эта последовательность (А мы знаем! Это перепад с HIGH на LOW), мы можем восстановить всю картину:

После инициализации сидим и ждём, пока TSOP дёрнется. Как только это случилось – читаем из EEPROM первую точку, и в простом цикле тупим столько, сколько там написано. При этом время считаем пачками по 32us. Выйдя из ступора, проверяем – что-там на выходе приёмника.

Если выход не совпал с тем, что мы ожидали – это не наша команда. Можно спокойно дожидаться конца сигнала и начинать всё сначала.

Если выход соответствует нашим ожиданиям – загружаем следующюю точку и проверяем её. Так до тех пор, пока не наткнёмся на точку, время которой = 0. Это значит, что точек больше нет. Значит вся команда совпала, и можно дёргать нагрузку.

Вот так, получается, простенький алгоритм. Но ведь чем проще, тем надёжнее!

Софтина
Сначала я думал сделать автоматическое запоминание шаблона. То есть ты замыкаешь джампер, тыкаешь пультом в TSOP, а МК сам расставляет контрольные точки и складывает их в EEPROM. Потом стало ясно, что идея бредовая: более-менее адекватный алгоритм получится чересчур сложным. Или не будет универсальным.

Второй идеей была программка для компа, в которой можно самому расставить контрольные точки. Не слишком технологично, но всяко лучше, чем доверять это дело МК.


Приучаем девайс отзываться на нужную кнопку пульта:

1) Замыкаем перемычку J1.

2) Подключаем UART. Если возможности его подключить нету, то замыкаем джампер J2. Тогда устройство будет скидывать данные в EEPROM.

3) Врубаем питание.

4) Если мы решили юзать UART, то запускаем софт и смотрим на строку состояния (внизу окошка). Там должно быть написано “COM порт открыт”. Если не написано, то ищем косяк в подключении и тыкаем кнопу «Подключить».

5) Берём пульт и тыкаем нужной кнопкой в TSOP. Как только девайс почует, что сигнал пошёл – загорится светодиод. Сразу после этого устройство начнёт передавать по UART (или писать в EEPROM) данные. Когда передача закончилась, светодиод гаснет.

6.1) Если работаем по UART, то жмём кнопу «Загрузить по UART». И радуемся надписи «Загрузил график…» в строке состояния.

6.2) Если работаем через EEPROM, то читаем программатором EEPROM память и сохраняем в *.bin файл. (Именно bin!). Потом нажимаем в программе кнопку «Загрузить.bin» и выбираем файл с EEPROM.

7) Смотрим на загрузившийся график – это сигнал с TSOP’a. На боковой панели есть ползунок – им можно менять масштаб. Теперь тыкаем мышкой по графику – ставим контрольные точки. Правой кнопкой точки удаляются. Только не нужно их ставить слишком близко к фронтам. Получается примерно так:


8) Нажимаем «Сохранить.bin» и сохраняем точки. Потом прошиваем этот файл в EEPROM. Так-как мы запихиваем время между двумя точками в 7 бит, то оно ограничено 4мс. Если время между двумя точками превысит это значение – программа откажется запихивать точки в файл.

9) Снимаем джамперы. Перезагружаем устройство. Готово!

Видео с испытаний

Похожие статьи