Микросхемы. Что такое интегральная микросхема (ИМС)

08.09.2019

Большая интегральная схема (БИС) - интегральная схема (ИС) с высокой степенью интеграции (число элементов в ней достигает 10000), используется в электронной аппаратуре как функционально законченный узел устройств вычислительной техники, автоматики, измерительной техники и др.
По количеству элементов все интегральные схемы условно делят на следующие категории:
■ простые (ПИС) - с количеством элементов в кристалле до 10,
■ малые (МИС) - до 100,
■ средние (СИС) - до 1000,
■ большие (БИС) - до 10000,
■ сверхбольшие (СБИС) - 1000000,
■ ультрабольшие (УБИС) - до 1000000000,
■ гигабольшие (ГБИС) - более 1000000000 элементов в кристалле.
Интегральные микросхемы (ИМ), содержащие более 100 элементов, называют микросхемами повышенного уровня интеграции.
Использование БИС сопровождается резким улучшением всех основных показателей по сравнению с аналогичным функциональным комплексом, выполненным на отдельных ИС. Интеграция ИС на одном кристалле приводит к уменьшению количества корпусов, числа сборочных и монтажных операций, количества внешних - наименее надежных - соединений. Это способствует уменьшению размеров, массы, стоимости и повышению надежности.
Дополнительными преимуществами от интеграции ИС являются уменьшение общего количества контактных площадок, сокращение длины соединений, а также меньший разброс параметров, поскольку все ИС расположены на одном кристалле и изготовлены в едином технологическом цикле.
Опыт разработки БИС выявил также и ряд общих проблем, которые ограничивают повышение степени интеграции и которые, нужно, решать в процессе дальнейшего развития микроэлектроники:
■ проблема теплоотвода,
■ проблема межсоединений,
■ проблема контроля параметров,
■ физические ограничения на размеры элементов.
В 1964 г. впервые на базе БИС, фирма IBM выпустила шесть моделей семейства IBM 360.
Примерами БИС также могут служить схемы памяти на 4 бит и более, арифметико-логические и управляющие устройства ЭВМ, цифровые фильтры. ИС предназначены для решения самых разнообразных задач, поэтому изготовляется сочетанием методов, находящихся в арсенале полупроводниковой, тонко- и толстопленочной технологий.
ИМ принято классифицировать по способам изготовления и по получаемым при этом структурам на
Полупроводниковая ИМ представляет собой ИС, в которой все элементы и соединения между ними выполнены в едином объеме и на единой поверхности полупроводниковой пластины.
В гибридных микросхемах пассивные компоненты (резисторы и конденсаторы) наносятся на поверхность диэлектрической пластинки, активные (транзисторы) выполняются в виде отдельных дискретных миниатюрных компонентов и присоединяются к микросхеме.

Литература
1. Степаненко И. П., Основы микроэлектроники, М.: Лаборатория Базовых Знаний, 2003, с. 453-460.
2. Батушев А. В., Микросхемы и их применение, М.: Радио и связь, 1984, с. 13-17.
3. Чернозубов Ю. С., Как рождаются микросхемы, М.: Просвещение, 1989, с. 14-19.

Интегральная схема (микросхема) – миниатюрное электронное устройство, состоящее из большого количества радиоэлектронных элементов, конструктивно и электрически связанных между собой. Обычно интегральная схема создается для выполнения конкретной функции. По сути, микросхема объединяет в себе какую-то электронную схему, где все элементы (транзисторы , диоды , резисторы, конденсаторы) и электрические связи между ними конструктивно выполнены на одном кристалле. Поскольку размеры отдельных компонентов очень малы (микро- и нанометры), то на одном кристалле при современном развитии технологий, можно поместить более миллиона электронных компонентов.

У понятия интегральная схема есть несколько синонимов: микросхема, микрочип, чип. Несмотря на некоторую особенность определения этих терминов и разницу между ними, в обиходе все они применяются для обозначения интегральной схемы. В современных электронных устройствах самых различных сфер применения, начиная от бытовых приборов и заканчивая сложными медицинскими и научными электроприборами, сложно найти прибор, в котором бы не применялись интегральные схемы. Иногда одна микросхема выполняет практически все функции в электронном приборе.

Интегральные схемы делятся на группы по нескольким критериям. По степени интеграции – количеству элементов, размещенных на кристалле. По типу обрабатываемого сигнала: цифровые, аналоговые и аналого-цифровые. По технологии их производства и используемых материалов – полупроводниковые, пленочные и т.д.

На сегодняшний день уровень развития технологий при производстве интегральных схем находится на очень высоком уровне. Повышения степени интеграции, улучшение параметров интегральных схем тормозится не технологическими ограничениями, а процессами, происходящими на молекулярном уровне в используемых для производства материалах (обычно полупроводниках). Поэтому исследования производителей и разработчиков микрочипов ведутся в направлении поиска новых материалов, которые смогли бы заменить

Большие интегральные схемы

Одним из важнейших путей совершенствования вычислительной техники является широкое применение в ней достижений современной микроэлектроники. Успехи полупроводниковой интегральной электроники привели к созданию нового класса сложных функциональных электронных изделий - больших интегральных схем, которые стали основной элементной базой ЭВМ четвертого поколения (конец 70-х годов).

В одной такой схеме объёмом всего лишь в доли кубического сантиметра размещается блок, занимавший в ЭВМ первого поколения целый шкаф. В результате достигнуто существенное повышение производительности ЭВМ.

Если в ЭВМ третьего поколения быстродействие достигает 20-30 млн операций в секунду, то в машинах четвёртого поколения производительность достигает сотен миллионов операций в секунду. Соответственно возрастает и объём памяти. Наряду с усовершенствованием традиционных устройств памяти на магнитных дисках и лентах создаётся память без движущихся частей. Общий объём внешней памяти в крупных машинах четвёртого поколения превосходит 10 14 символов, что эквивалентно библиотеке, состоящей из нескольких миллионов объёмистых томов.

БИС созданы в результате естественного развития интегральных схем. Предпосылкой их появления является освоение электронной промышленностью планарной технологии изготовления кремниевых полупроводниковых приборов. Принципиальная новизна этой технологии состоит в том, что она позволила заменить обычные дискретные компоненты диффузионными или тонкоплёночными компонентами.

Высокая надежность ЭВМ закладывается в процессе ее производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (СБИС) - резко сокращает число используемых интегральных схем, а значит, и число их соединений друг с другом. Хорошо продуманы компоновка компьютера и обеспечение требуемых режимов работы (охлаждение, защита от пыли).

Все современные вычислительные машины строятся на комплексах (системах) интегральных микросхем (ИС). Электронная микросхема называется интегральной, если ее компоненты и соединения между ними выполнены в едином технологическом цикле, на едином основании и имеют общую герметизацию и защиту от механических воздействий. Каждая микросхема представляет собой миниатюрную электронную схему, сформированную послойно в кристалле полупроводника: кремния, германия и т.д. В состав микропроцессорных наборов включаются различные типы микросхем, но все они должны иметь единый тип межмодульных связей, основанный на стандартизации параметров сигналов взаимодействия (амплитуда, полярность, длительность импульсов и т.п.). Основу набора обычно составляют большие интегральные схемы (БИС) и сверхбольшие интегральные схемы (СБИС). В ближайшем будущем следует ожидать появления ультрабольших ИС (УБИС). Кроме них обычно используются микросхемы с малой и средней степенью интеграции (СИС). Функционально микросхемы могут соответствовать устройству, узлу или блоку, но каждая из них состоит из комбинации простейших логических элементов, реализующих функции формирования, преобразования, запоминания сигналов и т.д.

Все современные ЭВМ строятся на микропроцессорных наборах, основу которых составляют большие (БИС) и сверхбольшие интегральные схемы (СБИС). Технологический принцип разработки и производства интегральных схем действует уже более четверти века. Он заключается в послойном изготовлении частей электронных схем по циклу "программа - рисунок - схема". По программам на запыленный фоторезисторный слой наносится рисунок будущего слоя микросхемы. Затем рисунок протравливается, фиксируется, закрепляется и изолируется от новых слоев.

На основе этого создается пространственная твердотельная структура. Например, СБИС типа Pentium включает около трех с половиной миллионов транзисторов, размещаемых в пятислойной структуре. Степень микроминиатюризации, размер кристалла ИС, производительность и стоимость технологии напрямую определяются типом литографии. До настоящего времени доминирующей оставалась оптическая литография, т.е. послойные рисунки на фоторезисторе микросхем наносились световым лучом. В настоящее время ведущие компании, производящие микросхемы, реализуют кристаллы с размерами примерно 400-600 мм2 для процессоров (например, Pentium) и 200-400 мм2 - для схем памяти. Минимальный топологический размер (толщина линий) при этом составляет 0,25-0,135 мкм. Для сравнения можно привести такой пример. Толщина человеческого волоса составляет примерно 100 мкм. Значит, при таком разрешении на толщине 100 мкм требуется вычерчивать более двухсот линий.

Дальнейшие успехи микроэлектроники связываются с электронной (лазерной), ионной и рентгеновской литографией. Это позволяет выйти на размеры 0,13; 0,10 и даже 0,08 мкм. Вместо ранее используемых алюминиевых проводников в микросхемах повсеместно начинают применять медные соединения, что позволяет повысить частоту работы.

Такие высокие технологии порождают целый ряд проблем. Микроскопическая толщина линий, сравнимая с диаметром молекул, требует высокой чистоты используемых и напыляемых материалов, применения вакуумных установок и снижения рабочих температур. Действительно, достаточно попадания мельчайшей пылинки при изготовлении микросхемы - и она попадает в брак. Поэтому новые заводы по производству микросхем представляют собой уникальное оборудование, размещаемое в "чистых помещениях класса 1", микросхемы в которых транспортируются от оборудования к оборудованию в замкнутых сверхчистых мини-атмосферах класса 1000. Мини-атмосфеpa создается, например, сверхчистым азотом или другим инертным газом при давлении КГ4 Торр.

В настоящее время основой построения всех микросхем была и остается КМоп-технология (комплементарные схемы, т.е. совместно использующие п- и р-переходы в транзисторах со структурой "металл - окисел - полупроводник").

Однако появление БИС породило очень серьезную проблему-"что положить на подложку" или, другими словами, каким образом реализовать устройство на схемах с таким колоссальным количеством элементов.

Первым и довольно естественным решением этой проблемы явилось изготовление так называемых заказных схем, разрабатываемых каждый раз специально для использования в конкретной аппаратуре. В то же время проектирование заказных БИС - весьма длительный и трудоемкий процесс, использующий сложные человеко-машинные системы автоматизированного проектирования. Поэтому разработка и изготовление заказных БИС могут быть экономически оправданы только при массовом производстве аппаратуры, в которой эти схемы применяются.

Хорошей альтернативой заказным БИС явились микропроцессорные наборы - совокупность больших интегральных схем, реализующих сложные функции цифровой аппаратуры. Из этих "кирпичей" достаточно просто строятся микрокомпьютеры (микро-ЭВМ), получившие исключительное развитие и нашедшие широкое применение в разнообразных системах управления.

Микропроцессор является универсальным устройством, способным реализовать любую логическую функцию. Однако программная реализация логики управления осуществляется сравнительно медленно, микропроцессор зачастую не способен обеспечить необходимое быстродействие. В связи с этим в настоящее время широкое распространение получили программируемые БИС с матричной структурой, среди которых особое место занимают программируемые логические матрицы (ПЛМ) - большие интегральные схемы, сочетающие регулярность структуры полупроводникового запоминающего устройства (ЗУ) с универсальностью микропроцессора. ПЛМ обладает существенными преимуществами перед микропроцессором при реализации сложных алгоритмов управления.

В качестве функциональных узлов БИС, ориентированных на реализацию булевых функций, широко используются так называемые матричные схемы.

Матричная схема представляет собой сетку ортогональных проводников, в местах пересечения которых могут быть установлены полупроводниковые элементы с односторонней проводимостью (ЭОП) - диоды или транзисторы.

Рассмотрим матрицы М1и М2 на рисунке №1. Способ включения ЭОП в местах пересечения шин матрицы М1 позволяет реализовать на любом из её выходов любую конъюнкцию её входных переменных, взятых со знаком либо без знака инверсии.

Рисунок №1

Матрица М2 имеет 4 вертикальных и 2 горизонтальных шины. Способ включения ЭОП в местах пересечения шин М2 позволяет реализовать на любом из её выходов любую дизъюнкцию её входных переменных.

Если соединить эти матрицы как показано на рисунке №2, то можно заметить, что любая система булевых функций у1. yn водных переменных x1. xn может быть реализована двухуровневой матричной схемой, на первом уровне которой образуются различные элементарные конъюнкции, а на втором - дизъюнкции соответствующих конъюнкций (y1…yn).

В итоге построение схем с матричной структурой сводится к определению точек пересечения шин, где должны быть включены ЭОП.


Рисунок №2

По способу программирования различают матрицы, настраиваемые (программируемые) на заводе-изготовителе, пользователем и репрограммируемые (многократно настраиваемые).

В матрицах первого типа соединение ЭОП с шинами осуществляется 1 раз с помощью специальных масок, используемых для металлизации определённых участков кристалла БИС. После изготовления БИС полученные соединения изменены быть не могут.

Матрицы второго типа поставляются потребителю не настроенными и содержащими ЭОП в каждой точке пересечения их шин. Настройка сводится к удалению (отключению) некоторых ненужных ЭОП. Физически процесс настройки осуществляется различными способами, например, путём пропускания серии импульсов тока достаточно большой амплитуды через соответствующий ЭОП и разрушения плавкой перемычки, включённой последовательно с этим ЭОП и соединяющей его с одной из шин в точке их пересечения.

Матрицы третьего типа позволяют осуществлять программирование неоднократно. Повторное программирование выполняется электрическим способом после стирания содержимого матриц под действием ультрафиолетового (иногда рентгеновского) облучения или электрическим способом отдельно для каждого ЭОП.

Так же необходимо сказать несколько слов о так называемых программируемых матрицах.

Программируемая логическая матрица (ПЛМ) представляет собой функциональный блок, созданный на базе полупроводниковой технологии и предназначенный для реализации логических схем цифровых систем. В зависимости от внутренней организации программируемые логические матрицы можно разделить на ПЛМ комбинационной логики и ПЛМ с памятью.

Следует отметить, что на кристалле БИС ПЛМ предусмотрена специальная система шин, позволяющая соединять выходы донной матрицы с входами другой. Выполнение разрезов шин и организация необходимых связей между входами и выходами различных матриц осуществляются на этапе настройки ПЛМ на заводе изготовителе.

Введение

В настоящее время главными задачами при создании радиоэлектронной аппаратуры (РЭА) и электронно-вычислительных машин (ЭВМ) является увеличение скорости работы и уменьшение физических размеров. Для этого улучшаются характеристики и параметры элементов и интегральных микросхем, также происходит их оптимизация. Однако, при переходе работы устройств в наносекундный диапазон возникают новые проблемы, связанные с искажением сигналов в линиях связи. С повышением быстродействия логических схем скорость преобразования информации приближается к скорости её передачи, а при задержках логических элементов становится сравнимой с ней. В этом случае улучшение динамических характеристик самих элементов может не дать желаемого эффекта. Так как интегральные схемы как правильно, являются компонентами печатных плат, то необходим комплексный подход к проектированию печатных плат.

Следовательно при проектировании печатных узлов необходимо это учитывать, и искать методы которые позволяют существенно повысить помехоустойчивость аппаратуры. Также необходимо учитывать проблемы питания. целостность сигнал интегральный конденсатор

В данной работе мы проведем исследование, и покажем что при правильной разработке печатных плат мы можем значительно сократить возникающее помехи при передачи информации.

Интегральные схемы

История развития интегральных схем

Интегральная схема - электронная микросхема изготовленная на полупроводниковой подложке (пластине или плёнке) и помещённая в неразборный корпус, или без такового, в случае вхождения в состав микросборки. Большая часть микросхем изготавливается в корпусах для поверхностного монтажа.

Часто под интегральной схемой (ИС) понимают собственно кристалл или плёнку с электронной схемой, а под микросхемой -- ИС, заключённую в корпус.

История появления интегральных схем берет своё начало со второй половины двадцатого века. Их возникновение было обусловлено острой необходимостью повышения надёжности аппаратуры и автоматизации процессов изготовления и сборки электронных схем.

Другой причиной создания ИС стала технологическая возможность размещения и соединения между собой множества электронных компонентов - диодов, транзисторов и так далее, на одной пластине полупроводника. Дело в том, что созданные к тому времени меза- и планарные транзисторы и диоды изготавливались по технологии групповой обработки на одной пластине-заготовке одновременно.

Концепция ИС была предложена задолго до появления групповых методов изготовления полупроводниковых приборов. Первые в мире ИС были разработаны и созданы в 1959 году американцами Джеком Сент Клером Килби (фирма Texas Instruments) и Робертом Н. Нойсом (Fairchild Semiconductor) независимо друг от друга.

В мае 1958 г. Джек Килби перешёл в фирму Texas Instruments из фирмы Centralab - в ней он возглавлял программу по разработке слуховых аппаратов, для которых фирма создала небольшое предприятие по созданию германиевых транзисторов. Уже в июле 1958 г. Килби пришла в голову идея создания ИС. Из полупроводниковых материалов уже умели изготовлять резисторы, конденсаторы и транзисторы. Резисторы изготовляли, используя омические свойства "тела" полупроводника, а для создания конденсаторов использовались смещённые в обратном направлении p-n -переходы. Оставалось только научиться создавать такие переходы в монолите кремния.

Многие недостатки "твёрдых схем" были устранены позднее Робертом Нойсом. С января 1959 года, занимаясь в фирме Fairchild Semiconductor (FS) исследованием возможностей планарного транзистора, он вплотную занялся выдвинутой им идеей создания интегральных диффузионных или напылённых резисторов методом изоляции приборов с помощью смещённых в обратном направлении р-n -переходов и соединения элементов через отверстия в окисле путём напыления металла на поверхность. Вскоре была подана соответствующая заявка на патент, и разработчики элементов в тесном контакте со специалистами по фотолитографии начали работать над вопросами соединения диффузионных резисторов и транзисторов на кремниевых пластинах.

Разработки ИС стали продвигаться лихорадочными темпами. Фирма FS пригласила в качестве разработчика схем Роберта Нормана из фирмы Sperry. Норман был знаком с резисторно-транзисторной логикой, выбранной в качестве основы для будущей серии ИС - Micrologic... Это было начало новой эры.

Степень интеграции

В зависимости от степени интеграции применяются следующие названия интегральных схем:

  • · малая интегральная схема (МИС) -- до 100 элементов в кристалле,
  • · средняя интегральная схема (СИС) -- до 1000 элементов в кристалле,
  • · большая интегральная схема (БИС) -- до 10 тыс. элементов в кристалле,
  • · сверхбольшая интегральная схема (СБИС) -- более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) -- от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) -- более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Варады Г.К. 404 взвод.

Интегральные схемы.

План:

1) Вступление (понятие, устройство).

2) Типы ИС.

3) Плюсы и минусы ИС.

4) Производство.

5) Применение.

Вступление.

(от лат. integratio - «соединение»).

ИС - это микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или "чипе") полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3 х 1,3 мм до 13 х13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС).

Классификация.

В зависимости от степени интеграции (количество элементов для цифровых схем) применяются следующие названия интегральных схем:

    малая интегральная схема (МИС) - до 100 элементов в кристалле,

    средняя интегральная схема (СИС) - до 1000 элементов в кристалле,

    большая интегральная схема (БИС) - до 10 тыс. элементов в кристалле,

    сверхбольшая интегральная схема (СБИС) - более 10 тыс. элементов в кристалле.

Ранее использовались также теперь устаревшие названия: ультрабольшая интегральная схема (УБИС) - от 1-10 млн до 1 млрд элементов в кристалле и, иногда, гигабольшая интегральная схема (ГБИС) - более 1 млрд. элементов в кристалле. В настоящее время, в 2010-х, названия «УБИС» и «ГБИС» практически не используются, и все микросхемы с числом элементов более 10 тыс. относят к классу СБИС.

Плюсы и минусы ИС.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками -аналоговыми схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения. Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Их основными плюсами считаются :

    Уменьшенное энергопотребление связано с применением в цифровой электронике импульсных электрических сигналов. При получении и преобразовании таких сигналов активные элементы электронных устройств (транзисторов) работают в «ключевом» режиме, то есть транзистор либо «открыт» - что соответствует сигналу высокого уровня (1), либо «закрыт» - (0), в первом случае на транзисторе нет падения напряжения, во втором - через него не идёт ток . В обоих случаях энергопотребление близко к 0, в отличие от аналоговых устройств, в которых большую часть времени транзисторы находятся в промежуточном (активном) состоянии.

    Высокая помехоустойчивость цифровых устройств связана с большим отличием сигналов высокого (например, 2,5-5 В) и низкого (0-0,5 В) уровня. Ошибка состояния возможна при таком уровне помех, когда высокий уровень интерпретируется как низкий и наоборот, что маловероятно. Кроме того, в цифровых устройствах возможно применение специальных кодов, позволяющих исправлять ошибки.

    Большая разница уровней состояний сигналов высокого и низкого уровня (логических «0» и «1») и достаточно широкий диапазон их допустимых изменений делает цифровую технику нечувствительной к неизбежному в интегральной технологии разбросу параметров элементов, избавляет от необходимости подбора компонентов и настройки элементами регулировки в цифровых устройствах.

Надежность. Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет - один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему. Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м2. На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера. кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Применение. Локальное\ Глобальное.

Локальное.

Непосредственно в схемотехнике, интегральная схема может взять на себя огромное количество задач. Среди них могут быть:

Логические элементы, Триггеры, Счётчики, Регистры, Буферные, преобразователи, Шифраторы, Дешифраторы, Цифровой компаратор, Мультиплексоры, Демультиплексоры, Сумматоры, Полусумматоры, Ключи, Микроконтроллеры, (Микро)процессоры (в том числе ЦП для компьютеров), Однокристалльные микрокомпьютеры, Микросхемы и модули памяти, ПЛИС (программируемые логические интегральные схемы).

Глобальное.

Микропроцессоры и миникомпьютеры. Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5х5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров - малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 795млрд рублей., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие сотни миллиардов рублей.

Литература.

Мейзда Ф. Интегральные схемы: технология и применения. М., 1981 Зи С. Физика полупроводниковыхприборов. М., 1984 Технология СБИС. М., 1986 Маллер Р., Кеймин С. Элементы интегральных схем. М.,1989 Шур М.С. Физика полупроводниковых приборов. М., 1992

Похожие статьи