Матлаб описание программы. Основные элементы языка программирования Matlab. Простейшие арифметические действия

18.11.2023

). Среди средств общего назначения, используемых в хемометрике, особое место занимает пакет MatLab. Его популярность необычайно высока. Это объясняется тем, что MatLab является мощным и универсальным обработки многомерных данных. Сама структура пакета делает его удобным средством для проведения матричных вычислений. Спектр проблем, исследование которых может, осуществлено при помощи MatLab, охватывает: матричный анализ, обработку сигналов и изображений, нейронные сети и многие другие. MatLab - это язык высокого уровня, имеющий открытый код, что дает возможность опытным пользователям разбираться в запрограммированных алгоритмах. Простой встроенный язык программирования позволяет легко создавать собственные алгоритмы. За много лет использования MatLab создано огромное количество функций и ToolBox (пакетов специализированных средств). Самым популярным является пакет PLS ToolBox компании Eigenvector Research, Inc .

1. Базовые сведения

1.1. Рабочая среда MatLab

Чтобы запустить программу дважды щелкните на иконку . Перед Вами откроется рабочая среда, изображенная на рисунке.

Рабочая среда MatLab 6.х немного отличается от рабочей среды предыдущих версий, она имеет более удобный интерфейс для доступа ко многим вспомогательным элементам

Рабочая среда MatLab 6.х содержит следующие элементы:

    панель инструментов с кнопками и раскрывающимся списком;

    окно с вкладками Launch Pad и Workspace , из которого можно получить доступ к различным модулям ToolBox и к содержимому рабочей среды;

    окно с вкладками Command History и Current Directory , предназначенное для просмотра и повторного вызова ранее введенных команд, а также для установки текущего каталога;

    командное окно, в котором находится приглашение к вводу » и мигающий вертикальный курсор;

    строку состояния.

Если в рабочей среде MatLab 6.х отсутствуют некоторые окна, приведенные на рисунке, то следует в меню View выбрать соответствующие пункты: Command Window , Command History , Current Directory , Workspase , Launch Pad .

Команды следует набирать в командном окне. Символ » , обозначающий приглашение к вводу командной строки, набирать не нужно. Для просмотра рабочей области удобно использовать полосы скроллинга или клавиши Home , End , для перемещения влево или вправо, и PageUp , PageDown для перемещения вверх или вниз. Если вдруг после перемещения по рабочей области командного окна пропала командная строка с мигающим курсором, просто нажмите Enter .

Важно помнить, что набор любой команды или выражения должен заканчиваться нажатием на Enter , для того, чтобы программа MatLab выполнила эту команду или вычислила выражение.

1.2. Простейшие вычисления

Наберите в командной строке 1+2 и нажмите Enter . В результате в командном окне MatLab отображается следующее:

Рис. 2 Графическое представление метода главных компонент

Что сделала программа MatLab? Сначала она вычислила сумму 1+2 , затем записала результат в специальную переменную ans и вывела ее значение, равное 3 , в командное окно. Ниже ответа расположена командная строка с мигающим курсором, обозначающая, что MatLab готов к дальнейшим вычислениям. Можно набирать в командной строке новые выражения и находить их значения. Если требуется продолжить работу с предыдущим выражением, например, вычислить (1+2)/4.5 , то проще всего воспользоваться уже имеющимся результатом, который хранится в переменной ans . Наберите ans/4.5 (при вводе десятичных дробей используется точка) и нажмите Enter , получается

Рис. 3 Графическое представление метода главных компонент

1.3. Эхо команд

Выполнение каждой команды в MatLab сопровождается эхом. В приведенном выше примере - это ответ ans = 0.6667 . Часто эхо затрудняет восприятие работы программы и тогда его можно отключить. Для этого команда должна завершаться символом точка с запятой. Например

Рис. 4 Пример ввода функции ScoresPCA

1.4. Сохранение рабочей среды. MAT файлы

Самый простой способ сохранить все значения переменных - использовать в меню File пункт Save Workspase As. При этом появляется диалоговое окно Save Workspase Variables , в котором следует указать каталог и имя файла. По умолчанию предлагается сохранить файл в подкаталоге work основного каталога MatLab. Программа сохранит результаты работы в файле с расширением mat . Теперь можно закрыть MatLab. В следующем сеансе работы для восстановления значений переменных следует открыть этот сохраненный файл при помощи подпункта Open меню File . Теперь все переменные, определенные в прошлом сеансе, опять стали доступными. Их можно использовать во вновь вводимых командах.

1.5. Журнал

В MatLab имеется возможность записывать исполняемые команды и результаты в текстовый файл (вести журнал работы), который потом можно прочитать или распечатать из текстового редактора. Для начала ведения журнала служит команда diary . В качестве аргумента команды diary следует задать имя файла, в котором будет храниться журнал работы. Набираемые далее команды и результаты их исполнения будут записываться я в этот файл, например последовательность команд

производит следующие действия:

    открывает журнал в файле exampl-1.txt ;

    производит вычисления;

    сохраняет все переменные в MAT файле work-1.mat ;

    сохраняет журнал в файле exampl-1.txt в подкаталоге work корневого каталога MatLab и закрывает MatLab;

Посмотрите содержимое файла exampl-1.txt в каком-нибудь текстовом редакторе. В файле окажется следующий текст:

a1=3;
a2=2.5;
a3=a1+a2

Save work-1
quit

1.6. Система помощи

Окно справки MatLab появляется после выбора опции Help Window в меню Help или нажатием кнопки вопроса на панели инструментов. Эта же операция может быть выполнена при наборе команды helpwin . Для вывода окна справки по отдельным разделам, наберите helpwin topic . Окно справки предоставляет Вам такую же информацию, как и команда help , но оконный интерфейс обеспечивает более удобную связь с другими разделами справки. Используя адрес Web-страницы фирмы Math Works , вы можете выйти на сервер фирмы и получить самую последнюю информацию по интересующим вас вопросам. Вы можете ознакомиться с новыми программными продуктами или найти ответ на возникшие проблемы на странице технической поддержки .

2. Матрицы

2.1. Скаляры, векторы и матрицы

В MatLab можно использовать скаляры, векторы и матрицы. Для ввода скаляра достаточно приписать его значение какой-то переменной, например

Заметим, что MatLab различает заглавные и прописные буквы, так что p и P - это разные переменные. Для ввода массивов (векторов или матриц) их элементы заключают в квадратные скобки. Так для ввода вектора-строки размером 1×3, используется следующая команда, в которой элементы строки отделяются пробелами или запятыми.

При вводе вектора-столбца элементы разделяют точкой с запятой. Например,

Вводить небольшие по размеру матрицы удобно прямо из командной строки. При вводе матрицу можно рассматривать как вектор-столбец, каждый элемент которого является вектором-строкой.

или матрицу можно трактовать как вектор строку, каждый элемент которой является вектором-столбцом.

2.2. Доступ к элементам

Доступ к элементам матриц осуществляется при помощи двух индексов - номеров строки и столбца, заключенных в круглые скобки, например команда B(2,3) выдаст элемент второй строки и третьего столбца матрицы B . Для выделения из матрицы столбца или строки следует в качестве одного из индексов использовать номер столбца или строки матрицы, а другой индекс заменить двоеточием. Например, запишем вторую строку матрицы A в вектор z

Также можно осуществлять выделение блоков матриц при помощи двоеточия. Например, выделим из матрицы P блок отмеченный цветом

Если необходимо посмотреть переменные рабочей среды, в командной строке необходимо набрать команду whos .

Видно, что в рабочей среде содержатся один скаляр (p ), четыре матрицы (A, B, P, P1 ) и вектор-строка (z ).

2.3. Основные матричные операции

При использовании матричных операций следует помнить, что для сложения или вычитания матрицы должны быть одного размера, а при перемножении число столбцов первой матрицы обязано равняться числу строк второй матрицы. Сложение и вычитание матриц, так же как чисел и векторов, осуществляется при помощи знаков плюс и минус

а умножение - знаком звездочка * . Введем матрицу размером 3×2

Умножение матрицы на число тоже осуществляется при помощи звездочки, причем умножать на число можно как справа, так и слева. Возведение квадратной матрицы в целую степень производится с использованием оператора ^

Проверьте полученный результат, умножив матрицу Р саму на себя.

2.4. Создание матриц специального вида

Заполнение прямоугольной матрицы нулями производится встроенной функцией zeros

Единичная матрица создается при помощи функции eye

Матрица, состоящая из единиц, образуется в результате вызова функции ones

MatLab предоставляет возможность заполнения матриц случайными числами. Результатом функции rand является матрица чисел, равномерно распределенных между нулем и единицей, а функции randn - матрица чисел, распределенных по нормальному закону с нулевым средним и единичной дисперсией.

Функция diag формирует диагональную матрицу из вектора, располагая элементы по диагонали.

2.5. Матричные вычисления

MatLab содержит множество различных функций для работы с матрицами. Так, например, транспонирование матрицы производится при помощи апострофа "

Нахождение обратной матрицы проводится с помощью функции inv для квадратных матриц

3. Интегрирование MatLab и Excel

Интегрирование MatLab и Excel позволяет пользователю Excel обращаться к многочисленным функциям MatLab для обработки данных, различных вычислений и визуализации результата. Надстройка excllink.xla реализует данное расширение возможностей Excel. Для связи MatLab и Excel определены специальные функции.

3.1. Конфигурирование Excel

Перед тем как настраивать Excel на совместную работу с MatLab, следует убедиться, что Excel Link входит в установленную версию MatLab. В подкаталоге exclink основного каталога MatLab или подкаталога toolbox должен находиться файл с надстройкой excllink.xla . Запустите Excel и в меню Tools выберите пункт Add-ins . Откроется диалоговое окно, содержащее информацию о доступных в данный момент надстройках. Используя кнопку Browse , укажите путь к файлу excllink.xla . В списке надстроек диалогового окна появится строка Excel Link 2.0 for use with MatLab с установленным флагом. Нажмите OK , требуемая надстройка добавлена в Excel.

Обратите внимание, что в Excel теперь присутствует панель инструментов Excel Link , содержащая три кнопки: putmatrix , getmatrix , evalstring . Эти кнопки реализуют основные действия, требуемые для осуществления взаимосвязи между Excel и MatLab - обмен матричными данными, и выполнение команд MatLab из среды Excel. При повторных запусках Excel надстройка excllink.xla подключается автоматически.

Согласованная работа Excel и MatLab требует еще нескольких установок, которые приняты в Excel по умолчанию (но могут быть изменены). В меню Tools перейдите к пункту Options , открывается диалоговое окно Options . Выберите вкладку General и убедитесь, что флаг R1C1 reference style выключен, т.е. ячейки нумеруются A1 , A2 и т.д. На вкладке Edit должен быть установлен флаг Move selection after Enter .

3.2. Обмен данными между MatLab и Excel

Запустите Excel, проверьте, что проделаны все необходимые настройки так, как описано в предыдущем разделе (MatLab должен быть закрыт). Введите в ячейки с A1 по C3 матрицу, для отделения десятичных знаков используйте точку в соответствии с требованиями Excel.

Выделите на листе данные ячейки и нажмите кнопку putmatrix , появляется окно Excel с предупреждением о том, что MatLab не запущен. Нажмите OK , дождитесь открытия MatLab.

Появляется диалоговое окно Excel со строкой ввода, предназначенной для определения имени переменной рабочей среды MatLab, в которую следует экспортировать данные из выделенных ячеек Excel. Введите к примеру, М и закройте окно при помощи кнопки OK . Перейдите к командному окну MatLab и убедитесь, что в рабочей среде создалась переменная М , содержащая массив три на три:

Проделайте некоторые операции в MatLab с матрицей М , например, обратите ее.

Вызов inv для обращения матрицы, как и любой другой команды MatLab можно осуществить прямо из Excel. Нажатие на кнопку evalstring , расположенную на панели Excel Link , приводит к появлению диалогового окна, в строке ввода которого следует набрать команду MatLab

IM=inv(M) .

Результат аналогичен полученному при выполнении команды в среде MatLab.

Вернитесь в Excel, сделайте текущей ячейку A5 и нажмите кнопку getmatrix . Появляется диалоговое окно со строкой ввода, в которой требуется ввести имя переменной, импортируемой в Excel. В данном случае такой переменной является IM . Нажмите OK , в ячейки с A5 по A7 введены элементы обратной матрицы.

Итак, для экспорта матрицы в MatLab следует выделить подходящие ячейки листа Excel, а для импорта достаточно указать одну ячейку, которая будет являться верхним левым элементом импортируемого массива. Остальные элементы запишутся в ячейки листа согласно размерам массива, переписывая содержащиеся в них данные, поэтому следует соблюдать осторожность при импорте массивов.

Вышеописанный подход является самым простым способом обмена информацией между приложениями - исходные данные содержатся в Excel, затем экспортируются в MatLab, обрабатываются там некоторым образом и результат импортируется в Excel. Пользователь переносит данные при помощи кнопок панели инструментов Excel Link . Информация может быть представлена в виде матрицы, т.е. прямоугольной области рабочего листа. Ячейки, расположенные в строку или столбец, экспортируются, соответственно, в векторы -строки и векторы -столбцы MatLab. Аналогично происходит и импорт векторов-строк и векторов-столбцов в Excel.

4. Программирование

4.1. М-файлы

Работа из командной строки MatLab затрудняется, если требуется вводить много команд и часто их изменять. Ведение дневника при помощи команды diary и сохранение рабочей среды незначительно облегчают работу. Самым удобным способом выполнения групп команд MatLab является использование М-файлов, в которых можно набирать команды, выполнять их все сразу или частями, сохранять в файле и использовать в дальнейшем. Для работы с М-файлами предназначен редактор М-файлов. С его помощью можно создавать собственные функции и вызывать их, в том числе и из командного окна.

Раскройте меню File основного окна MatLab и в пункте New выберите подпункт M-file . Новый файл открывается в окне редактора M-файлов, которое изображено на рисунке.

М-файлы в MatLab бывают двух типов: файл-программы (Script M-Files ), содержащие последовательность команд, и файл-функции, (Function M-Files ), в которых описываются функции, определяемые пользователем.

4.2. Файл-программа

Наберите в редакторе команды, приводящие к построению двух графиков на одном графическом окне

Сохраните теперь файл с именем mydemo.m в подкаталоге work основного каталога MatLab, выбрав пункт Save as меню File редактора. Для запуска на выполнение всех команд, содержащихся в файле, следует выбрать пункт Run в меню Debug . На экране появится графическое окно Figure 1 , содержащее графики функций.

Команды файл-программы осуществляют вывод в командное окно. Для подавления вывода следует завершать команды точкой с запятой. Если при наборе сделана ошибка и MatLab не может распознать команду, то происходит выполнение команд до неправильно введенной, после чего выводится сообщение об ошибки в командное окно.

Очень удобной возможностью, предоставляемой редактором М-файлов, является выполнение части команд. Закройте графическое окно Figure 1 . Выделите при помощи мыши, удерживая левую кнопку, или клавишами со стрелками при нажатой клавише Shift , первые четыре команды и выполните их из пункта Text . Обратите внимание, что в графическое окно вывелся только один график, соответствующий выполненным: командам. Запомните, что для выполнения части команд их следует выделить и нажать клавишу F9 .

Отдельные блоки М-файла можно снабжать комментариями, которые пропускаются при выполнении, но удобны при работе с М-файлом. Комментарии начинаются со знака процента и автоматически выделяются зеленым цветом, например:

Открытие существующего М-файла производится при помощи пункта Open меню File рабочей среды, либо редактора М-файлов.

4.3. Файл-функция

Рассмотренная выше файл-программа является только последовательностью команд MatLab, она не имеет входных и выходных аргументов. Для использования численных методов и при программировании собственных приложений в MatLab необходимо уметь составлять файл-функции, которые производят необходимые действия с входными аргументами и возвращают результат действия в выходных аргументах. Разберем несколько простых примеров, позволяющих понять работу с файл-функциями.

Проводя предобработку данных многомерного анализа хемометрики часто применяет центрирование . Имеет смысл один раз написать файл-функцию, а потом вызывать его всюду, где необходимо производить центрирование. Откройте в редакторе М-файлов новый файл и наберите

Слово function в первой строке определяет, что данный файл содержит файл-функцию. Первая строка является заголовком функции, в которой размещается имя функции и списка входных и выходных аргументов. В примере имя функции centering , один входной аргумент X и один выходной - Xc. После заголовка следуют комментарии, а затем - тело функции (оно в данном примере состоит из двух строк), где и вычисляется ее значение. Важно, что вычисленное значение записывается в Xc . Не забудьте поставить точку с запятой для предотвращения вывода лишней информации на экран. Теперь сохраните файл в рабочем каталоге. Обратите внимание, что выбор пункта Save или Save as меню File приводит к появлению диалогового окна сохранения файла, в поле File name которого уже содержится название centering . Не изменяйте его, сохраните файл функцию в файле с предложенным именем!

Теперь созданную функцию можно использовать так же, как и встроенные sin , cos и другие. Вызов собственных функций может осуществляться из файл-программы и из другой файл-функции. Попробуйте сами написать файл-функцию, которая будет шкалировать матрицы, т.е. делить каждый столбец на величину среднеквадратичного отклонения по этому столбцу.

Можно написать файл-функции с несколькими входными аргументами, которые размещаются в списке через запятую. Можно также создавать и функции, возвращающие несколько значений. Для этого выходные аргументы добавляются через запятую в список выходных аргументов, а сам список заключается в квадратные скобки. Хорошим примером является функция, переводящая время, заданное в секундах, в часы, минуты и секунды.

При вызове файл-функций с несколькими выходными аргументами результат следует записывать в вектор соответствующей длины.

4.4 Создание графика

MatLab имеет широкие возможности для графического изображения векторов и матриц, а также для создания комментариев и печати графиков. Дадим описание несколько важных графических функций.

Функция plot имеет различные формы, связанные с входными параметрами, например plot(y) создает кусочно-линейный график зависимости элементов y от их индексов. Если в качестве аргументов заданы два вектора, то plot(x,y) создаст график зависимости y от x . Например, для построения графика функции sin в интервале от 0 до 2π, сделаем следующее

Программа построила график зависимости, который отображается в окне Figure 1

MatLab автоматически присваивает каждому графику свой цвет (исключая случаи, когда это делает пользователь), что позволяет различать наборы данных.

Команда hold on позволяет добавлять кривые на существующий график. Функция subplot позволяет выводить множество графиков в одном окне

4.5 Печать графиков

Пункт Print в меню File и команда print печатают графику MatLab. Меню Print вызывает диалоговое окно, которое позволяет выбирать общие стандартные варианты печати. Команда print обеспечивает большую гибкость при выводе выходных данных и позволяет контролировать печать из М-файлов. Результат может быть послан прямо на принтер, выбранный по умолчанию, или сохранен в заданном файле.

5. Примеры программ

В этом разделе приведены наиболее употребительные алгоритмы, используемые при анализе многомерных данных. Рассмотрены как простейшие методы преобразования данных центрирование и шкалирование, так и алгоритмы для анализа данных - PCA, PLS.

5.1. Центрирование и шкалирование

Часто при анализе требуется преобразовать исходные данные. Наиболее используемыми методами преобразования данных выступают центрирование и шкалирование каждой переменной на стандартное отклонение. В приводился код функции для центрирования матрицы. Поэтому ниже показан только код функции, которая шкалирует данные. Обратите внимание, что исходная матрица должна быть центрирована

function Xs = scaling(X)
% scaling: the output matrix is Xs
% matrix X must be centered

Xs = X * inv(diag(std(X)));

%end of scaling

5.2. SVD/PCA

Наиболее популярным способом сжатия данных в многомерном анализе является метод главных компонент (PCA) . С математической точки зрения PCA - это декомпозиция исходной матрицы X , т.е. представление ее в виде произведения двух матриц T и P

X = TP t + E

Матрица T называется матрицей счетов (scores) , матрица - матрицей остатков.

Простейший способ найти матрицы T и P - использовать SVD разложение через стандартную функцию MatLab, называемую svd .

function = pcasvd(X)

Svd(X);
T = U * D;
P = V;

%end of pcasvd

5.3 PCA/NIPALS

Для построения PCA счетов и нагрузок, используется рекуррентный алгоритм NIPALS , который на каждом шагу вычисляет одну компоненту. Сначала исходная матрица X преобразуется (как минимум – центрируется; см. ) и превращается в матрицу E 0 , a =0. Далее применяют следующий алгоритм.

t 2. p t = t t E a / t t t 3. p = p / (p t p ) ½ 4. t = E a p / p t p 5. Проверить сходимость, если нет, то идти на 2

После вычисления очередной (a -ой) компоненты, полагаем t a =t и p a =p E a +1 = E a t p a на a +1.

Код алгоритма NIPALS может быть написан и самими читателями, в данном же пособии авторы приводят свой вариант. При расчете PCA, можно вводить число главных компонент (переменная numberPC ). Если же не известно, сколько необходимо компонент, следует написать в командной строке = pcanipals (X) и тогда программа задаст число компонент равным наименьшему из показателей размерности исходной матрицы X .

function = pcanipals(X, numberPC)

% calculation of number of components
= size(X); P=; T=;

If lenfth(numberPC) > 0
pc = numberPC{1};
elseif (length(numberPC) == 0) & X_r < X_c
pc = X_r;
else
pc = X_c;
end;

for k = 1:pc
P1 = rand(X_c, 1); T1 = X * P1; d0 = T1"*T1;
P1 = (T1" * X/(T1" * T1))"; P1 = P1/norm(P1); T1 = X * P1; d = T1" * T1;

While d - d0 > 0.0001;
P1 = (T1" * X/(T1" * T1)); P1 = P1/norm(P1); T1 = X * P1; d0 = T1"*T1;
P1 = (T1" * X/(T1" * T1)); P1 = P1/norm(P1); T1 = X * P1; d = T1"*T1;
end

X = X - T1 * P1; P = cat(1, P, P1"); T = ;
end

О вычислении PCA с помощью надстройки Chemometrics рассказано в пособии

5.4 PLS1

Самым популярным способом для многомерной калибровки является метод проекции на латентные структуры (PLS). В этом методе проводится одновременная декомпозиция матрицы предикторов X и матрицы откликов Y :

X =TP t +E Y =UQ t +F T =XW (P t W ) –1

Проекция строится согласованно – так, чтобы максимизировать корреляцию между соответствующими векторами X -счетов t a и Y -счетов u a . Если блок данных Y включает несколько откликов (т.е. K >1), можно построить две проекции исходных данных – PLS1 и PLS2. В первом случае для каждого из откликов y k строится свое проекционное подпространство. При этом и счета T (U ) и нагрузки P (W , Q ) , зависят от того, какой отклик используется. Этот подход называется PLS1. Для метода PLS2 строится только одно проекционное пространство, которое является общим для всех откликов.

Детальное описание метода PLS приведено в этой книге Для построения PLS1 счетов и нагрузок, используется рекуррентный алгоритм. Сначала исходные матрицы X и Y центрируют

= mc(X);
= mc(Y);

и они превращаются в матрицу E 0 и вектор f 0 , a =0. Далее к ним применяет следующий алгоритм

1. w t = f a t E a 2. w = w / (w t w ) ½ 3. t = E a w 4. q = t t f a / t t t 5. u = q f a / q 2 6. p t = t t E a / t t t

После вычисления очередной (a -ой) компоненты, полагаем t a =t и p a =p . Для получения следующей компоненты надо вычислить остатки E a +1 = E a t p t и применить к ним тот же алгоритм, заменив индекс a на a +1.

Приведем код этого алгоритма, взятый из книги

function = pls(x, y)
%PLS: calculates a PLS component.
%The output vectors are w, t, u, q and p.
%
% Choose a vector from y as starting vector u.

u = y(:, 1);

% The convergence criterion is set very high.
kri = 100;

% The commands from here to end are repeated until convergence.
while (kri > 1e - 10)

% Each starting vector u is saved as uold.
uold = u; w = (u" * x)"; w = w/norm(w);
t = x * w; q = (t" * y)"/(t" * t);
u = y * q/(q" * q);

% The convergence criterion is the norm of u-uold divided by the norm of u.
kri = norm(uold - u)/norm(u);
end;

% After convergence, calculate p.
p = (t" * x)"/(t" * t);

% End of pls

О вычислении PLS1 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.

5.5 PLS2

Для PLS2 алгоритм выглядит следующим образом. Сначала исходные матрицы X и Y преобразуют (как минимум – центрируют; см. ), и они превращаются в матрицы E 0 и F 0 , a =0. Далее к ним применяет следующий алгоритм.

1. Выбрать начальный вектор u 2. w t = u t E a 3. w = w / (w t w ) ½ 4. t = E a w 5. q t = t t F a / t t t 6. u = F a q / q t q 7. Проверить сходимость, если нет, то идти на 2 8. p t = t t E a / t t t

После вычисления очередной (a -ой) PLS2 компоненты надо положить: t a =t , p a =p, w a =w , u a =u и q a =q . Для получения следующей компоненты надо вычислить остатки E a +1 = E a t p t и F a +1 = F a tq t и применить к ним тот же алгоритм, заменив индекс a на a +1.

Приведем код, которой также заимствован из из книги .

function = plsr(x, y, a)
% PLS: calculates a PLS component.
% The output matrices are W, T, U, Q and P.
% B contains the regression coefficients and SS the sums of
% squares for the residuals.
% a is the numbers of components.
%
% For a components: use all commands to end.

For i=1:a
% Calculate the sum of squares. Use the function ss.
sx = ;
sy = ;

% Use the function pls to calculate one component.
= pls(x, y);

% Calculate the residuals.
x = x - t * p";
y = y - t * q";

% Save the vectors in matrices.
W = ;
T = ;
U = ;
Q = ;
P = ;
end;

% Calculate the regression coefficients after the loop.
B=W*inv(P"*W)*Q";

% Add the final residual SS to the sum of squares vectors.
sx=;
sy=;

% Make a matrix of the ss vectors for X and Y.
SS = ;

%Calculate the fraction of SS used.
= size(SS);
tt = (SS * diag(SS(1,:).^(-1)) - ones(a, b)) * (-1)

%End of plsr

function = ss(x)
%SS: calculates the sum of squares of a matrix X.
%

ss=sum(sum(x. * x));
%End of ss

О вычислении PLS2 с помощью надстройки Chemometrics Add In рассказано в пособии Проекционные методы в системе Excel.

Заключение

MatLab ­ это это очень популярный инструмент для анализа данных. По данным опроса, его используют до трети всех исследователей, тогда как программа the Unsrambler применяется только 16% ученых. Главным недостатком MatLab являются его высокая цена. Кроме того, MatLab хорош для рутинных расчетов. Отсутствие интерактивности делает его неудобным при выполнении поисковых, исследовательских расчетов для новых, неисследованных массивов данных.

1. Урок 23. Знакомство с пакетами расширения MATLAB

Урок №23.

Знакомство с пакетами расширения МАТLАВ

    Вывод списка пакетов расширения

    Simulinc for Windows

    Пакет символьной математики

    Пакеты математических вычислений

    Пакеты анализа и синтеза систем управления

    Пакеты идентификации систем

    Дополнительные средства пакета Simulinc

    Пакеты для обработки сигналов и изображений

    Прочие пакеты прикладных программ

В этом уроке мы кратко ознакомимся с основными средствами профессионального расширения системы и ее адаптации под решение определенных классов математических и научно-технических задач - с пакетами расширения системы MATLAB. Несомненно, что хотя бы части из этих пакетов должен быть посвящен отдельный учебный курс или справочник, быть может, и не один. За рубежом по большинству таких расширений опубликованы отдельные книги, а объем документации по ним составляет сотни мегабайт. К сожалению, объем данной книги позволяет лишь немного пройтись по пакетам расширения, с тем чтобы дать читателю представление о том, в каких направлениях развивается система.

2. Вывод списка пакетов расширения

Вывод списка пакетов расширения

Полный состав системы MATLAB 6.0 содержит ряд компонентов, название, номер версии и дату создания которых можно вывести на просмотр командой ver:

MATLAB Version 6.0.0.88 (R12) on PCWIN MATLAB License Number: 0

MATLAB Toolbox

Version 6.0

06-0ct-2000

Version 4.0

Version 4.0

04-0ct-2000

Stateflow Coder

Version 4.0

04-0ct-2000

Real -Time Workshop

Version 4.0

COMA Reference Blockset

Version 1.0.2

Communications Blockset

Version 2.0

Communications Toolbox

Version 2.0

Control System Toolbox

Version 5.0

DSP Blockset

Version 4.0

Data Acquisition Toolbox

Version 2.0

05-0ct-2000

Database Toolbox

Version 2.1

Datafeed Toolbox

Version 1.2

Dials & Gauges Blockset

Version 1.1

Filter Design Toolbox

Version 2.0

Financial Derivatives Toolbox

Version 1.0

Financial Time Series Toolbox

Version 1.0

Financial Toolbox

Version 2.1.2

Fixed-Point Blockset

Version 3.0

Fuzzy Logic Toolbox

Version 2.1

GARCH Toolbox

Version 1.0

Image Processing Toolbox

Version 2.2.2

Instrument Control Toolbox

Version 1.0

LMI Control Toolbox

Version 1.0.6

MATLAB Compiler

Version 2.1

MATLAB Report Generator

Version 1.1

Mapping Toolbox

Version 1.2


Version 1.0.5

Motorola DSP Developer"s Kit

Version 1.1

Ol-Sep-2000

Ми-Analysis and Synthesis Toolbox

Version 3.0.5

Neural Network Toolbox

Version 4.0

Nonlinear Control Design Blockset

Version 1.1.4

Optimization Toolbox

Version 2.1

Partial Differential Equation Toolbox

Version 1.0.3

Power System Blockset

Version 2.1

Real -Time Workshop Ada Coder

Version 4.0

Real -Time Workshop Embedded Coder

Version 1.0

Requirements Management Interface

Version 1.0.1

Robust Control Toolbox

Version 2.0.7

SB2SL (converts SystemBuild to Simu

Version 2.1

Signal Processing Toolbox

Version 5.0

Simulink Accelerator

Version 1.0

Model Differencing for Simulink and...

Version 1.0

Simulink Model Coverage Tool

Version 1.0

Simulink Report Generator

Version 1.1

Spline Toolbox

Version 3.0

Statistics Toolbox

Version 3.0

Symbolic Math Toolbox

Version 2.1.2


Version 5.0

Wavelet Toolbox

Version 2.0

Version 1.1

xPC Target Embedded Option

Version 1.1

Обратите внимание, что практически все пакеты расширения в MATLAB 6.0 обновлены и датируются 2000 годом. Заметно расширено их описание, которое в PDF-формате уже занимает много более десятка тысяч страниц. Ниже дано краткое описание основных пакетов расширения

3. Simulink for Windows

Simulink for Windows

Пакет расширения Simulink служит для имитационного моделирования моделей, состоящих из графических блоков с заданными свойствами (параметрами). Компоненты моделей, в свою очередь, являются графическими блоками и моделями, которые содержатся в ряде библиотек и с помощью мыши могут переноситься в основное окно и соединяться друг с другом необходимыми связями. В состав моделей могут включаться источники сигналов различного вида, виртуальные регистрирующие приборы, графические средства анимации. Двойной щелчок мышью на блоке модели выводит окно со списком его параметров, которые пользователь может менять. Запуск имитации обеспечивает математическое моделирование построенной модели с наглядным визуальным представлением результатов. Пакет основан на построении блочных схем путем переноса блоков из библиотеки компонентов в окно редактирования создаваемой пользователем модели. Затем модель запускается на выполнение. На рис. 23.1 показан процесс моделирования простой системы - гидравлического цилиндра. Контроль осуществляется с помощью виртуальных осциллографов - на рис. 23.1 видны экраны двух таких осциллографов и окно простой подсистемы модели. Возможно моделирование сложных систем, состоящих из множества подсистем.

Simulink составляет и решает уравнения состояния модели и позволяет подключать в нужные ее точки разнообразные виртуальные измерительные приборы. Поражает наглядность представления результатов моделирования. Ряд примеров применения пакета Simulink уже приводился в уроке 4. Предшествующая версия пакета достаточно подробно описана в книгах. Основным нововведением является обработка матричных сигналов. Добавлены отдельные пакеты повышения производительности Simulink, такие как Simulink Accelerator для компиляции кода моделей, Simulink profiler для анализа кода и т. д.

Рис. 23.1. Пример моделирования системы гидравлического цилиндра с помощью расширения Simulink

1.gif

Изображение:

1b.gif

Изображение:

4. Real Time Windows Target и Workshop

Real Time Windows Target и Workshop

Подключающаяся к Simulink мощная подсистема имитационного моделирования в реальном масштабе времени (при наличии дополнительных аппаратных средств в виде плат расширения компьютера), представленная пакетами расширения Real Time Windows Target и Workshop, - мощное средство управления реальными объектами и системами. Кроме того, эти расширения позволяют создавать исполняемые коды моделей. Рис. 4.21 в уроке 4 показывает пример такого моделирования для системы, описываемой нелинейными дифференциальными уравнениями Ван-дер-Поля. Достоинством такого моделирования является его математическая и физическая наглядность. В компонентах моделей Simulink можно задавать не только фиксированные параметры, но и математические соотношения, описывающие поведение моделей.

5. Report Generator для MATLAB и Simulink

Report Generator для MATLAB и Simulink

Генераторы отчетов - средство, введенное еще в MATLAB 5.3.1, дает информацию о работе системы MATLAB и пакета расширения Simulink. Это средство очень полезно при отладке сложных вычислительных алгоритмов или при моделировании сложных систем. Генераторы отчетов запускаются командой Report. Отчеты могут быть представлены в виде программ и редактироваться.

Генераторы отчетов могут запускать входящие в отчеты команды и фрагменты программ и позволяют проконтролировать поведение сложных вычислений.

6. Neural Networks Toolbox

Neural Networks Toolbox

Пакет прикладных программ, содержащих средства для построения нейронных сетей, базирующихся на поведении математического аналога нейрона. Па-кет обеспечивает эффективную поддержку проектирования, обучения и моделирования множества известных сетевых парадигм, от базовых моделей персептрона до самых современных ассоциативных и самоорганизующихся сетей. Пакет может быть использован для исследования и применения нейронных сетей к таким задачам, как обработка сигналов, нелинейное управление и финансовое моделирование. Обеспечена возможность генерации переносимого С-кода с помощью Real Time Workshop.

В пакет включены более 15 известных типов сетей и обучающих правил, позволяющих пользователю выбирать наиболее подходящую для конкретного приложения или исследовательской задачи парадигму. Для каждого типа архитектуры и обучающих правил имеются функции инициализации, обучения, адаптации, создания и моделирования, демонстрации и пример приложения сети.

Для управляемых сетей можно выбрать прямую или рекуррентную архитектуру, используя множество обучающих правил и методов проектирования, таких как персептрон, обратное распространение, обратное распространение Левенберга, сети с радиальным базисом и рекуррентные сети. Вы можете легко изменять любые архитектуры, обучающие правила или переходные функции, добавлять новые, - и все это без написания единой строки на Си или ФОРТРАН. Пример применения пакета для распознавания образа буквы приводился в уроке 4. Детальное описание предшествующей версии пакета можно найти в книге.

7. Fuzzy Logic Toolbox

Fuzzy Logic Toolbox

Пакет прикладных программ Fuzzy Logic относится к теории нечетких (размытых) множеств. Обеспечивается поддержка современных методов нечеткой кластеризации и адаптивных нечетких нейронных сетей. Графические средства пакета позволяют интерактивно отслеживать особенности поведения системы.

Основные возможности пакета:

  • определение переменных, нечетких правил и функций принадлежности;
  • интерактивный просмотр нечеткого логического вывода;
  • современные методы: адаптивный нечеткий вывод с использованием нейронных сетей, нечеткая кластеризация;
  • интерактивное динамическое моделирование в Simulink;
  • генерация переносимого Си кода с помощью Real-Time Workshop.

Этот пример наглядно показывает отличия в поведении модели при учете нечеткой логики и без такого учета.

8. Symbolic Math Toolbox

Symbolic Math Toolbox

Пакет прикладных программ, дающих системе MATLAB принципиально новые возможности - возможности решения задач в символьном (аналитическом) виде, включая реализацию точной арифметики произвольной разрядности. Пакет базируется на применении ядра символьной математики одной из самых мощных систем компьютерной алгебры - Maple V R4. Обеспечивает выполнение символьного дифференцирования и интегрирования, вычисление сумм и произведений, разложение в ряды Тейлора и Маклорена, операции со степенными многочленами (полиномами), вычисление корней полиномов, решение в аналитическом виде нелинейных уравнений, всевозможные символьные преобразования, подстановки и многое другое. Имеет команды прямого доступа к ядру системы Maple V.

Пакет позволяет готовить процедуры с синтаксисом языка программирования системы Maple V R4 и устанавливать их в системе MATLAB. К сожалению, по возможностям символьной математики пакет сильно уступает специализированным системам компьютерной алгебры, таким как новейшие версии Maple и Mathematica.

9. Пакеты математических вычислений

Пакеты математических вычислений

В MATLAB входит множество пакетов расширения, усиливающих математические возможности системы, повышающих скорость, эффективность и точность вычислений.

10. NAG Foundation Toolbox

NAG Foundation Toolbox

Одна из самых мощных библиотек математических функций, созданная специальной группой The Numerical Algorithms Group, Ltd. Пакет содержит сотни новых функций. Названия функций и синтаксис их вызова заимствованы из известной библиотеки NAG Foundation Library. Вследствие этого опытные пользователи NAG ФОРТРАН могут без затруднений работать с пакетом NAG в MATLAB. Библиотека NAG Foundation предоставляет свои функции в виде объектных кодов и соответствующих m-файлов для их вызова. Пользователь может легко модифицировать эти МЕХ-файлы на уровне исходного кода.

Пакет обеспечивает следующие возможности:

    корни многочленов и модифицированный метод Лагерра;

    вычисление суммы ряда: дискретное и эрмитово-дискретное преобразование Фурье;

    обыкновенные дифференциальные уравнения: методы Адамса и Рунге-Кутта;

    уравнения в частных производных;

    интерполяция;

    вычисление собственных значений и векторов, сингулярных чисел, поддержка комплексных и действительных матриц;

    аппроксимация кривых и поверхностей: полиномы, кубические сплайны, полиномы Чебышева;

    минимизация и максимизация функций: линейное и квадратичное программирование, экстремумы функций нескольких переменных;

    разложение матриц;

    решение систем линейных уравнений;

    линейные уравнения (LAPACK);

    статистические расчеты, включая описательную статистику и распределения вероятностей;

    корреляционный и регрессионный анализ: линейные, многомерные и обобщенные линейные модели;

    многомерные методы: главных компонент, ортогональные вращения;

    генерация случайных чисел: нормальное распределение, распределения Пуассона, Вейбулла и Кощи;

    непараметрические статистики: Фридмана, Крускала-Уоллиса, Манна-Уитни; О временные ряды: одномерные и многомерные;

    аппроксимации специальных функций: интегральная экспонента, гамма-функция, функции Бесселя и Ганкеля.

Наконец, этот пакет позволяет пользователю создавать программы на ФОРТРАН, которые динамически линкуются с MATLAB.

11. Spline Toolbox

Пакет прикладных программ для работы со сплайнами. Поддерживает одномерную, двумерную и многомерную сплайн-интерполяцию и аппроксимацию. Обеспечивает представление и отображение сложных данных и поддержку графики.

Пакет позволяет выполнять интерполяцию, аппроксимацию и преобразование сплайнов из В-формы в кусочно-полиномиальную, интерполяцию кубическими сплайнами и сглаживание, выполнение операций над сплайнами: вычисление производной, интеграла и отображение.

Пакет Spline оснащен программами работы с В-сплайнами, описанными в работе «A Practical Guide to Splines» Карлом Дебуром, создателем сплайнов и автором пакета Spline. Функции пакета в сочетании с языком MATLAB и подробным руководством пользователя облегчают понимание сплайнов и их эффективное применение к решению разнообразных задач.

В пакет включены программы для работы с двумя наиболее широко распространенными формами представления сплайнов: В-формой и кусочно-полиномиальной формой. В-форма удобна на этапе построения сплайнов, в то время как кусочно-полиномиальная форма более эффективна во время постоянной работы со сплайном. Пакет включает функции для создания, отображения, интерполяции, аппроксимации и обработки сплайнов в В-форме и в виде отрезков полиномов.

12. Statistics Toolbox

Statistics Toolbox

Пакет прикладных программ по статистике, резко расширяющий возможности системы MATLAB в области реализации статистических вычислений и статистической обработки данных. Содержит весьма представительный набор средств генерации случайных чисел, векторов, матриц и массивов с различными законами распределения, а также множество статистических функций. Следует отметить, что наиболее распространенные статистические функции входят в состав ядра системы MATLAB (в том числе функции генерации случайных данных с равномерным и нормальным распределением). Основные возможности пакета:

    описательная статистика;

    распределения вероятностей;

    оценка параметров и аппроксимация;

    проверка гипотез;

    множественная регрессия;

    интерактивная пошаговая регрессия;

    моделирование Монте-Карло;

    аппроксимация на интервалах;

    статистическое управление процессами;

    планирование эксперимента;

    моделирование поверхности отклика;

    аппроксимация нелинейной модели;

    анализ главных компонент;

    статистические графики;

    графический интерфейс пользователя.

Пакет включает 20 различных распределений вероятностей, включая t (Стъюдента), F и Хи-квадрат. Подбор параметров, графическое отображение распределений и способ вычисления лучших аппроксимаций предоставляются для всех типов распределений. Предусмотрено множество интерактивных инструментов для динамической визуализации и анализа данных. Имеются специализированные интерфейсы для моделирования поверхности отклика, визуализации распределений, генерации случайных чисел и линий уровня.

13. Optimization Toolbox

Optimization Toolbox

Пакет прикладных задач- для решения оптимизационных задач и систем нелинейных уравнений. Поддерживает основные методы оптимизации функций ряда переменных:

    безусловная оптимизация нелинейных функций;

    метод наименьших квадратов и нелинейная интерполяция;

    решение нелинейных уравнений;

    линейное программирование;

    квадратичное программирование;

    условная минимизация нелинейных функций;

    метод минимакса;

    многокритериальная оптимизация.

Разнообразные примеры демонстрируют эффективное применение функций пакета. С их помощью можно также сравнить, как одна и та же задача решается разными методами.

14. Partial Differential Equations Toolbox

Partial Differential Equations Toolbox

Весьма важный пакет прикладных программ, содержащий множество функций для решения систем дифференциальных уравнений в частных производных. Дает эффективные средства для решения таких систем уравнений, в том числе жестких. В пакете используется метод конечных элементов. Команды и графический интерфейс пакета могут быть использованы для математического моделирования уравнений в частных производных применительно к широкому классу инженерных и научных приложений, включая задачи сопротивления материалов, расчеты электромагнитных устройств, задачи тепломассопереноса и диффузии. Основные возможности пакета:

    полноценный графический интерфейс для обработки уравнений с частными производными второго порядка;

    автоматический и адаптивный выбор сетки;

    задание граничных условий: Дирихле, Неймана и смешанных;

    гибкая постановка задачи с использованием синтаксиса MATLAB;

    полностью автоматическое сеточное разбиение и выбор величины конечных элементов;

    нелинейные и адаптивные расчетные схемы;

    возможность визуализации полей различных параметров и функций решения, демонстрация принятого разбиения и анимационные эффекты.

Пакет интуитивно следует шести шагам решения PDE с помощью метода конечных элементов. Эти шаги и соответствующие режимы пакета таковы: определение геометрии (режим рисования), задание граничных условий (режим граничных условий), выбор коэффициентов, определяющих задачу (режим PDE), дисркре-тизация конечных элементов (режим сетки), задание начальных условий и решение уравнений (режим решения), последующая обработка решения (режим графика).

15. Пакеты анализа и синтеза систем управления

Пакеты анализа и синтеза систем управления

Control System Toolbox

Пакет Control System предназначен для моделирования, анализа и проектирования систем автоматического управления - как непрерывных, так и дискретных. Функции пакета реализуют традиционные методы передаточных функций и современные методы пространства состояний. Частотные и временные отклики, диаграммы расположения нулей и полюсов могут быть быстро вычислены и отображены на экране. В пакете реализованы:

    полный набор средств для анализа MIMO-систем (множество входов - множество выходов) систем;

    временные характеристики: передаточная и переходная функции, реакция на произвольное воздействие;

    частотные характеристики: диаграммы Боде, Николса, Найквиста и др.;

    разработка обратных связей;

    проектирование LQR/LQE-регуляторов;

    характеристики моделей: управляемость, наблюдаемость, понижение порядка моделей;

    поддержка систем с запаздыванием.

Дополнительные функции построения моделей позволяют конструировать более сложные модели. Временной отклик может быть рассчитан для импульсного входа, единичного скачка или произвольного входного сигнала. Имеются также функции для анализа сингулярных чисел.

Интерактивная среда для сравнения временного и частотного отклика систем предоставляет пользователю графические управляющие элементы для одновременного отображения откликов и переключения между ними. Можно вычислять различные характеристики откликов, такие как время разгона и время регулирования.

Пакет Control System содержит средства для выбора параметров обратной связи. Среди традиционных методов: анализ особых точек, определение коэффициента усиления и затухания. Среди современных методов: линейно-квадратичное регулирование и др. Пакет Control System включает большое количество алгоритмов для проектирования и анализа систем управления. Кроме того, он обладает настраиваемым окружением и позволяет создавать свои собственные m-файлы.

16. Nonlinear Control Design Toolbox

Nonlinear Control Design Toolbox

Nonlinear Control Design (NCD) Blockset реализует- метод динамической оптимизации для проектирования систем управления. Этот инструмент, разработанный для использования с Simulink, автоматически настраивает системные параметры, основываясь на определенных пользователем ограничениях на временные характеристики.

Пакет использует перенос объектов мышью для изменения временных ограничений прямо на графиках, что позволяет легко настраивать переменные и указывать неопределенные параметры, обеспечивает интерактивную оптимизацию, реализует моделирование методом Монте-Карло, поддерживает проектирование SISO- (один вход - один выход) и MIMO-систем управления, позволяет моделировать подавление помех, слежение и другие типы откликов, поддерживает проблемы повторяющегося параметра и задачи управления системами с запаздыванием, позволяет осуществлять выбор между удовлетворенными и недостижимыми ограничениями.

17. Robust Control Toolbox

Robust Control Toolbox

Пакет Robust Control включает средства для проектирования и анализа многопараметрических устойчивых систем управления. Это системы с ошибками моделирования, динамика которых известна не полностью или параметры которых могут изменяться в ходе моделирования. Мощные алгоритмы пакета позволяют выполнять сложные вычисления с учетом изменения множества параметров. Возможности пакета:

    синтез LQG-регуляторов на основе минимизации равномерной и интегральной нормы;

    многопараметрический частотный отклик;

    построение модели пространства состояний;

    преобразование моделей на основе сингулярных чисел;

    понижение порядка модели;

    спектральная факторизация.

Пакет Robust Control базируется на функциях пакета Control System, одновременно предоставляя усовершенствованный набор алгоритмов для проектирования систем управления. Пакет обеспечивает переход между современной теорией управления и практическими приложениями. Он имеет множество функций, реализующих современные методы проектирования и анализа многопараметрических робастных регуляторов.

Проявления неопределенностей, нарушающих устойчивость систем, многообразны - шумы и возмущения в сигналах, неточность модели передаточной функции, немоделируемая нелинейная динамика. Пакет Robust Control позволяет оценить многопараметрическую границу устойчивости при различных неопределенностях. Среди используемых методов: алгоритм Перрона, анализ особенностей передаточных функций и др.

Пакет Robust Control обеспечивает различные методы проектирования обратных связей, среди которых: LQR, LQG, LQG/LTR и др. Необходимость понижения порядка модели возникает в нескольких случаях: понижение порядка объекта, понижение порядка регулятора, моделирование больших систем. Качественная процедура понижения порядка модели должна быть численно устойчива. Процедуры, включенные в пакет Robust Control, успешно справляются с этой задачей.

18. Model Predictive Control Toolbox

Model Predictive Control Toolbox

Пакет Model Predictive Control содержит полный набор средств для реализации стратегии предиктивного (упреждающего) управления. Эта стратегия была разработана для решения практических задач управления сложными многоканальными процессами при наличии ограничений на переменные состояния и управление. Методы предикативного управления используются в химической промышленности и для управления другими непрерывными процессами. Пакет обеспечивает:

    моделирование, идентификацию и диагностику систем;

    поддержку MISO (много входов - один выход), MIMO, переходных характеристик, моделей пространства состояний;

    системный анализ;

    конвертирование моделей в различные формы представления (пространство состояний, передаточные функции);

    предоставление учебников и демонстрационных примеров.

Предикативный подход к задачам управления использует явную линейную динамическую модель объекта для прогнозирования влияния будущих изменений управляющих переменных на поведение объекта. Проблема оптимизации формулируется в виде задачи квадратичного программирования с ограничениями, решаемой на каждом такте моделирования заново. Пакет позволяет создавать и тестировать регуляторы как для простых, так и для сложных объектов.

Пакет содержит более полусотни специализированных функций для проектирования, анализа и моделирования динамических систем с использованием предикативного управления. Он поддерживает следующие типы систем: импульсные, непрерывные и дискретные по времени, пространство состояний. Обрабатываются различные виды возмущений. Кроме того, в модель могут быть явно включены ограничения на входные и выходные переменные.

Средства моделирования позволяют осуществлять слежение и стабилизацию. Средства анализа включают вычисление полюсов замкнутого контура, частотного отклика, другие характеристики системы управления. Для идентификации модели в пакете имеются функции взаимодействия с пакетом System Identification. Пакет также включает две функции Simulink, позволяющие тестировать нелинейные модели.

19. мю - Analysis and Synthesis

(Мю)-Analysis and Synthesis

Пакет p-Analysis and Synthesis содержит функции для проектирования устойчивых систем управления. Пакет использует оптимизацию в равномерной норме и сингулярный параметр и. В этот пакет включен графический интерфейс для упрощения операций с блоками при проектировании оптимальных регуляторов. Свойства пакета:

  • проектирование регуляторов, оптимальных в равномерной и интегральной норме;
  • оценка действительного и комплексного сингулярного параметра мю;
  • D-K-итерации для приближенного мю -синтеза;

    графический интерфейс для анализа отклика замкнутого контура;

    средства понижения порядка модели;

    непосредственное связывание отдельных блоков больших систем.

Модель пространства состояний может быть создана и проанализирована на основе системных матриц. Пакет поддерживает работу с непрерывными и дискретными моделями. Пакет обладает полноценным графическим интерфейсом, включающим в себя: возможность устанавливать диапазон вводимых данных, специальное окно для редактирования свойств D-K итераций и графическое представление частотных характеристик. Имеет функции для матричного сложения, умножения, различных преобразований и других операций над матрицами. Обеспечивает возможность понижения порядка моделей.

20. Stateflow

Stateflow - пакет моделирования событийно-управляемых систем, основанный на теории конечных автоматов. Этот пакет предназначен для использования вместе с пакетом моделирования динамических систем Simulink. В любую Simulink-мо-дель можно вставить Stateflow-диаграмму (или SF-диаграмму), которая будет отражать поведение компонентов объекта (или системы) моделирования. SF-диаграмма является анимационной. По ее выделяющимся цветом блокам и связям можно проследить все стадии работы моделируемой системы или устройства и поставить ее работу в зависимость от тех или иных событий. Рис. 23.6 иллюстрирует моделирование поведения автомобиля при возникновении чрезвычайного обстоятельства на дороге. Под моделью автомобиля видна SF-диаграмма (точнее, один кадр ее работы).

Для создания SF-диаграмм пакет имеет удобный и простой редактор, а также средства пользовательского интерфейса.

21. Quantitative Feedback Theory Toolbox

Quantitative Feedback Theory Toolbox

Пакет содержит функции для создания робастных (устойчивых) систем с обратной связью. QFT (количественная теория обратных связей) - инженерный метод, использующий частотное представление моделей для удовлетворения различных требований к качеству при наличии неопределенных характеристик объекта. В основе метода лежит наблюдение, что обратная связь необходима в тех случаях, когда некоторые характеристики объекта неопределенны и/или на его вход подаются неизвестные возмущения. Возможности пакета:

    оценка частотных границ неопределенности, присущей обратной связи;

    графический интерфейс пользователя, позволяющий оптимизировать процесс нахождения требуемых параметров обратной связи;

    функции для определения влияния различных блоков, вводимых в модель (мультиплексоров, сумматоров, петель обратной связи) при наличии неопределенностей;

    поддержка моделирования аналоговых и цифровых контуров обратной связи, каскадов и многоконтурных схем;

    разрешение неопределенности в параметрах объекта с использованием параметрических и непараметрических моделей или комбинации этих типов моделей.

Теория обратных связей является естественным продолжением классического частотного подхода к проектированию. Ее основная цель - проектирование простых регуляторов небольшого порядка с минимальной шириной полосы пропускания, удовлетворяющих качественным характеристикам при наличии неопределенностей.

Пакет позволяет вычислять различные параметры обратных связей, фильтров, проводить тестирование регуляторов как в непрерывном, так и в дискретном пространстве. Имеет удобный графический интерфейс, позволяющий создавать простые регуляторы, удовлетворяющие требованиям пользователя.

QFT позволяет проектировать регуляторы, удовлетворяющие различным требованиям, несмотря на изменения параметров модели. Измеряемые данные могут быть непосредственно использованы для проектирования регуляторов, без необходимости идентификации сложного отклика системы.

22. LMI Control Toolbox

LMI Control Toolbox

Пакет LMI (Linear Matrix Inequality) Control обеспечивает интегрированную среду для постановки и решения задач линейного программирования. Предназначенный первоначально для проектирования систем управления пакет позволяет решать любые задачи линейного программирования практически в любой сфере деятельности, где такие задачи возникают. Основные возможности пакета:

    решение задач линейного программирования: задачи совместности ограничений, минимизация линейных целей при наличии линейных ограничений, минимизация собственных значений;

    исследование задач линейного программирования;

    графический редактор задач линейного программирования;

    задание ограничений в символьном виде;

    многокритериальное проектирование регуляторов;

    проверка устойчивости: квадратичная устойчивость линейных систем, устойчивость по Ляпунову, проверка критерия Попова для нелинейных систем.

Пакет LMI Control содержит современные симплексные алгоритмы для решения задач линейного программирования. Использует структурное представление линейных ограничений, что повышает эффективность и минимизирует требования к памяти. Пакет имеет специализированные средства для анализа и проектирования систем управления на основе линейного программирования.

С помощью решателей задач линейного программирования можно легко выполнять проверку устойчивости динамических систем и систем с нелинейными компонентами. Ранее этот вид анализа считался слишком сложным для реализации. Пакет позволяет даже такое комбинирование критериев, которое ранее считалось слишком сложным и разрешимым лишь с помощью эвристических подходов.

Пакет является мощным средством для решения выпуклых задач оптимизации, возникающих в таких областях, как управление, идентификация, фильтрация," структурное проектирование, теория графов, интерполяция и линейная алгебра. Пакет LMI Control включает два вида графического интерфейса пользователя: редактор задачи линейного программирования (LMI Editor) и интерфейс Magshape. LMI Editor позволяет задавать ограничения в символьном виде, a Magshape обеспечивает пользователя удобными средствами работы с пакетом.

23. Пакеты идентификации систем

Пакеты идентификации систем

System Identification Toolbox

Пакет System Identification содержит средства для создания математических моделей динамических систем на основе наблюдаемых входных и выходных данных. Он имеет гибкий графический интерфейс, помогающий организовать данные и создавать модели. Методы идентификации, входящие в пакет, применимы для решения широкого класса задач, от проектирования систем управления и обработки сигналов до анализа временных рядов и вибрации. Основные свойства пакета:

    простой и гибкий интерфейс;

    предварительная обработка данных, включая предварительную фильтрацию, удаление трендов и смещений; О выбор диапазона данных для анализа;

    анализ отклика во временной и частотной области;

    отображение нулей и полюсов передаточной функции системы;

    анализ невязок при тестировании модели;

    построение сложных диаграмм, таких как диаграмма Найквиста и др.

Графический интерфейс упрощает предварительную обработку данных, а также диалоговый процесс идентификации модели. Возможна также работа с пакетом в командном режиме и с применением расширения Simulink. Операции загрузки и сохранения данных, выбора диапазона, удаления смещений и трендов выполняются с минимальными усилиями и находятся в главном меню.

Представление данных и идентифицированных моделей организовано графически таким образом, что в процессе интерактивной идентификации пользователь легко может вернуться к предыдущему шагу работы. Для новичков существует возможность просматривать следующие возможные шаги. Специалисту графические средства позволяют отыскать любую из ранее полученных моделей и оценить ее качество в сравнении с другими моделями.

Начав с измерения выхода и входа, можно создать параметрическую модель системы, описывающую ее поведение в динамике. Пакет поддерживает все традиционные структуры моделей, включая авторегрессию, структуру Бокса-Дженкинса и др. Он поддерживает линейные модели пространства состояний, которые могут быть определены как в дискретном, так и в непрерывном пространстве. Эти модели могут включать произвольное число входов и выходов. В пакет включены функции, которые можно использовать как тестовые данные для идентифицированных моделей. Идентификация линейных моделей широко используется при проектировании систем управления, когда требуется создать модель объекта. В задачах обработки сигналов модели могут быть использованы для адаптивной обработки сигналов. Методы идентификации успешно применяются и для финансовых приложений.

24. Frequency Domain System Identification Toolbox

Frequency Domain System Identification Toolbox

Пакет Frequency Domain System Identification предоставляет специализированные средства для идентификации линейных динамических систем по их временному или частотному отклику. Частотные методы направлены на идентификацию непрерывных систем, что является мощным дополнением к более традиционной дискретной методике. Методы пакета могут быть применены к таким задачам, как моделирование электрических, механических и акустических систем. Свойства пакета:

    периодические возмущения, пик-фактор, оптимальный спектр, псевдослучайные и дискретные двоичные последовательности;

    расчет доверительных интервалов амплитуды и фазы, нулей и полюсов;

    идентификация непрерывных и дискретных систем с неизвестным запаздыванием;

    диагностика модели, включая моделирование и вычисление невязок;

    преобразование моделей в формат System Identification Toolbox и обратно.

Используя частотный подход, можно добиться наилучшей модели в частотной области; избежать ошибок дискретизации; легко выделять постоянную составляющую сигнала; существенно улучшить отношение сигнал/шум. Для получения возмущающих сигналов пакет предоставляет функции генерации двоичных последовательностей, минимизации величины пика и улучшения спектральных характеристик. Пакетом обеспечивается идентификация непрерывных и дискретных линейных статических систем, автоматическая генерация входных сигналов, а также графическое изображение нулей и полюсов передаточной функции результирующей системы. Функции для тестирования модели включают вычисление невязок, передаточных функций, нулей и полюсов, прогонку модели с использованием тестовых данных.

25. Дополнительные пакеты расширения MATLAB

Дополнительные пакеты расширения MATLAB

Communications Toolbox

Пакет прикладных программ для построения и моделирования разнообразных телекоммуникационных устройств: цифровых линий связи, модемов, преобразователей сигналов и др. Имеет богатейший набор моделей самых различных устройств связи и телекоммуникаций. Содержит ряд интересных примеров моделирования коммуникационных средств, например модема, работающего по протоколу v34, модулятора для обеспечения однополосной модуляции и др.

26. Digital Signal Processing (DSP) Blockset

Digital Signal Processing (DSP) Blockset

Пакет прикладных программ для проектирования устройств, использующих процессоры цифровой обработки сигналов. Это прежде всего высокоэффективные цифровые фильтры с заданной или адаптируемой к параметрам сигналов частотной характеристикой (АЧХ). Результаты моделирования и проектирования цифровых устройств с помощью этого пакета могут использоваться для построения высокоэффективных цифровых фильтров на современных микропроцессорах цифровой обработки сигналов.

27. Fixed-Point Blockset

Fixed-Point Blockset

Этот специальный пакет ориентирован на моделирование цифровых систем управления и цифровых фильтров в составе пакета Simulink. Специальный набор компонентов позволяет быстро переключаться между вычислениями с фиксированной и плавающей запятой (точкой). Можно указывать 8-, 16- или 32-битовую длину слова. Пакет обладает рядом полезных свойств:

    применение беззнаковой или двоичной арифметики;

    выбор пользователем положения двоичной точки;

    автоматическая установка положения двоичной точки;

    просмотр максимального и минимального диапазонов сигнала модели;

    переключение между вычислениями с фиксированной и плавающей точкой;

    коррекция переполнения и наличие ключевых компонентов для операций с фиксированной точкой; логические операторы, одно- и двумерные справочные таблицы.

28. Пакеты для обработки сигналов и изображений

Пакеты для обработки сигналов и изображений

Signal Processing Toolbox

Мощный пакет по анализу, моделированию и проектированию устройств обработки всевозможных сигналов, обеспечению их фильтрации и множества преобразований.

Пакет Signal Processing обеспечивает чрезвычайно обширные возможности создания программ обработки сигналов для современных научных и технических приложений. В пакете используется разнообразная техника фильтрации и новейшие алгоритмы спектрального анализа. Пакет содержит модули для разработки линейных систем и анализа временных рядов. Пакет будет полезен, в частности, в таких областях, как обработка аудио- и видеоинформации, телекоммуникации, геофизика, задачи управления в реальном режиме времени, экономика, финансы и медицина. Основные свойства пакета:

    моделирование сигналов и линейных систем;

    проектирование, анализ и реализация цифровых и аналоговых фильтров;

    быстрое преобразование Фурье, дискретное косинусное и другие преобразования;

    оценка спектров и статистическая обработка сигналов;

    параметрическая обработка временных рядов;

    генерация сигналов различной формы.

Пакет Signal Processing - идеальная оболочка для анализа и обработки сигналов. В нем используются проверенные практикой алгоритмы, выбранные по критериям максимальной эффективности и надежности. Пакет содержит широкий спектр алгоритмов для представления сигналов и линейных моделей. Этот набор позволяет пользователю достаточно гибко подходить к созданию сценария обработки сигналов. Пакет включает алгоритмы для преобразования модели из одного представления в другое.

Пакет Signal Processing включает полный набор методов для создания цифровых фильтров с разнообразными характеристиками. Он позволяет быстро разрабатывать фильтры верхних и нижних частот, полосовые пропускающие и задерживающие фильтры, многополосные фильтры, в том числе фильтры Чебышева, Юла-Уолкера, эллиптические и др.

Графический интерфейс позволяет проектировать фильтры, задавая требования к ним в режиме переноса объектов мышью. В пакет включены следующие новые методы проектирования фильтров:

    обобщенный метод Чебышева для создания фильтров с нелинейной фазовой характеристикой, комплексными коэффициентами или произвольным откликом. Алгоритм разработан Макленаном и Карамом в 1995 г.;

    метод наименьших квадратов с ограничениями позволяет пользователю явно контролировать максимальную ошибку (сглаживание);

    метод расчета минимального порядка фильтра с окном Кайзера;

    обобщенный метод Баттерворта для проектирования низкочастотных фильтров с максимально однородными полосами пропускания и затухания.

Основанный на оптимальном алгоритме быстрого преобразования Фурье пакет Signal Processing обладает непревзойденными характеристиками для частотного анализа и спектральных оценок. Пакет включает функции для вычисления дискретного преобразования Фурье, дискретного косинусного преобразования, преобразования Гильберта и других преобразований, часто применяемых для анализа, кодирования и фильтрации. В пакете реализованы такие методы спектрального анализа как метод Вельха, метод максимальной энтропии и др.

Новый графический интерфейс позволяет просматривать и визуально оценивать характеристики сигналов, проектировать и применять фильтры, производить спектральный анализ, исследуя влияние различных методов и их параметров на получаемый результат. Графический интерфейс особенно полезен для визуализации временных рядов, спектров, временных и частотных характеристик, расположения нулей и полюсов передаточных функций систем.

Пакет Signal Processing является основой для решения многих других задач. Например, комбинируя его с пакетом Image Processing, можно обрабатывать и анализировать двумерные сигналы и изображения. В паре с пакетом System Identification пакет Signal Processing позволяет выполнять параметрическое моделирование систем во временной области. В сочетании с пакетами Neural Network и Fuzzy Logic может быть создано множество средств для обработки данных или выделения классификационных характеристик. Средство генерации сигналов позволяет создавать импульсные сигналы различной формы.

29. Higher-Order Spectral Analysis Toolbox

Higher-Order Spectral Analysis Toolbox

Пакет Higher-Order Spectral Analysis содержит специальные алгоритмы для анализа сигналов с использованием моментов высшего порядка. Пакет предоставляет широкие возможности для анализа негауссовых сигналов, так как содержит алгоритмы, пожалуй, самых передовых методов для анализа и обработки сигналов. Основные возможности пакета:

    оценка спектров высокого порядка;

    традиционный или параметрический подход;

    восстановление амплитуды и фазы;

    адаптивное линейное прогнозирование;

    восстановление гармоник;

    оценка запаздывания;

    блочная обработка сигналов.

Пакет Higher-Order Spectral Analysis позволяет анализировать сигналы, поврежденные негауссовым шумом, и процессы, происходящие в нелинейных системах. Спектры высокого порядка, определяемые в терминах моментов высокого порядка сигнала, содержат дополнительную информацию, которую невозможно получить, пользуясь только анализом автокорреляции или спектра мощности сигнала. Спектры высокого порядка позволяют:

    подавить аддитивный цветной гауссов шум;

    идентифицировать неминимально-фазовые сигналы;

    выделить информацию, обусловленную негауссовым характером шума;

    обнаружить и проанализировать нелинейные свойства сигналов.

Возможные приложения спектрального анализа высокого порядка включают акустику, биомедицину, эконометрию, сейсмологию, океанографию, физику плазмы, радары и локаторы. Основные функции пакета поддерживают спектры высокого порядка, взаимную спектральную оценку, линейные модели прогноза и оценку запаздывания.

30. Image Processing Toolbox

Image Processing Toolbox

Пакет Image Processing предоставляет ученым, инженерам и даже художникам широкий спектр средств для цифровой обработки и анализа изображений. Будучи тесно связанным со средой разработки приложений MATLAB, пакет Image Processing Toolbox освобождает вас от выполнения длительных операций кодирования и отладки алгоритмов, позволяя сосредоточить усилия на решении основной научной или практической задачи. Основные свойства пакета:

    восстановление и выделение деталей изображений;

    работа с выделенным участком изображения;

    анализ изображения;

    линейная фильтрация;

    преобразование изображений;

    геометрические преобразования;

    увеличение контрастности важных деталей;

    бинарные преобразования;

    обработка изображений и статистика;

    цветовые преобразования;

    изменение палитры;

    преобразование типов изображений.

Пакет Image Processing дает широкие возможности для создания и анализа графических изображений в среде MATLAB. Этот пакет обеспечивает чрезвычайно гибкий интерфейс, позволяющий манипулировать изображениями, интерактивно разрабатывать графические картины, визуализировать наборы данных и аннотировать результаты для технических описаний, докладов и публикаций. Гибкость, соединение алгоритмов пакета с такой особенностью MATLAB, как матрично-векторное описание делают пакет очень удачно приспособленным для решения практически любых задач по разработке и представлению графики. Примеры применения этого пакета в среде системы MATLAB были даны в уроке 7. В MATLAB входят специально разработанные процедуры, позволяющие повысить эффективность графической оболочки. Можно отметить, в частности, такие особенности:

    интерактивная отладка при разработке графики;

    профилировщик для оптимизации времени выполнения алгоритма;

    средства построения интерактивного графического интерфейса пользователя (GUI Builder) для ускорения разработки GUI-шаблонов, позволяющие настраивать его под задачи пользователя.

Этот пакет позволяет пользователю тратить значительно меньше времени и сил на создание стандартных графических изображений и, таким образом, сконцентрировать усилия на важных деталях и особенностях изображений.

MATLAB и пакет Image Processing максимально приспособлены для развития, внедрения новых идей и методов пользователя. Для этого имеется набор сопрягаемых пакетов, направленных на решение всевозможных специфических задач и задач в нетрадиционной постановке.

Пакет Image Processing в настоящее время интенсивно используется в более чем 4000 компаниях и университетах по всему миру. При этом имеется очень широкий круг задач, которые пользователи решают с помощью данного пакета, например космические исследования, военные разработки, астрономия, медицина, биология, робототехника, материаловедение, генетика и т. д.

31. Wavelet Toolbox

Пакет Wavelet предоставляет пользователю полный набор программ для исследования многомерных нестационарных явлений с помощью вейвлетов (коротких волновых пакетов). Сравнительно недавно созданные методы пакета Wavelet расширяют возможности пользователя в тех областях, где обычно применяется техника Фурье-разложения. Пакет может быть полезен для таких приложений, как обработка речи и аудиосигналов, телекоммуникации, геофизика, финансы и медицина. Основные свойства пакета:

    усовершенствованный графический пользовательский интерфейс и набор команд для анализа, синтеза, фильтрации сигналов и изображений;

    преобразование многомерных непрерывных сигналов;

    дискретное преобразование сигналов;

    декомпозиция и анализ сигналов и изображений;

    широкий выбор базисных функций, включая коррекцию граничных эффектов;

    пакетная обработка сигналов и изображений;

    анализ пакетов сигналов, основанный на энтропии;

    фильтрация с возможностью установления жестких и нежестких порогов;

    оптимальное сжатие сигналов.

Пользуясь пакетом, можно анализировать такие особенности, которые упускают другие методы анализа сигналов, т. е. тренды, выбросы, разрывы в производных высоких порядков. Пакет позволяет сжимать и фильтровать сигналы без явных потерь даже в тех случаях, когда нужно сохранить и высоко- и низкочастотные компоненты сигнала. Имеются алгоритмы сжатия и фильтрации и для пакетной обработки сигналов. Программы сжатия выделяют минимальное число коэффициентов, представляющих исходную информацию наиболее точно, что очень важно для последующих стадий работы системы сжатия. В пакет включены следующие базисные наборы вейвлетов: биортогональный, Хаара, «Мексиканская шляпа», Майера и др. Вы также можете добавить в пакет свои собственные базисы.

Обширное руководство пользователя объясняет принципы работы с методами пакета, сопровождая их многочисленными примерами и полноценным разделом ссылок.

32. Прочие пакеты прикладных программ

Прочие пакеты прикладных программ

Financial Toolbox

Довольно актуальный для нашего периода рыночных реформ пакет прикладных программ по финансово-экономическим расчетам. Содержит множество функций по расчету сложных процентов, операций по банковским вкладам, вычисления прибыли и многое другое. К сожалению, из за многочисленных (хотя, в общем-то, не слишком принципиальных) различий в финансово-экономических формулах его применение в наших условиях не всегда разумно - есть множество отечественных программ для таких расчетов, - например «Бухгалтерия 1C». Но если вы хотите подключиться к базам данных агентств финансовых новостей - Bloom-berg, IDC через пакет Datafeed Toolbox MATLAB, то, конечно, обязательно пользуйтесь и финансовыми пакетами расширения MATLAB.

Пакет Financial является основой для решения в MATLAB множества финансовых задач, от простых вычислений до полномасштабных распределенных приложений. Пакет Financial может быть использован для расчета процентных ставок и прибыли, анализа производных доходов и депозитов, оптимизации портфеля инвестиций. Основные возможности пакета:

    обработка данных;

    дисперсионный анализ эффективности портфеля инвестиций;

    анализ временных рядов;

    расчет доходности ценных бумаг и оценка курсов;

    статистический анализ и анализ чувствительности рынка;

    калькуляция ежегодного дохода и расчет денежных потоков;

    методы начисления износа и амортизационных отчислений.

Учитывая важность даты той или иной финансовой операции, в пакет Financial включены несколько функций для манипулирования датами и временем в различных форматах. Пакет Financial позволяет рассчитывать цены и доходы при инвестициях в облигации. Пользователь имеет возможность задавать нестандартные, в том числе нерегулярные и несовпадающие друг с другом, графики дебитных и кредитных операций и окончательного расчета при погашении векселей. Экономические функции чувствительности могут быть вычислены с учетом разновременных сроков погашения.

Алгоритмы пакета Financial для расчета показателей движения денежных средств и других данных, отражаемых в финансовых счетах, позволяют вычислять, в частности, процентные ставки по займам и кредитам, коэффициенты рентабельности, кредитные поступления и итоговые начисления, оценивать и прогнозировать стоимость инвестиционного портфеля, вычислять показатели износа и т. п. Функции пакета могут быть использованы с учетом положительного и отрицательного денежных потоков (cash-flow) (превышения денежных поступлений над платежами или денежных выплат над поступлениями соответственно).

Пакет Financial содержит алгоритмы, которые позволяют анализировать портфель инвестиций, динамику и экономические коэффициенты чувствительности. В частности, при определении эффективности инвестиций функции пакета позволяют сформировать портфель, удовлетворяющий классической задаче Г. Марковица. Пользователь может комбинировать алгоритмы пакета для вычисления коэффициентов Шарпе и ставок дохода. Анализ динамики и экономических коэффициентов чувствительности позволяет пользователю определить позиции для стреддл-сделок, хеджирования и сделок с фиксированными ставками. Пакет Financial обеспечивает также обширные возможности для представления и презентации данных и результатов в виде традиционных для экономической и финансовой сфер деятельности графиков и диаграмм. Денежные средства могут по желанию пользователя отображаться в десятичном, банковском и процентном форматах.

33. Mapping Toolbox

Пакет Mapping предоставляет графический и командный интерфейс для анализа географических данных, отображения карт и доступа к внешним источникам данных по географии. Кроме того, пакет пригоден для работы с множеством широко известных атласов. Все эти средства в комбинации с MATLAB предоставляют пользователям все условия для продуктивной работы с научными географическими данными. Основные возможности пакета:

    визуализация, обработка и анализ графических и научных данных;

    более 60 проекций карт (прямые и инверсные);

    проектирование и отображение векторных, матричных и составных карт;

    графический интерфейс для построения и обработки карт и данных;

    глобальные и региональные атласы данных и сопряжение с правительственными данными высокого разрешения;

    функции географической статистики и навигации;

    трехмерное представление карт со встроенными средствами подсветки и затенения;

    конвертеры для популярных форматов географических данных: DCW, TIGER, ЕТОРО5.

Пакет Mapping включает более 60 наиболее широко известных проекций, включая цилиндрическую, псевдоцилиндрическую, коническую, поликоническую и псевдоконическую, азимутальную и псевдоазимутальную. Возможны прямые и обратные проекции, а также нестандартные виды проекции, задаваемые пользователем.

В пакете Mapping картой называется любая переменная или множество переменных, отражающих или назначающих численное значение географической точке или области. Пакет позволяет работать с векторными, матричными и смешанными картами данных. Мощный графический интерфейс обеспечивает интерактивную работу с картами, например возможность подвести указатель к объекту и, щелкнув на нем, получить информацию. Графический интерфейс MAPTOOL - полная среда разработки приложений для работы с картами.

Наиболее широко известные атласы мира, Соединенных Штатов, астрономические атласы входят в состав пакета. Географическая структура данных упрощает извлечение и обработку данных из атласов и карт. Географическая структура данных и функции взаимодействия с внешними географическими данными форматов Digital Chart of the World (DCW), TIGER, TBASE и ЕТОРО5 собраны воедино, чтобы обеспечить мощный и гибкий инструмент для доступа к уже существующим и будущим географическим базам данных. Тщательный анализ географических данных часто требует математических методов, работающих в сферической системе координат. Пакет Mapping снабжен подмножеством географических, статистических и навигационных функций для анализа географических данных. Функции навигации дают широкие возможности для выполнения задач перемещения, таких как позиционирование и планирование маршрутов.

34. Power System Blockset

Data Acquisition Toolbox и Instrument Control Toolbox

Data Acquisition Toolbox - пакет расширения, относящийся к области сбора данных через блоки, подключаемые к внутренней шине компьютера, функциональных генераторов, анализаторов спектра - словом, приборов, широко используемых в исследовательских целях для получения данных. Они поддержаны соответствующей вычислительной базой. Новый блок Instrument Control Toolbox позволяет подключать приборы и устройства с последовательным интерфейсом и с интерфейсами Канал общего пользования и VXI.

36. Database toolbox и Virtual Reality Toolbox

Database toolbox и Virtual Reality Toolbox

Более чем в 100 раз повышена скорость работы Database toolbox, при помощи которого осуществляется обмен информацией с целым рядом систем управления базами данных через драйверы ODBC или JDBC:

  • Access 95 или 97 Microsoft;

    Microsoft SQL Server 6.5 или 7.0;

    Sybase Adaptive Server 11;

    Sybase (бывший Watcom) SQL Server Anywhere 5.0;

    IBM DB2 Universal 5.0;

  • Computer Associates Ingres (все версии).

Все данные предварительно преобразуются в массив ячеек в MATLAB 6.0. В MATLAB 6.1 можно использовать и массив структур. Визуальный конструктор (Visual Query Builder) позволяет составлять сколь угодно сложные запросы на диалектах языка SQL этих баз данных даже без знания SQL. В одном сеансе может быть открыто много неоднородных баз данных.

Пакет Virtual Reality Toolbox доступен начиная с версии MATLAB 6.1. Позволяет осуществлять трехмерную анимацию и мультипликацию, в том числе моделей Simulink. Язык программирования - VRML - язык моделирования виртуальной реальности (Virtual Reality Modeling Language). Просмотр анимации возможен с любого компьютера, оснащенного браузером с поддержкой VRML. Подтверждает, что математика - наука о количественных соотношениях и пространственных формах любых действительных или виртуальных миров.

37. Excel Link

Позволяет использовать Microsoft Excel 97 как процессор ввода-вывода MATLAB. Для этого достаточно установить в Excel как add-in функцию поставляемый Math Works файл excllinkxla. В Excel нужно набрать Сервис > Надстройки > Обзор, выбрать файл в каталоге \matlabrl2\toolbox\exlink и установить его. Теперь при каждом запуске Excel появится командное окно MATLAB, а панель управления Excel дополнится кнопками getmatrix, putmatrix, evalstring. Для закрытия MATLAB из Excel достаточно набрать =MLC1ose() в любой ячейке Excel. Для открытия после выполнения этой команды нужно либо щелкнуть мышью на одной из кнопок getmatrix, putmatrix, evalstring, либо набрать в Excel Сервис > Макрос >Выполнить mat! abi ni t. Выделив мышью диапазон ячеек Excel, вы можете щелкнуть на getmatrix и набрать имя переменной MATLAB. Матрица появится в Excel. Заполнив числами диапазон ячеек Excel, вы можете выделить этот диапазон, щелкнуть на putmatrix и ввести имя переменной MATLAB. Работа, таким образом, интуитивно понятна. В отличие от MATLAB Excel Link не чувствителен к регистру: I и i, J и j равноценны.

Вызывать демонстрационные примеры пакетов расширения.

Это окно является основным в MatLAB. В нем появляются символы команд, которые набираются пользователем на экране дисплея, отображаются результаты выполнения этих команд, текст исполняемой программы и информация об ошибках выполнения программы, распознанных системой.

Признаком того, что MatLAB готова к восприятию и выполнению очередной команды, является возникновение в последней строке текстового поля окна знака приглашения " >> ", после которого расположена мигающая вертикальная черта.

В верхней части окна (под заголовком) размещена строка меню, в которой находятся меню File, Edit, View, Windows, Help. Чтобы открыть какое-либо меню, следует установить на нем указатель мыши и нажать ее левую кнопку. Подробнее функции команд меню будут описаны далее, в разделе «Интерфейс MatLab и команды общего назначения. Написание М-книг».

Здесь отметим лишь, что для выхода из среды MatLAB достаточно открыть меню File и выбрать в нем команду Exit MATLAB, или просто закрыть командное окно, нажав левую клавишу мыши, когда курсор мыши установлен на изображении верхней крайней правой кнопки этого окна (с обозначением косого крестика).

1.2. Операции с числами

1.2.1. Ввод действительных чисел

Ввод чисел с клавиатуры осуществляется по общим правилам, принятым для языков программирования высокого уровня:

для отделения дробной части мантиссы числа используется десятичная точка (вместо запятой при обычной записи) ;

десятичный показатель числа записывается в виде целого числа после предшествующей записи символа «е» ;

между записью мантиссы числа и символом «е» (который отделяет мантиссу от показателя ) не должно быть никаких символов , включая и символ пропуска.

Если, например, ввести в командном окне MatLAB строку

то после нажатия клавиши <Еnter> в этом окне появится запись:


Следует отметить, что результат выводится в виде (формате), который определяется предварительно установленным форматом представления чисел. Этот формат может быть установлен с помощью команды Preferences меню File (рис. 1.3). После ее вызова на экране появится одноименное окно (рис. 1.4). Один из участков этого окна имеет название Numeric Format . Он предназначен для установки и изменения формата представления чисел, которые выводятся в командное окно в процессе расчетов. Предусмотрены такие форматы:

Short (default) – краткая запись (применяется по умолчанию);

Long – длинная запись;

Hex – запись в виде шестнадцатиричного числа;

Bank – запись до сотых долей;

Plus – записывается только знак числа;

Short Е – краткая запись в формате с плавающей запятой;

Long Е – длинная запись в формате с плавающей запятой;

Short G – вторая форма краткой записи в формате с плавающей запятой;

Long G – вторая форма длинной записи в формате с плавающей запятой;

Rational – запись в виде рациональной дроби.

Избирая с помощью мыши нужный вид представления чисел, можно обеспечить в дальнейшем выведение чисел в командное окно именно в этой форме.

Как видно из рис. 1.2, число, которое выведено на экран, не совпадает с введенным. Это обусловлено тем, что установленный по умолчанию формат пред­ставления чисел (Short ) не позволяет вывести больше 6 значащих цифр. На самом деле введенное число сохраняется внутри MatLAB со всеми введенными его цифрами. Например, если избрать мышью селекторную кнопку Long Е (т. е. установить указанный формат представления чисел), то, повторяя те же действия, получим:

где уже все цифры отображены верно (рис. 1.5).

Следует помнить:

- введенное число и результаты всех вычислений в системе Ма tLAB сохраняются в памяти ПК с относительной погрешностью около 2.10-16 (т. е. с точными значениями в 15 десятичных разрядах ):

- диапазон представления модуля действительных чисел лежит в диапазоне между 10-308 и 10+308 .

1.2.2. Простейшие арифметические действия

В арифметических выражениях языка МаtLAB используются следующие знаки арифметических операций:

+ – сложение;

– – вычитание;

* – умножение;

/ – деление слева направо;

\ – деление справа налево;

^ – возведение в степень.

Использование MatLAB в режиме калькулятора может происходить путем простой записи в командную строку последовательности арифметических действий с числами, то есть обычного арифметического выражения, например: 4.5^2*7.23 – 3.14*10.4.

Если после ввода с клавиатуры этой последовательности нажать клавишу , в командном окне возникнет результат выполнения в виде, представленном на рис. 1.6, т. е. на экран под именем системной переменной ans выводится результат действия последнего выполненного оператора.

Вообще вывод промежуточной информации в командное окно подчиняется таким правилам:

- если запись оператора не заканчивается символом ";", результат действия этого оператора сразу же выводится в командное окно;

- если оператор заканчивается символом ";", результат его действия не отображается в командном окне ;

- если оператор не содержит знака присваивания (= ), т. е. является просто записью некоторой последовательности действий над числами и переменными , значение результата присваивается специальной системной переменной по имени ans ;

- полученное значение переменной ans можно использовать в следующих операторах вычислений, применяя это имя ans; при этом следует помнить, что значение системной переменной ans изменяется после действия очередного оператора без знака присваивания ;

- в общем случае форма представления результата в командном окне имеет вид :

<Имя переменной> = <результат>.

Пример. Пусть нужно вычислить выражение (25+17)*7. Это можно сделать таким образом. Сначала набираем последовательность 25+17 и нажимаем . Получаем на экране результат в виде ans = 42.Теперь записываем последовательность ans*7 и нажимаем . Получаем ans = 294 (рис. 1.7). Чтобы предотвратить выведение промежуточного результата действия 25+17, достаточно после записи этой последовательности добавить символ ";". Тогда будем иметь результаты в виде, представленном на рис. 1.8.

Применяя MatLAB как калькулятор, можно использовать имена переменных для записи промежуточных результатов в память ПК. Для этого служит операция присваивания, которая вводится знаком равенства "=" в соответствия со схемой: <Имя переменной> = <выражение>[;]

Имя переменной может содержать до 30 символов и должно не совпадать с именами функций, процедур системы и системных переменных. При этом система различает большие и маленькие буквы в переменных. Так, имена "amenu", "Amenu", "aMenu" в MatLAB обозначают разные переменные.

Выражение справа от знака присваивания может быть просто числом, арифметическим выражением, строкой символов (тогда эти символы нужно заключить в апострофы) или символьным выражением. Если выражение не заканчивается символом ";", после нажатия клавиши <Еnter> в командном окне возникнет результат выполнения в виде:

<Имя переменной > = <результат >.

Рис. 1.7. Рис. 1.8.

Например, если ввести в командное окно строку "х = 25 + 17", на экране появится запись (рис. 1.9).

Система MatLAB имеет несколько имен переменных, которые используются самой системой и входят в состав зарезервированных:

i, j – мнимая единица (корень квадратный из –1); pi – число p (сохраняется в виде 3.141592653589793); inf – обозначение машинной бесконечности; Na – обозначение неопределенного результата (например, типа 0/0 или inf/inf); eps – погрешность операций над числами с плавающей запятой; ans – результат последней операции без знака присваивания; realmax и realmin – максимально и минимально возможные величины числа, которое может быть использованы.

Эти переменные можно использовать в математических выражениях.

1.2.3. Ввод комплексных чисел

Язык системы MatLAB, в отличие от многих языков программирования высокого уровня, содержит в себе очень простую в пользовании встроенную арифметику комплексных чисел. Большинство элементарных математических функций допускают в качестве аргументов комплексные числа, а результаты формируются как комплексные числа. Эта особенность языка делает его очень удобным и полезным для инженеров и научных работников.

Для обозначения мнимой единицы в языке МatLAB зарезервированы два имени i и j. Ввод с клавиатуры значения комплексного числа осуществляется путем записи в командное окно строки вида:

<имя комплексной переменной > = <значение ДЧ > + i [j ] * <значение МЧ >,

где ДЧ – действительная часть комплексного числа, МЧ – мнимая часть. Например:

Из приведенного примера видно, в каком виде система выводит комплексные числа на экран (и на печать).

1.2.4. Элементарные математические функции

Общая форма использования функции в MatLAB такова:

<имя результата > = <имя функции >(<перечень аргументов или их значений> ).

В языке MatLAB предусмотрены следующие элементарные арифметические функции.

Тригонометрические и гиперболические функции

sin (z) – синус числа z;

sinh (z) – гиперболический синус;

asin (z) – арксинус (в радианах, в диапазоне от к );

а sinh (z) – обратный гиперболический синус;

со s (z) – косинус;

соsh(z) – гиперболический косинус;

acos (z) – арккосинус (в диапазоне от 0 к p );

асо sh (z) – обратный гиперболический косинус;

tan (z) – тангенс;

tanh (z) – гиперболический тангенс;

atan (z) – арктангенс (в диапазоне от от к );

аtап2 (Х, Y) – четырехквадрантный арктангенс (угол в диапазоне от –p до +p между горизонтальным правым лучом и лучом, который проходит через точку с координатами Х и Y );

atanh (z) – обратный гиперболический тангенс;

sec (z) – секанс;

sech (z) – гиперболический секанс;

asec (z) – арксеканс;

asech (z) – обратный гиперболический секанс;

csc (z) – косеканс;

csch (z) – гиперболический косеканс;

acsc (z) – арккосеканс;

acsch (z) – обратный гиперболический косеканс;

cot (z) – котангенс;

coth (z) – гиперболический котангенс;

acot (z) – арккотангенс;

acoth (z) – обратный гиперболический котангенс

Экспоненциальные функции

exp (z) – экспонента числа z;

log (z) – натуральный логарифм;

log 10 (z) – десятичный логарифм;

sqrt (z) – квадратный корень из числа z;

abs (z) – модуль числа z.

Целочисленные функции

fix (z) – округление к ближайшему целому в сторону нуля;

floor (z) – округление к ближайшему целому в сторону отрицательной бесконечности;

ceil (z) – округление к ближайшему целому в сторону положительной бесконечности;

round (z) – обычное округление числа z к ближайшему целому;

mod (X, Y) – целочисленное деление X на Y;

rem (X, Y) – вычисление остатка от деления X на Y;

sign (z) – вычисление сигнум-функции числа z

(0 при z = 0, –1 при z < 0, 1 при z > 0)

1.2.5. Специальные математические функции

Кроме элементарных в языке MatLAB предусмотрен целый ряд специальных математических функций. Ниже приведен перечень и краткое содержание этих функций. Правила обращения к ним и использования пользователь может отыскать в описаниях этих функций, которые выводятся на экран, если набрать команду help и указать в той же строке имя функции.

Функции преобразования координат

cart 2 sph – преобразование декартовых координат в сферические;

cart 2 pol – преобразование декартовых координат в полярные;

pol 2 cart – преобразование полярных координат в декартовые;

sph 2 cart – преобразование сферических координат в декартовые.

Функции Бесселя

besselj – функция Бесселя первого рода;

bessely – функция Бесселя второго рода;

besseli – модифицированная функция Бесселя первого рода;

besselk – модифицированная функция Бесселя второго рода.

Бета-функции

beta – бета-функция;

betainc – неполная бета-функция;

betaln – логарифм бета-функции.

Гамма-функции

gamma – гамма-функция;

gammainc – неполная гамма-функция;

gammaln – логарифм гамма-функции.

Эллиптические функции и интегралы

ellipj – эллиптические функции Якоби;

ellipke – полный эллиптический интеграл;

expint – функция экспоненциального интеграла.

Функции ошибок

erf – функция ошибок;

erfc – дополнительная функция ошибок;

erfcx – масштабированная дополнительная функция ошибок;

erflnv – обратная функция ошибок.

Другие функции

gcd – наибольший общий делитель;

lern – наименьшее общее кратное;

legendre – обобщенная функция Лежандра;

log2 – логарифм по основанию 2;

pow2 – возведение 2 в указанную степень;

rat – представление числа в виде рациональной дроби;

rats – представление чисел в виде рациональной дроби.

1.2.6. Элементарные действия с комплексными числами

Простейшие действия с комплексными числами – сложение, вычитание, умножение, деление и возведение в степень – осуществляются при помощи обычных арифметических знаков +,–,*,/, \ и ^ соответственно.

Примеры использования приведены на рис. 1.11.

Примечание. В приведенном фрагменте использована функция disp (от слова "дисплей"), которая тоже выводит в командное окно результаты вычислений или некоторый текст. При этом численный результат, как видно, выводится уже без указания имени переменной или ans.

1.2.7. Функции комплексного аргумента

Практически все элементарные математические функции , приведенные в п. 1.2.4, вычисляются при комплексных значениях аргумента и получают в результате этого комплексные значения результата.

Благодаря этому, например, функция sqrt вычисляет, в отличие от других языков программирования, квадратный корень из отрицательного аргумента, а функция abs при комплексном значении аргумента вычисляет модуль комплексного числа. Примеры приведены на рис. 1.12.

В МаtLАВ есть несколько дополнительных функций, рассчитанных только на комплексный аргумент:

real (z) – выделяет действительную часть комплексного аргумента z;

і mag (z) – выделяет мнимую часть комплексного аргумента;

angle (z) – вычисляет значение аргумента комплексного числа z (в радианах в диапазоне от –p до +p);

conj (z) – выдает число, комплексно сопряженное относительно z.

Примеры приведены на рис. 1.13.

Рис. 1.12. Рис. 1.3.

Кроме того, в MatLAB есть специальная функция cplxpair (V), которая осуществляет сортировку заданного вектора V с комплексными элементами таким образом, что комплексно-сопряженные пары этих элементов располагаются в векторе-результате в порядке возрастания их действительных частей, при этом элемент с отрицательной мнимой частью всегда располагается первым. Действительные элементы завершают комплексно-сопряженные пары. Например (в дальнейшем в примерах команды, которые набираются с клавиатуры , будут написаны жирным шрифтом , а результат их выполнения – обычным шрифтом ):

>> v = [ -1, -1+2i,-5,4,5i,-1-2i,-5i]

Columns 1 through 4

1.0000 -1.0000 +2.0000i -5.0000 4.0000

Columns 5 through 7

0 + 5.0000i -1.0000-2.0000i 0 - 5.0000i

>> disp(cplxpair(v))

Columns 1 through 4

1.0000 - 2.0000i -1.0000 + 2.0000i 0 - 5.0000i 0 + 5.0000i

Columns 5 through 7

5.0000 -1.0000 4.0000

Приспособленность большинства функций MatLAB к оперированию с ком­плексными числами позволяет значительно проще строить вычисления с действи­тельными числами, результат которых является комплексным, например, находить комплексные корни квадратных уравнений.

1. Гультяев А. К. MatLAB 5.2. Имитационное моделирование в среде Windows: Практическое пособие. - Спб.: КОРОНА принт, 1999. - 288 с.

2. Гультяев А. К. Визуальное моделирование в среде MATLAB: Учебный курс. - Спб.: ПИТЕР, 2000. - 430 с.

3. Дьяконов В. П. Справочник по применению системы PC MatLAB. - M.: Физматлит, 1993. - 113с.

4. Дьяконов В. Simulink 4. Специальный справочник. - Спб: Питер, 2002. – 518 с.

5. Дьяконов В., Круглов В. Математические пакеты расширения MatLAB. Специальный справочник. - СПб.: Питер, 2001. - 475с.

6. Краснопрошина А. А., Репникова Н. Б., Ильченко А. А. Современный анализ систем управления с применением MATLAB, Simulink, Control System: Учебное пособие. - К.: "Корнійчук", 1999. – 144 с.

7. Лазарев Ю. Ф. Початки програмування в среде MatLAB: Уч. пособие. - К.: "Корнійчук", 1999. - 160с.

8. Лазарев Ю. MatLAB 5.x. – К.: "Ирина" (BHV), 2000. – 384 с.

9. Медведев В. С., Потемкин В. Г. Control System Toolbox. MatLAB 5 для студентов. - Г.: "ДИАЛОГ-МИФИ", 1999. – 287 с.

10. Потемкин В. Г. MatLAB 5 для студентов: Справ. пособие. - M.: "ДИАЛОГ-МИФИ", 1998. - 314 с.

Размещено на http://www.allbest.ru/

Введение

Название пакета Matlab является сокращением от английского Matrix Laboratory (что означает матричная лаборатория ). Этим же термином (то есть Matlab) называют и язык программирования, используемый для составления программных кодов. Как известно, программный код может компилироваться или интерпретироваться . В первом случае получаем исполнительный (машинный) код, который выполняется центральным процессором. При интерпретации происходит преобразование в промежуточный код, который выполняется непосредственно системой-интерпретатором. Скомпилированный код обычно выполняется быстрее, чем интерпретируемый код. Вместе с тем интерпретируемые языки программирования, как правило, более демократичны в плане синтаксиса. Программный код Matlab интерпретируется. Однако это никак не ставит под сомнение вычислительные возможности Matlab. Основой для реализации разных типов данных в Matlab являются матрицы , что объясняет многие особенности среды (и языка программирования) Matlab. К матрицам мы будем достаточно часто апеллировать по ходу изложения материала книги.

Значительная часть функциональных возможностей приложения Matlab реализована через пакеты инструментов (английский термин toolbox ). Это коллекции функций и других утилит, предназначенных для решения узко специальных задач. Большинство пакетов имеют узкую, специфическую направленность. Приложение Matlab предназначено (в первую очередь) для выполнения числовых расчетов и визуализации получаемых результатов. Пакет содержит огромное число утилит для выполнения самых разных операций и позволяет создавать собственные полнофункциональные программные коды. Вместе с тем в Matlab могут выполняться и символьные расчеты. Этой цели служит встроенная в Matlab среда MuPAD. Таким образом, пользователю Matlab предоставляются широкие возможности не только в области числовых, но и символьных расчетов.

1. Простые вычисления

Под простыми, или пошаговыми, подразумевают вычисления, обычно выполняемые в командном окне приложения Matlab. Соответствующая инструкция или команда вводится в командном окне и затем выполняется. На рисунке 1 показано, как может выглядеть рабочее окно приложения Matlab при запуске. Интерес в данном случае представляет внутреннее окно (обычно в центре рабочего окна приложения) с названием Command Window - командное окно. В этом окне можно заметить индикатор строки ввода (в виде двойной стрелки >> ). Для ввода команды курсор необходимо переместить после индикатора строки ввода и ввести инструкцию для выполнения. Другими словами, в строку ввода командного окна необходимо ввести выражение и, нажав клавишу «Enter», запустить процесс вычисления этого выражения. Результат вычислений отображается внизу, под выполняемой командой. По умолчанию результат заносится в системную переменную «ans».

Рисунок 1

На рисунке 2 приведен пример вычисления нескольких арифметических выражений. В данном случае приведены результаты вычисления выражений 1+2*3 и (5^2-4)/7 соответственно. В первом случае, как и ожидалось, получаем в качестве результата значение 7, во втором - значение 3.

Рисунок 2

В качестве основных арифметических операторов в Matlab используются: оператор «+» для вычисления суммы, оператор «-» для вычисления разности, оператор «*» для вычисления произведения, оператор «/» для вычисления частного и оператор «^» для возведения в степень.

В общем смысле переменная - это область памяти, к которой можно обращаться по имени для получения значения, записанного в этой области, а также его изменения. В строго типизированных языках программирования (таких, как С++, Java или Pascal) для использования переменной необходимо предварительно ее объявить, указав при этом, к какому типу она относится. В Matlab ничего подобного делать не нужно. Переменной сразу можно присваивать значение. В качестве оператора присваивания используется знак равенства «=». Имя переменной, которой присваивается значение, указывается слева от оператора присваивания, а присваиваемое переменной значение справа от оператора присваивания. Значение, присваиваемое переменной, если речь идет о скалярных величинах, может быть числом или выражением, содержащим другие переменные. При этом необходимо, чтобы этим переменным ранее уже было присвоено значение. Пример использования скалярных переменных в пошаговых вычислениях приведен в рабочем документе на рисунке 3.

Рисунок 3

Первой командой x=0.5*sin(0.1) присваивается значение переменной «x». При этом использована встроенная функция Matlab «sin()» для вычисления синуса. Присвоенное в результате этой переменной значение отображается внизу под строкой ввода в формате:

«переменная =

значение»

Аналогично следующей командой y=0.3*cos(0.2) значение присваивается переменной «y». Здесь «cos()» - встроенная функция Matlab для вычисления косинуса. Обращаем также внимание читателя, что в качестве десятичного разделителя при вводе действительных чисел с дробной десятичной частью используется точка.

Наконец, командой z=(x^2+y^2)^(1/3) значение присваивается переменной «z». В выражение, определяющее значение переменной «z», входят переменные «x» и «y». Однако поскольку предварительно этим переменным были присвоены значения, ошибки не возникает и значение переменной «z» присваивается корректно.

Есть две базовые операции, которые достаточно полезны, особенно при большем объеме вычислений. Во-первых, в некоторых случаях нужно узнать, какие переменные рабочего пространства уже используются, и, во-вторых, иногда приходится, образно выражаясь, "удалять переменные с игрового поля" - то есть освобождать память, выделенную под эти переменные. Первая операция выполняется с помощью инструкции «whos». Если ввести в командную строку эту инструкцию и нажать клавишу «Enter», будет выведен список доступных в рабочем пространстве переменных с описанием их некоторых атрибутов.

Рисунок 4

В данном случае список состоит из четырех переменных: трех объявленных переменных пользователя «x», «y» и «z», и системной переменной «ans». Очистка пространства переменных осуществляется с помощью инструкции «clear», после которой, через пробел, указываются имена удаляемых переменных. На рисунке 5 представлен результат выполнения команды «clear x y», после которой выполнена команда «whos» для проверки списка переменных рабочего пространства.

Рисунок 5

Поскольку командой «clear x y» переменные «x» и «y» из рабочего пространства удалены, в списке переменных остались только переменная «z» и системная переменная «ans». Хотя значение переменной «z» присваивается на основе значений переменных «x» и «y», их удаление из рабочего пространства (или изменение их значения) назначение переменной «z» никак не влияет. Для удаления из рабочего пространства всех переменных используют инструкцию «clear» без указания переменных.

В предыдущих примерах использовались скалярные величины. С точки зрения основополагающей идеологии и технической реализации, скаляры в Matlab являются скорее экзотикой, чем обычным явлением. Дело в том, что в Matlab базовым типом данных являются матрицы (или массивы). В этом отношении скаляр "с точки зрения Matlab" (если можно так выразиться) является матрицей размера 1х Как известно, массивы можно индексировать, то есть для доступа к элементу массива указывается имя массива и его индекс (или индексы). Индексы указываются после имени матрицы (массива) в круглых скобках и разделяются запятыми. К скалярной переменной можно обращаться как по имени, так и указав индексы - в данном случае это (1,1). Пример обращения к скалярной величине в обычном режиме и с помощью пары единичных индексов показан на рисунке 6.

Командой «MyVar=10» переменной «MyVar» присваивается значение «10». Обращаться к переменной можно как по имени «MyVar», так и в режиме обращения к элементу матрицы «MyVar(1,1)». В обоих случаях в качестве результата возвращается значение скалярной переменной «MyVar».

Поскольку все переменные в Matlab априори рассматриваются как матрицы, никаких особых инструкций при объявлении матриц выполнять не нужно, за исключением того, что для матрицы необходимо задать значения ее элементов. Делается это достаточно просто. Список элементов матрицы заключается в квадратные скобки, списки значений элементов строки разделяются запятыми или пробелами, а списки значений разных столбцов разделяются точкой с запятой. Например, командой «A=» задается вектор-строка (матрица размеров 1х3) с элементами «1», «2» и «3» соответственно.

Рисунок 6

Командой «B=» задается вектор-столбец (матрица размеров 3х1) с элементами «4», «5» и «6». Наконец, командой «C=» задается матрица размерами 3х2 (3 строки и 2 столбца). Примеры выполнения этих команд приведены в документе на рисунке 7.

Рисунок 7

К элементам матрицы можно обращаться в обычном режиме, указав два индекса (номер строки и номер столбца, на пересечении которых находится элемент). Существует также способ обращения по обобщенному индексу . Обобщенный индекс элемента матрицы определяется как его порядковый номер, если отсчет начинать с верхнего левого элемента сверху вниз и от левого столбика к правому. Так, если матрица «X» имеет размеры «n» на «m», то к элементу с индексами «i» и «j» можно обратиться либо как «X(i,j)», либо как «X(n*(j-1)+i)». Хотя второй способ индексирования элементов может показаться несколько запутанным, он соответствует техническому способу индексации элементов матрицы в памяти, поэтому вычисления в таком случае выполняются быстрее. На рисунке 8 приведен фрагмент документа, в котором в различном режиме выполняется обращение к элементам матрицы «C», определенной ранее. В частности, командой «C(1)» получаем значение элемента «C(1,1)» (значение1). Инструкция «C(5)» является ссылкой на элемент «C(2,2)», значение которого равно «4».

Рисунок 8

2. Арифметические операции

Основные арифметические операторы Matlab позволяют выполнять операции не только со скалярными величинами, но и с матрицами. Более того, можно утверждать, что основная часть операторов ориентирована на выполнение матричных операций. перечислены основные арифметические операторы Matlab с кратким описанием результата их применения к операндам разного типа (если такие допустимы).

Таблица 1 Основные арифметические операторы Matlab.

Оператор

Описание

Оператор сложения. Оператор бинарный. Операндами могут быть как скалярные величины, так и матричные. Для двух скалярных операторов выполняется сложение. Для двух матричных операндов (матрицы одинаковых размеров) выполняется поэлементное сложение: результатом является матрица той же размерности, что и матрицы-операнды, а ее элементы равны сумме соответствующих элементов складываемых матриц. Если один операнд - скаляр, а другой - матрица, то результатом является матрица, каждый элемент которой равен сумме скаляра и соответствующего элемента матрицы-операнда.

Оператор вычитания. Бинарный оператор. Операндами могут быт скаляры, матрицы одинаковых размеров или матрица и скаляр. Для скаляров вычисляется разность. Для операндов-матриц вычисляется матрица, элементы которой равны разности соответствующих элементом матриц-операндов. Если один операнд - матрица, а другой - скаляр, то результатом является матрица, элементы которой вычисляются как разность соответствующего элемента матрицы-операнда и скаляра (с учетом порядка операндов). Можно вычитать скаляр из матрицы и матрицу из скаляра.

Оператор умножения. Бинарный оператор. Если операндами являются скаляры, вычисляется произведение скалярных величин. Для операндов-матриц вычисляется матричное произведение. Если один операнд - матрица, а другой - скаляр, результатом является матрица, элементы которой вычисляются как произведение соответствующего элемента матрицы-операнда и скаляра.

Оператор деления. Бинарный оператор. Если оба операнда - скаляры, то в качестве результата возвращается частное от деления скаляра на скаляр. Если первый операнд - матрица, а второй - скаляр, в качестве результата возвращается матрица, каждый элемент которой получается поэлементным делением матрицы-операнда на скаляр. В случае если оба операнда - квадратные матрицы одного ранга, в качестве результата возвращается произведение матрицы - первого операнда на матрицу, обратную к матрице - второму операнду.

Оператор возведения в степень. Бинарный оператор. Первым операндом может быть скаляр или квадратная матрица. Если первый операнд - скаляр, то второй может быть любым действительным скаляром. В качестве результата возвращается первый операнд, возведенный в степень, определяемую вторым операндом. Если первый операнд - квадратная матрица, то второй операнд должен быть целочисленным (может быть отрицательным). Результатом является матрица, вычисляемая возведением матрицы-операнда в целочисленную степень, определяемую вторым операндом.

Оператор левостороннего деления. Бинарный оператор. Операндами

являются квадратные матрицы одного ранга. Результатом является матрица, равная произведению матрицы, обратной к первому операнду-матрице, на второй операнд-матрицу.

Оператор поэлементного умножения. Бинарный оператор. Операндами являются матрицы одинакового размера. Результатом является матрица, элементы которой равны произведению соответствующих элементов матриц-операндов.

Оператор поэлементного деления. Бинарный оператор. Операндами являются матрицы одинакового размера. Результатом является матрица, элементы которой вычисляются как частное от деления элементов матрицы - первого аргумента на соответствующие элементы матрицы - второго аргумента.

Оператор поэлементного левостороннего деления. Бинарный оператор. Операндами являются матрицы одинакового размера. Результатом является матрица того же размера. Выполняется деление элементов матрицы - второго операнда на соответствующие элементы матрицы - первого операнда.

Оператор вычисления сопряженной матрицы. Унарный оператор. Результатом является матрица, сопряженная к матрице-оператору.

Оператор транспонирования. Унарный оператор. Результатом является матрица, транспонированная к матрице-операнду.

Оператор поэлементного возведения в степень. Бинарный оператор.

Операндами могут быть скаляры или матрицы (в разной комбинации). Если первый аргумент - матрица, а второй - скаляр или матрица той же размерности, то в качестве результата возвращается матрица, элементы которой получаются возведением элементов первой матрицы в степень, определяемую вторым операндом-скаляром или соответствующими элементами второго операнда-матрицы. Если первый операнд скалярный, а второй является матрицей, то результатом будет матрица того же размера, что матрица-операнд (второй). Элементы матрицы-результата получаются возведением скаляра (первый операнд) в степень, определяемую соответствующим элементом второго (матричного) операнда.

Приведенные операторы практически полностью перекрывают весь спектр возможных операций, которые приходится выполнять с матрицами. Некоторые примеры использования арифметических операторов с матричными операндами приведены в табл. 2. Матрицы «A» и «B» при этом инициализированы в документе следующими командами (жирным шрифтом выделен ввод пользователя):

>> A=

>> B=[-1,1;3,-2]

Таблица 2 Примеры выполнения арифметических операций с матрицами.

Описание

Произведение матриц.

Вычисляется по правилам вычисления матриц в линейной алгебре.

Деление матриц.

Матрица A умножается на матрицу, обратную к матрице B.

Левостороннее умножение матриц.

Матрица, обратная к матрице A, умножается на матрицу B.

Поэлементное деление матриц.

Элементы матрицы A делятся на соответствующие элементы матрицы B.

Левостороннее поэлементное деление.

Элементы матрицы B делятся на соответствующие элементы матрицы A.

Поэлементное умножение матриц.

Элементы матрицы A умножаются на соответствующие элементы матрицы B.

Сумма матриц.

Вычисляется по правилам вычисления суммы матриц в линейной алгебре (складываются соответствующие элементы матриц A и B).

Разность матриц.

Вычисляется по правилам расчета разности двух матриц (от элементов матрицы A вычитаются соответствующие элементы матрицы B).

Транспонирование матрицы.

Результатом является матрица, транспонированная к матрице A.

Рисунок 9

Рисунок 10

Однако арифметические операторы далеко не единственные операторы, используемые при вычислениях.

3. Логические операторы и операторы сравнения

Важную группу операторов составляют логические операторы и операторы сравнения. Операндами в этом случае могут быть как скаляры, так и матрицы. Прежде, чем приступить к рассмотрению этих операторов, отметим некоторые особенности работы с логическими значениями.

Обычно под логическими значениями подразумевают тип данных, переменные которого могут принимать два значения - истина и ложь («true» и «false» соответственно). В Matlab любое числовое значение, отличное от нуля, интерпретируется как истина (или «true»), а ненулевые значения интерпретируются как ложь (или «false»). Фактически, это есть правило перевода числовых значений в логические значения. Обратное преобразование выполняется по следующему правилу: логическое значение истина (или «true») преобразуется в числовое значение «1», а логическое значение ложь (или «false») преобразуется в числовое значение «0».

Если некоторой переменной присвоить в качестве значения «true» или «false», отображаемым будет соответственно значение «1» или «0».

Операндами для операторов сравнения выступают числовые значения. Это бинарные операторы. Если оба операнда - скаляры, сравнение выполняется по правилам сравнения чисел. При истинном соотношении возвращается значение «1», при ложном - значение «0». Если операндами являются матрицы одинаковых рангов, сравниваются соответствующие элементы матриц (по правилам сравнения числовых значений). Результатом является "логическая матрица": ее элементы равны 1 или 0 в зависимости от результата сравнения соответствующих элементов исходных матриц. Если одним операндом является скаляр, а другим - матрица, то выполняется сравнение каждого элемента матрицы со скаляром. Операторы сравнения перечислены в таблице 3. бинарный программирование компилирование

Таблица 3 Операторы сравнения Matlab.

Оператор

Описание

Оператор проверки на предмет равенства.

Оператор проверки значений операндов на предмет неравенства.

Оператор проверки того, что значение первого операнда больше значения второго операнда.

Оператор проверки того, что значение первого операнда меньше значения второго операнда.

Оператор проверки того, что значение первого операнда не меньше значения второго операнда.

Оператор проверки того, что значение первого операнда не больше значения второго операнда.

Как и в случае операторов сравнения, операндами логических операторов могут выступать как скаляры, так и матрица (одновременно оба или только один). Если операндами являются скаляры, соответствующие логические операции выполняются по описанным выше правилам преобразования числовых и логических значений. Если оба операнда - матрицы одинаковых размеров, логические операции выполняются поэлементно. При условии, что один операнд - матрица, а второй - скаляр, логическая операция выполняется для каждого элемента матрицы и скаляра. Логические операторы Matlab представлены в таблице 4.

Таблица 4 Логические операторы Matlab.

Как в операциях сравнения, так и в логических операциях для элементов матриц или скаляров (в зависимости от типа операндов) возвращаются значения «0» (ложь) и «1» (истина).

4. Комплексные числа

В Matlab можно использовать не только действительные, но и комплексные числа. Ввод комплексных чисел в рабочей области выполняется в соответствии с правилами представления комплексных чисел. В качестве мнимой единицы можно использовать, на выбор, переменные «i» или «j», без какого бы то ни было предварительного объявления. Однако если переменной «i» или «j» присвоить числовое значение, соответствующую переменную в качестве мнимой единицы задействовать не получится.

>> z=1+2i

>> z+j

>> (2-4i)*(1+z)

12.0000 - 4.0000i

>> i * z

При вводе комплексного значения между мнимой частью и мнимой единицей оператор умножения можно не ставить. По умолчанию для отображения мнимой единицы используется символ «i» (хотя может вводиться как «j»). Существует ряд функций, облегчающих работу с комплексными числами. Среди них имеет смысл выделить функции «real()» и «imag()» для вычисления действительной и мнимой частей комплексного числа соответственно, функцию «conj()» для вычисления комплексно сопряженного числа, а также функцию «complex()», принимающую два аргумента (действительная и мнимая части), на основании которых создается комплексное число.

>> complex(3,-2)

3.0000 - 2.0000i

>> conj(ans)

3.0000 + 2.0000i

>> real(ans)

>> imag (2-4 i )

Комплексными могут быть не только скалярные величины, но и матрицы.

Рисунок 11

5. Оператор создания интервала значений

Достаточно популярным и часто используемым в Matlab является оператор "двоеточие", то есть «:». Существует несколько вариантов его использования. Рассмотрим самые общие. Для создания вектора-строки со значениями, равно распределенными в некотором интервале, оператор используют в следующем формате: «нижняя граница диапазона, оператор (то есть «:») и верхняя граница диапазона» - например: «x=a:b». При этом создается вектор-строка (для приведенной команды вектор записывается в переменную «x»). Первый элемент вектора равен нижней границе указанного диапазона (значение «a»). Шаг дискретности изменения значений элементов вектора равен единице. Значение последнего элемента определяется верхней границей указанного диапазона (в данном случае «b»). Так, командой «x=1:10» создается вектор-строка со значениями «1, 2, 3 и т.д. до 10» включительно (жирным шрифтом выделен ввод пользователя):

>> x=1:10

1 2 3 4 5 6 7 8 9 10

Рисунок 12

Если нужно создать вектор-строку с последовательностью значений и шагом дискретности, отличным от единицы, используют тот же оператор "двоеточие" (то есть «:»), но в несколько ином формате: «указывается нижняя граница диапазона значений, оператор "двоеточие", шаг дискретности, снова оператор "двоеточие", и верхняя граница диапазона» - например: «y=a:m:b». Формируется вектор-строка с первым значением - нижней границей диапазона (для приведенной команды это «a»). Каждый следующий элемент получается прибавлением к предыдущему величины, указанной в качеств шага дискретности (в данном случае «m»). Значения элементов сформированного массива не превышают верхнюю границу диапазона (то есть «b»). Пример такого использования оператора "двоеточие" приведен ниже (отрывок кода из рабочей области, жирным выделен ввод пользователя):

>> y=1:0.7:10

Columns 1 through 8

0000 7000 2.4000 3.1000 3.8000 4.5000 5.2000 5.9000

Columns 9 through 13

6.6000 7.3000 8.0000 8.7000 9.4000

Рисунок 13

В данном случае создается вектор-строка y со значениями от 1 до 10 с шагом дискретности 0.7 - значения 0, 7, 2.4 и т.д. до 9.4 включительно (следующее гипотетическое значение в последовательности 10.1 превышает верхнюю границу диапазона 10, поэтому в формируемый вектор оно не входит). Сообщения «Columns 1 through 8» и «Columns 9 through 13» появляются автоматически как следствие того, что результат выполнения команды «y=1:0.7:10» в одну строку не помещается, поэтому выполняется перенос части вектора-результата в следующую строку. Данные сообщения призваны облегчить процесс индексной идентификации элементов.

Второй способ использования оператора "двоеточие" - при индексировании элементов. Как и в предыдущем случае, существует несколько форматов, или правил, использования оператора "двоеточие" в индексах.

Например, если оператор "двоеточие" используется в формате «A(i:j,k)»,

то в качестве результата возвращается вектор-столбец, который формируется из элементов матрицы «A», находящихся в «k-м» столбце с «i-й» по «j-ю» строку включительно. Ссылка в формате «A(:,k)» возвращает в качестве значения весь «k-й» столбец матрицы «A».

Можно использовать оператор "двоеточие" при указании сразу двух индексов. Например, командой «A(i:j,m:n)» возвращается подматрица, состоящая их строк с «i-й» по «j-ю» и одновременно столбцов с «m-го» по «n-й».

Рассмотрим некоторые примеры использования оператора "двоеточие".

В частности, исходная матрица «A» вводится командой:

A=

В следующих командах оператор "двоеточие" используется для извлечения подматриц из исходной матрицы «A»:

>> A(1:3,2)

>> A(3,2:4)

>> A(3:4,1:2)

Например, командой «A(1:3,2)» возвращается вектор-столбец, составленный из элементов с первой по третью строку во втором столбце матрицы «A». Командой «A(3,2:4)» возвращается вектор-строка, который составлен из элементов третьей строки со второго по четвертый столбец включительно матрицы «A». Наконец, командой «A(3:4,1:2)» возвращается подматрица матрицы «A», верхний левый элемент которой имеет индексы «(3,1)», а правый нижний элемент имеет индексы «(4,2)».

6. Встроенные математические функции

В Matlab по умолчанию доступно достаточно большое количество встроенных функций. Ядро их составляют математические функции, которые на практике используются сравнительно часто. Некоторые из них перечислены в таблице 5.

Таблица 5 Некоторые математические функции Matlab.

Описание

Модуль числа (в том числе и комплексного), указанного аргументом функции.

Арккосинус для числа, указанного аргументом функции.

Арккосинус аргумента функции. Результат представлен в градусах.

Арккотангенс числа, указанного аргументом функции.

Арккотангенс аргумента функции. Результат представлен в градусах.

Арккосеканс числа, указанного аргументом функции.

Арккосеканс аргумента функции. Результат представлен в градусах.

Арксеканс числа, указанного аргументом функции.

Арксеканс аргумента функции. Результат представлен в градусах.

Арксеканс гиперболический от числа, указанного аргументом функции.

Арксинус от числа, указанного аргументом функции.

Арксинус аргумента функции. Результат представлен в градусах.

Арксинус гиперболический от числа, указанного аргументом функции.

Арктангенс от числа, переданного аргументом функции.

У функции два аргумента (например, atan(y,x)). В качестве результата возвращается направление (угол в диапазоне значений от -р до р) на точку с соответствующими координатами (в данном случае, точка с координатами (y,x)). Если аргументы комплексные, их мнимые части игнорируются.

Арктангенс аргумента функции. Результат представлен в градусах.

Арктангенс гиперболический от числа, переданного аргументом функции.

Функция округления аргумента в направлении плюс бесконечности - округление выполняется до целого значения, которое не меньше, чем аргумент.

Косинус от числа, переданного аргументом функции.

Косинус аргумента функции, указанного в градусах.

Косинус гиперболический от числа, переданного аргументом функции.

Котангенс от числа, переданного аргументом функции.

Котангенс аргумента функции, указанного в градусах.

Котангенс гиперболический от числа, переданного аргументом функции.

Косеканс от числа, переданного аргументом функции.

Косеканс аргумента функции, указанного в градусах

Косеканс гиперболический от числа, переданного аргументом функции.

Экспонента: показательная функция с основанием-константой Эйлера и показателем степени, определяемым аргументом функции.

Командой вида expm1(x) с повышенной точностью вычисляется значение exp(x)-

Функцией возвращается вектор-строка с простыми множителями числа (с учетом их кратности), указанного аргументом функции.

Функция для вычисления факториала числа, указанного аргументом функции.

Функция округления в направлении нуля. Результатом является число, получающееся округлением аргумента функции до ближайшего целого значения в направлении нуля.

Функция округления аргумента до ближайшего целого значения, которое не превышает аргумент, - округление в направлении минус бесконечности.

Функцией возвращается наибольший общий делитель целых чисел или целочисленных массивов - аргументов функции.

Корень квадратный из суммы квадратов модулей аргументов, переданных функции.

У функции два аргумента. Результатом является целая часть отделения первого аргумента на второй. Можно также указать опцию - в одинарных скобках имя функции, с помощью которой выполняется округление.

Функцией в качестве результата возвращается наименьшее общее кратное для целых чисел или целочисленных массивов - аргументов функции.

Натуральный логарифм от числа, указанного аргументом функции.

Логарифм по основанию 10 от числа, указанного аргументом функции.

Командой вида log1p(x) с повышенной точностью вычисляется значение log(1+x).

Логарифм по основанию 2 от числа, указанного аргументом функции.

Функцией возвращается остаток от деления значения первого аргумента функции на значение второго аргумента. Целая часть отделения определяется функцией froor().

Функцией в качестве значения возвращаются биномиальные коэффициенты. Если функция вызвана в формате nchoosek (n,k), то в качестве результата возвращается значение: ,

Функцией в качестве значения возвращается ближайшее целое число - степень двойки, которое не меньше модуля аргумента функции.

Командой nthroot(x,n) в качестве значения возвращается корень порядка n (второй аргумент) из действительного числа или элементов действительного массива x (первый аргумент).

Функция может вызываться с одним или двумя аргументами. Если у функции один аргумент (массив) и функция вызывается в формате pow2(x), то в качестве результата возвращается массив степеней двойки, показатели степени определяются массивом x. Если функция вызывается с двумя аргументами в формате pow2 (x,y), то результатом является x.*2.^y.

У функции два аргумента. Если аргументы скалярные, в качестве результата возвращается значение первого аргумента, возведенное в степень, определяемую вторым аргументом. В более общем случае в качестве результата выполнения команды power (A,B) возвращается "A.^B".

Функцией генерируется список простых чисел. Количество чисел указывается аргументом функции.

Функцией возвращается остаток от деления значения первого аргумента функции на значение второго аргумента. Целая часть отделения определяется функцией fix().

Функция округления аргумента до ближайшего целого значения.

Секанс от числа, указанного аргументом функции.

Секанс аргумента функции, указанного в градусах.

Знак числа, указанного аргументом функции (для положительных чисел - единица, для отрицательных чисел - минус единица, для нуля - ноль).

Синус от числа, указанного аргументом функции.

Синус аргумента функции, указанного в градусах.

Корень квадратный из числа, указанного аргументом функции.

Описание

Тангенс от числа, указанного аргументом функции.

Тангенс аргумента функции, указанного в градусах.

Хотя большинство из представленных выше функций с математической точки зрения определены для скалярных величин, обычно они могут применяться и для аргументов-матриц. В этом случае действие функционального оператора применяется к каждому из элементов матрицы. Например, если переменная «A» является матрицей с элементами «A(i,j)», то в результате выполнения команды «exp(A)» получим матрицу того же ранга, а ее элементы вычисляются как «exp(A(i,j))». В некоторых случаях такой подход неприемлем. Существуют так называемые матричные функции, аргументами которых по определению являются матрицы (в основном квадратные). Результат этих функций вычисляется по алгоритмам, разработанным специально для матриц. Так, в Matlab есть встроенные матричные функции для экспоненты, логарифма и квадратного корня. Это соответственно функции «expm()», «logm()» и «sqrtm()». Например, если «A» - квадратная матрица, то функцией «expm(A)» вычисляется матричная экспонента. По определению это ряд:

Результатом является матрица, которая вычисляется, как правило, на основе собственных чисел и собственных векторов матрицы «A». Матричный логарифм для аргумента-матрицы «A», вычисляемый инструкцией «logm(A)», представляет собой матрицу такую, что матричная экспонента от нее равна матрице «A». Другими словами, по определению если «B=logm(A)», то «expm(B)=A», и функция «logm()» является обратной к функции «expm()». Аналогично, в результате извлечения квадратного корня из матрицы «A» с помощью функции «sqrtm()» получаем матрицу, которая, будучи возведенной в квадрат, дает матрицу «A». Например, если «B=sqrtm(A)», то «B*B=A».

В Matlab также широко представлены специальные функции, некоторые их них приведены в таблице 6.

Таблица 6. Некоторые специальные математические функции Matlab.

Описание

Функция Эйри.

Функция Бесселя третьего рода (функция Ханкеля).

Командой besseli(n,x) возвращается модифицированная функция Бесселя первого рода (индекса n).

Командой besselj(n,x) возвращается функция Бесселя первого рода (индекса n), которая является одним из решений уравнения Бесселя.

Командой besselk(n,x) возвращается модифицированная функция Бесселя второго рода (индекса n), которая является одним из решений модифицированного уравнения Бесселя. Для целых индексов соответствующее выражение рассчитывается как лимит.

Командой besselj(n,x) возвращается функция Бесселя второго рода (индекса n), которая является одним из решений уравнения Бесселя. Для целых индексов соответствующее выражение рассчитывается как лимит.

Бета-функция Эйлера.

Неполная бета-функция Эйлера.

Логарифм натуральный от бета-функции Эйлера. Аргументами передаются аргументы бета-функции.

Эллиптическая функция Якоби. Если функция вызывается с двумя аргументами в формате ellipj(u,m), в качестве результата возвращаются значения (вектор) для функций sn (u ) , cn (u ) и dn (u ).

Функция для вычисления полного эллиптического интеграла первого и второго рода (вектор значений).

Функция ошибок.

Функция ошибок (остаточная).

Функция ошибок (остаточная нормированная).

Обратная функция к функции ошибок erf().

Обратная функция к функции ошибок erfc().

Интегральная экспонента.

Гамма-функция Эйлера.

Неполная гамма-функция.

Логарифм натуральный от гамма-функции Эйлера. Аргументом функции передается аргумент гамма-функции.

Функция для вычисления присоединенных полиномов Лежандра. В результате вызова функции в формате legendre(n,x) возвращается вектор-столбец значений присоединенных полиномов Лежандра m () Pn x для m = 0,1,2,...,n

Пси-полигамная функция.

Как и в случае с базовыми математическими функциями, для большинства специальных функций аргументами могут указываться матрицы. В этом случае функция вычисляется для каждого из элементов матрицы.

7. Формат вывода числовых данных

В некоторых случаях приходится изменять способ, которым данные с результатом выполнения команд пользователя выводятся на экран. В первую очередь отметим, что можно вообще не отображать результат выполнения команды в командном окне. Для этого достаточно соответствующую команду закончить точкой с запятой (то есть «;»). В этом случае после нажатия клавиши «Enter» команда выполняется, но результат ее выполнения в командном окне не отображается. Такой режим особенно удобен в тех случаях, когда нужно выполнять громоздкие промежуточные расчеты, которые, с одной стороны, необходимы для получения конечного результата, а с другой - загромождают рабочее пространство. Поэтому разумный выход из такой ситуации - скрыть результат выполнения команды. Числовой формат вывода в явном виде задается с помощью инструкции «format». В команде определения формата вывода после ключевого слова «format» указывается применяемый формат. Допустимые форматы, с кратким их описанием, перечислены в таблице 7.

Таблица 7 Числовые форматы.

Описание

Формат отображения числовых данных, при котором после десятичной точки отображается четыре цифры (формат данных с фиксированной точкой). Формат используется по умолчанию.

Числовой формат, при котором после десятичной точки отображается 7, 14 и 15 цифр в зависимости от типа числовых данных (формат данных с фиксированной точкой).

Формат отображения числовых данных с мантиссой и показателем степени (формат данных с плавающей точкой), при котором после десятичной точки отображается четыре цифры.

Числовой формат отображения с мантиссой и показателем степени (формат данных с плавающей точкой), при котором после десятичной точки отображается 7, 14 и 15 цифр в зависимости от типа числовых данных.

В зависимости от значения, для отображения применяется либо формат с плавающей точкой, либо с фиксированной точкой. После десятичной запятой отображается четыре цифры.

В зависимости от значения, для отображения применяется либо формат с плавающей точкой, либо с фиксированной точкой. После десятичной запятой отображается 7, 14 или 15 цифр.

Инженерный формат с четырьмя отображаемыми цифрами после десятичной точки и показателем степени, кратным трем.

Инженерный формат с 7, 14 или 15 отображаемыми цифрами после десятичной точки и показателем степени, кратным трем.

Формат, при котором для положительных чисел отображается знак +, для отрицательных отображается знак -, а для нуля отображается пробел.

Финансовый формат, при котором после десятичной точки отображается две цифры.

Отображение чисел в шестнадцатеричной системе счисления.

Отображение чисел в виде рациональной дроби.

Режим отображения результатов вычислений в компактной форме, с уменьшенными интервалами между строками.

Режим отображения результатов вычислений с увеличенными интервалами между строками. Используется по умолчанию.

Ниже приведен пример отображения числа р в разных форматах (в командах использована встроенная константа «Matlab pi»):

>> pi

>> format long

>> pi

3.141592653589793

>> format long e

>> pi

3.141592653589793e+000

>> format long eng

>> pi

3.14159265358979e+000

>> format bank

>> pi

>> format rat

>> pi

>> format +

>> pi

Рисунок 14

Настройки формата вывода влияют только на способ отображения числовых значений, но никак не точность их представления. Поэтому главным критерием при выборе способа вывода данных может быть вопрос удобства. Есть одна функция, которая хотя напрямую и не относится к определению формата вывода числовых данных, ее использование значительно облегчает процесс взаимодействия пользователя с системой. Это функция «clc», которая позволяет очистить рабочее пространство от команд ввода и результатов их выполнения.

Практическая часть

1. Создать вектор-строку: начальный элемент равен - р, конечный р, шаг равен 0. Транспонировать строку в столбец.

2. Создать три вектор-строки из 5 элементов fi = , где n = 5 для х = 2, 3, 4. Объединить эти строки в матрицу А (3 Ч 5).

3.Создать три вектор-столбца из 5 элементов арифметической прогрессии. Элемент арифметической прогрессии рассчитывается по формуле:

где «аn-1» - предыдущий элемент; «аn» - последующий.

Пять элементов вектора формируются, начиная с задания первого элемента «а» и c использованием шага арифметической прогрессии «d» для задания последующих элементов:

Для первого вектор-столбца: a = 2; d = 1:

Для второго вектор-столбца: a = 7; d = 2:

Для третьего вектор-столбца: a = 10; d =-2:

4. Объединить эти вектор-столбцы в матрицу В (5 Ч 3).

5. Транспонировать матрицу В и объединить с матрицей А в матрицу М(6 Ч 5).

6. Из матрицы A убрать вторую строку.

7. У матрицы В обнулить третью строку и убрать две последние строки.

8. Создать матрицу Н(2 Ч 2) путем выделения первых двух строк и столбцов матрицы М.

9. Создать с помощью функции repmat матрицу, состоящую из 2 Ч 3 матриц Н.

10. Создать матрицы размерностью 3 Ч 3:

C - единиц:

F - равномерно распределенных случайных чисел:

E - нормально-распределенных случайных чисел:

11. Найти минимальный элемент в матрице равномерно-распределенных чисел размерностью 3 Ч 5, используя функцию «reshape».

1. Построить на отрезке [-1,-0.3]с шагом 0.005 графики огибающих функций.

Первый график вывеси красной сплошной линией, а второй - зеленой штрих-пунктирной линией с маркерными точками х. Затем на полученные графики наложить графики дискретных отсчетов этих же функций без затирания предыдущего результата.

2. Построить графики суточных температур; значения векторов времени и температуры за два дня приведены ниже.

Время - 0 4 7 9 10 11 12 13 13.5 14 14.5 15 16 17 18 20 22.

Температура 10 мая - 14 15 14 16 18 17 20 22 24 28 25 20 16 13 13 14 13. Температура 11 мая - 12 13 13 14 16 18 20 20 25 25 25 20 16 12 12 11 10.

Оформить графики заголовком "All temperature", по оси «Х» подписать "Time"; по оси «У» `Temperature"; в легенде - "10 may", "11 may" и разместить ее в нижнем левом углу.

3.Построить 3-хмерные графики функции:

z (x ,y ) = 4 sin(2рx ) cos(5рy )(1 - x 2 )y (1 ?y )

на прямоугольной области «x [?1], y » с шагом 0.05 всеми способами, рассмотренными в лабораторной работе, размещая их в отдельных областях на одном окне. Названия функций, применяемых для построения графиков, включить в заголовки этих графиков.

Размещено на Allbest.ru

...

Имена изменены, все совпадения случайны.

Увертюра

Сразу оговорюсь, MATLAB - отличный инструмент. Отличный инструмент, который мы использовали не по назначению.

Взгляните на нашу компанию. Наша сфера деятельности - разработка ПО для промышленности и много чего еще. В компании работает около 100 человек, а я в этой компании - один из сотрудников, занимающийся разработкой алгоритмов. Есть у нас и Флагманский продукт, приносящий основную прибыль.

Флагманский продукт - бизнес-приложение. В нем много формочек и отчетиков, своя база данных и вычислительное ядро. Вычислительное ядро написано на C# без привлечения нативного кода. Такое решение было принято разработчиками осознанно. Parallel.For был так соблазнителен, а C++ все хотели забыть как страшный сон.



Реальность, как это нередко бывает, не прислушалась к нашим пожеланиям, и скорости C# вскоре стало не хватать. Другая проблема, что, как выяснилось, программисты, какой бы хороший код не писали, в линейной алгебре разбираются слабо.

Тогда наш Главный Алгоритмист предложил идею. Описание этой идеи и того, что из нее вышло и составляет суть данной статьи.

Идея

Идея была проста. Вместо того, чтобы платить зарплату одному умному программисту (который бы умел писать хороший код на C# и разбирался в тонкостях нашего «матана», а такого непросто найти), можно взять двух «полуумных». Первый будет писать прототипы на MATLAB, второй - переносить решение на C#.
MATLAB в таком случае преподносился как инструмент для документирования алгоритма. У такого решения были озвучены следующие преимущества:

  • MATLAB - простой язык, который опытный программист может выучить за 1 день
  • Все математики пишут на MATLAB

Стоит отметить, что ранее для документирования алгоритма использовался Mathcad, UML-диаграммы и даже просто лист бумаги.

С идеей спорили, ее не принимали. Но в итоге Главный Алгоритмист всех убедил, и была создана команда алгоритмистов, пишущих на матлабе. В эту команду вошел и я. В нашу команду также вошел Один Программист из числа разработчиков, который должен был бы, не думая, переносить наши матлаб-экзерсисы на C#.

Замечу, что кроме предложений отказаться от этой затеи, было и предложение использовать, по крайней мере, python+numpy. Хотя бы той причине, что сколько-нибудь значительного опыта разработки на MATLAB ни у кого не было (я раньше писал на python и R, остальные были математики и инженеры, использующие MATLAB как продвинутый калькулятор). Предложения, как можно понять, отклонили.

Прошел год...

Прошел год и сейчас уже можно подвести некоторые итоги:

  • Математики не умеют писать код. А в той лапше, что выходит из-под их пера не могут разобраться и они сами. Нет ни специфических знаний, ни опыта, ни культуры программирования
  • Раз уж мы отказались от схем и Mathcad, то появилось желание использовать для наших MATLAB программ реальные источники данных. В итоге мы немало времени занимались дублированием части функционала Флагманского продукта на Матлабе
  • Пока мы занимались программированием, времени на работу над собственно алгоритмом оставалось немного
  • MATLAB не подходит для разработки больших программ. По крайней мере, не подходит нам. Динамическая нестрогая типизация, медленные циклы, ооочень-медленный ООП (настолько, что пришлось частично отказаться от использования ООП), неполная поддержка разреженных матриц
  • Переносить код с MATLAB на C# непросто. Еще сложнее бэкпортировать рефакторинги и оптимизации
В результате мы не можем заранее оценить, сколько времени потребуется на реализацию той или иной фичи. Неделя или может быть месяц?

Вместо заключения

В самом начале статьи я немного слукавил, т.к. история продолжается до сих пор. Мы продолжаем писать на MATLAB, наш код продолжают переносить на C#. Хотя теперь уже все согласны, что у идеи Главного Алгоритмиста есть изъяны. Но менять уже что-либо слишком поздно.

А тем временем начинают поговаривать о дополнительном перекодировании решений с MATLAB уже на С++…

Похожие статьи