Какие виды конденсаторов существуют. Конденсаторы постоянной емкости - производство радиоаппаратуры

05.08.2019

Являются второй, по распространенности и степени использования, после резисторов, деталью в электронных схемах. Действительно, в любом электронном устройстве, будь то мультивибратор на 2 транзисторах или материнская плата компьютера, во всех них находят применение эти радиоэлементы.

Конденсатор обладает свойством накапливать заряд и впоследствии отдавать его. Простейший конденсатор представляет собой 2 пластины, разделенные тонким слоем диэлектрика. Емкостное сопротивление конденсатора зависит от его емкости и частоты тока. Конденсатор проводит переменный ток и не пропускает постоянный. Емкость конденсатора тем больше, чем больше площадь пластин (обкладок) конденсатора, и тем больше, чем тоньше слой диэлектрика между ними.

Емкости параллельно соединенных конденсаторов складываются. Емкости последовательно соединенных конденсаторов считаются по формуле, приведенной на рисунке ниже:

Конденсаторы бывают как постоянной, так и переменной емкости. Последние так и называются и сокращенно пишутся КПЕ (конденсатор переменной емкости). Конденсаторы постоянной емкости бывают как полярные, так и неполярные. На рисунке ниже изображено схематическое изображение полярного конденсатора:

К полярным относятся электролитические конденсаторы. Выпускаются также танталовые конденсаторы, которые отличаются от алюминиевых электролитических, более высокой стабильностью, но и стоят дороже. Электролитические конденсаторы подвержены, по сравнению с неполярными более быстрому старению. Полярные конденсаторы имеют положительный и отрицательный электроды, плюс и минус. На фото далее изображен электролитический конденсатор:

У советских электролитических конденсаторов полярность обозначалась на корпусе знаком плюс у положительного электрода. У импортных конденсаторов обозначается отрицательный электрод знаком минус. При нарушении режимов работы электролитических конденсаторов они могут вздуться и даже взорваться. У электролитических конденсаторов во избежания взрыва, делают при их изготовлении специальные насечки на крышке корпуса:

Также электролитические конденсаторы могут взорваться, если на них по ошибке подать напряжение выше того, на которое они были рассчитаны. На фото электролитического конденсатора приведенного выше, видно надпись 33 мкФ х 100 В., это означает его емкость, равную 33 микрофарад и допустимое напряжение до 100 вольт. Неполярный конденсатор на схемах обозначается следующим образом:

Неполярный конденсатор изображение на схеме

На фото ниже изображены пленочный и керамический конденсаторы:

Пленочный


Керамический

Конденсаторы различают по виду диэлектрика. Существуют конденсаторы с твердым, жидким и газообразным диэлектриком. С твердым диэлектриком это: бумажные, пленочные, керамические, слюдяные. Также существуют электролитические, о которых уже было рассказано выше и оксидно-полупроводниковые конденсаторы. Эти конденсаторы отличаются от всех остальных большой удельной емкостью. Многие, думаю, встречали на импортных конденсаторах такое цифровое обозначение:

На рисунке выше видно, как можно посчитать номинал такого конденсатора. Например, если на конденсаторе нанесена маркировка 332, то это означает, что он имеет емкость 3300 пикофарад или 3.3 нанофарад. Ниже приведена таблица, сверяясь с которой можно легко посчитать номинал любого конденсатора с такой маркировкой:

Существуют конденсаторы и в SMD исполнении, наиболее распространены в радиолюбительских конструкциях я думаю типы 0805 и 1206. Изображение неполярного SMD конденсатора можно видеть на рисунках ниже:

Промышленностью выпускаются и так называемые твердотельные конденсаторы. Внутри у них вместо электролита находится органический полимер.

Переменные конденсаторы

Как и резисторы, некоторые специальные конденсаторы могут изменять свою ёмкость, если это необходимо в процессе настройки. На рисунке изображено устройство конденсатора переменной емкости:

Регулируется емкость в переменных конденсаторах изменением площади параллельно расположенных пластин конденсатора. Делятся конденсаторы на переменные, которые имеют ручку для вращения вала, и подстроечные, которые имеют шлиц под отвертку, и также состоят из подвижной и не подвижной частей.

На рисунке они обозначены как ротор и статор. Такие конденсаторы используются в радиоприемниках для настройки на нужную частоту радиовещания. Емкость таких конденсаторов обычно бывает небольшой и равняется единицам – максимум сотням пикофарад. Так обозначается на схемах конденсатор переменной емкости:

На следующем рисунке показан подстроечный конденсатор. Подстроечный конденсатор обозначается на схемах следующим образом:

Такие конденсаторы обычно регулируются только один раз при сборке и настройке радиоэлектронной аппаратуры.

На следующем рисунке изображено строение подстроечного конденсатора:

Емкость конденсатора измеряется в Фарадах. Но даже 1 Фарад, это очень большая емкость, поэтому для обозначения обычно используют миллионные доли Фарад, микрофарады, а также еще более мелкие, нанофарады и пикофарады. Перевести из микрофарад в пикофарады и обратно очень легко. 1 микрофарад равен 1000 нанофарад или 1000000 пикофарад. Конденсаторы, помимо прочего, применяются в колебательных контурах радиоприемников, в блоках питания для сглаживания пульсаций, а также в качестве разделительных в усилителях. Обзор подготовил AKV .

Обсудить статью КОНДЕНСАТОР

Конденсаторы (от лат. condenso — уплотняю, сгущаю) — это радиоэлементы с сосредоточенной электрической емкостью, образуемой двумя или большим числом электродов (обкладок), разделенных диэлектриком (специальной тонкой бумагой, слюдой, керамикой и т. д.). Емкость конденсатора зависит от размеров (площади) обкладок, расстояния между ними и свойств диэлектрика.

Важным свойством конденсатора является то, что для переменного тока он представляет собой сопротивление, величина которого уменьшается с ростом частоты .

Основные единици измерения эмкости конденсаторов это: Фарад, микроФарад, наноФарад, пикофарад, обозначения на конденсаторах для которых выглядят соответственно как: Ф, мкФ, нФ, пФ.

Как и резисторы, конденсаторы разделяют на конденсаторы постоянной емкости, конденсаторы переменной емкости (КПЕ), подстроечные и саморегулирующиеся. Наиболее распространены конденсаторы постоянной емкости.

Их применяют в колебательных контурах, различных фильтрах, а также для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.

Конденсаторы постоянной емкости

Условное графическое обозначение конденсатора постоянной емкости —две параллельные липни — символизирует его основные части: две обкладки и диэлектрик между ними (рис. 1).

Рис. 1. Конденсаторы постоянной емкости и их обозначение.

Около обозначения конденсатора на схеме обычно указывают его номинальную емкость, а иногда и номинальное напряжение. Основная единица измерения емкости — фарад (Ф) — емкость такого уединенного проводника, потенциал которого возрастает на один вольт при увеличении заряда на один кулон.

Это очень большая величина, которая на практике не применяется. В радиотехнике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ). Напомним, что 1 мкФ равен одной миллионной доле фарада, а 1 пФ — одной миллионной доле микрофарада или одной триллион-ной доле фарада.

Согласно ГОСТ 2.702—75 номинальную емкость от 0 до 9 999 пФ указывают на схемах в пикофарадах без обозначения единицы измерения, от 10 000 пФ до 9 999 мкФ — в микрофарадах с обозначением единицы измерения буквами мк (рис. 2).

Рис. 2. Обозначение единиц измерения для емкости конденсаторов на схемах.

Обозначение емкости на конденсаторах

Номинальную емкость и допускаемое отклонение от нее, а в некоторых случаях и номинальное напряжение указывают на корпусах конденсаторов.

В зависимости от их размеров номинальную емкость и допускаемое отклонение указывают в полной или сокращенной (кодированной) форме.

Полное обозначение емкости состоит из соответствующего числа и единицы измерения, причем, как и на схемах, емкость от 0 до 9 999 пФ указывают в пикофарадах (22 пФ, 3 300 пФ и т. д.), а от 0,01 до 9 999 мкФ —в микрофарадах (0,047 мкФ, 10 мкФ и т. д.).

В сокращенной маркировке единицы измерения емкости обозначают буквами П (пикофарад), М (микрофарад) и Н (нанофарад; 1 нано-фарад=1000 пФ = 0,001 мкФ).

При этом емкость от 0 до 100 пФ обозначают в пикофарадах , помещая букву П либо после числа (если оно целое), либо на месте запятой (4,7 пФ — 4П7; 8,2 пФ —8П2; 22 пФ — 22П; 91 пФ — 91П и т. д.).

Емкость от 100 пФ (0,1 нФ) до 0,1 мкФ (100 нФ) обозначают в нанофарадах , а от 0,1 мкФ и выше — в микрофарадах .

В этом случае, если емкость выражена в долях нанофарада или микрофарада, соответствующую единицу измерения помещают на месте нуля и запятой (180 пФ=0,18 нФ—Н18; 470 пФ=0,47 нФ —Н47; 0,33 мкФ —МЗЗ; 0,5 мкФ —МбО и т. д.), а если число состоит из целой части и дроби — на месте запятой (1500 пФ= 1,5 нФ — 1Н5; 6,8 мкФ — 6М8 и т. д.).

Емкости конденсаторов, выраженные целым числом соответствующих единиц измерения, указывают обычным способом (0,01 мкФ —10Н, 20 мкФ — 20М, 100 мкФ — 100М и т. д.). Для указания допускаемого отклонения емкости от номинального значения используют те же кодированные обозначения, что и для резисторов.

Особенности и требования к конденсаторам

В зависимости от того, в какой цепи используют конденсаторы, к ним предъявляют и разные требования . Так, конденсатор, работающий в колебательном контуре, должен иметь малые потери на рабочей частоте, высокую стабильность емкости во времени и при изменении температуры, влажности, давления и т. д.

Потери в конденсаторах , определяемые в основном потерями в диэлектрике, возрастают при повышении температуры, влажности и частоты. Наименьшими потерями обладают конденсаторы с диэлектриком из высокочастотной керамики, со слюдяными и пленочными диэлектриками, наибольшими — конденсаторы с бумажным диэлектриком и из сегнетокерамики.

Это обстоятельство необходимо учитывать при замене конденсаторов в радиоаппаратуре. Изменение емкости конденсатора под воздействием окружающей среды (в основном, ее температуры) происходит из-за изменения размеров обкладок, зазоров между ними и свойств диэлектрика.

В зависимости от конструкции и примененного диэлектрика конденсаторы характеризуются различным температурным коэффициентом емкости (ТКЕ), который показывает относительное изменение емкости при изменении температуры на один градус; ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения и цвет окраски корпуса.

Для сохранения настройки колебательных контуров при работе в широком интервале температур часто используют последовательное и параллельное соединение конденсаторов, у которых ТКЕ имеют разные знаки. Благодаря этому при изменении температуры частота настройки такого термокомпенсированного контура остается практически неизменной.

Как и любые проводники, конденсаторы обладают некоторой индуктивностью . Она тем больше, чем длиннее и тоньше выводы конденсатора, чем больше размеры его обкладок и внутренних соединительных проводников.

Наибольшей индуктивностью обладают бумажные конденсаторы , у которых обкладки выполнены в виде длинных лент из фольги, свернутых вместе с диэлектриком в рулон круглой или иной формы. Если не принято специальных мер, такие конденсаторы плохо работают на частотах выше нескольких мегагерц.

Поэтому на практике для обеспечения работы блокировочного конденсатора в широком диапазоне частот параллельно бумажному подключают керамический или слюдяной конденсатор небольшой емкости.

Однако существуют бумажные конденсаторы и с малой собственной индуктивностью. В них полосы фольги соединены с выводами не в одном, а во многих местах. Достигается это либо полосками фольги, вкладываемыми в рулон при намотке, либо смещением полос (обкладок) к противоположным концам рулона и пропайкой их (рис. 1).

Проходные и опорные конденсаторы

Для защиты от помех, которые могут проникнуть в прибор через цепи питания и наоборот, а также для различных блокировок используют так называемые проходные конденсаторы . Такой конденсатор имеет три вывода, два из которых представляют собой сплошной токонесущий стержень, проходящий через корпус конденсатора.

К этому стержню присоединена одна из обкладок конденсатора. Третьим выводом является металлический корпус, с которым соединена вторая обкладка. Корпус проходного конденсатора закрепляют непосредственно на шасси или экране, а токоподводящий провод (цепь питания) припаивают к его среднему выводу.

Благодаря такой конструкции токи высокой частоты замыкаются на шасси или экран устройства, в то время как постоянные токи проходят беспрепятственно.

На высоких частотах применяют керамические проходные конденсаторы , в которых роль одной из обкладок играет сам центральный проводник, а другой — слой металлизации, нанесенный на керамическую трубку. Эти особенности конструкции отражает и условное графическое обозначение проходного конденсатора (рис. 3).

Рис. 3. Внешний вид и изображение на схемах проходных и опорных конденсаторов.

Наружную обкладку обозначают либо в виде короткой дуги (а), либо в виде одного (б) или двух (в) отрезков прямых линий с выводами от середины. Последнее обозначение используют при изображении проходного конденсатора в стенке экрана.

С той же целью, что и проходные, применяют опорные конденсаторы , представляющие собой своего рода монтажные стойки, устанавливаемые на металлическом шасси. Обкладку, соединяемую с ним, выделяют в обозначении такого конденсатора тремя наклонными линиями, символизирующими «заземление» (рис. 3,г).

Оксидные конденсаторы

Для работы в диапазоне звуковых частот, а также для фильтрации выпрямленных напряжений питания необходимы конденсаторы, емкость которых измеряется десятками, сотнями и даже тысячами микрофарад.

Такую емкость при достаточно малых размерах имеют оксидные конденсаторы (старое название — электролитические ). В них роль одной обкладки (анода) играет алюминиевый или танталовый электрод, роль диэлектрика — тонкий оксидный слой, нанесенный на него, а роль другой сбкладки (катода) — специальный электролит, выводом которого часто служит металлический корпус конденсатора.

В отличие от других большинство типов оксидных конденсаторов полярны , т. е. требуют для нормальной работы поляризующего напряжения. Это значит, что включать их можно только в цепи постоянного или пульсирующего напряжения и только в той полярности (катод — к минусу, анод — к плюсу), которая указана на корпусе.

Невыполнение этого условия приводит к выходу конденсатора из строя, что иногда сопровождается взрывом!

Полярность включения оксидного конденсатора показывают на схемах знаком «+», изображаемым у той обкладки, которая символизирует анод (рис. 4,а).

Это Общее обозначение поляризованного конденсатора. Наряду с ним специально для оксидных конденсаторов ГОСТ 2.728—74 установил символ, в котором Положительная обкладка изображается узким прямоугольником (рис. 4,6), причем знак?+» в этом случае можно не указывать.

Рис. 4. Оксидные конденсаторы и их обозначение на принципиальных схемах.

В схемах радиоэлектронных приборов иногда можно встретить обозначение оксидного конденсатора в виде двух узких прямоугольников (рис. 4,в).Это символ неполярного оксидного конденсатора, который может работать в цепях переменного тока (т. е. без поляризующего напряжения).

Оксидные конденсаторы очень чувствительны к перенапряжениям, поэтому на схемах часто указывают не только их номинальную емкость, но и номинальное напряжение.

С целью уменьшения размеров в один корпус иногда заключают два конденсатора, но выводов делают только три (один — общий). Условное обозначение сдвоенного конденсатора наглядно передает эту идею (рис. 4,г).

Конденсаторы переменной емкости (КПЕ)

Конденсатор переменной емкости состоит из двух групп металлических пластин, одна из которых может плавно перемещаться по отношению к другой. При этом движении пластины подвижной части (ротора) обычно вводятся в зазоры между пластинами неподвижной части (статора), в результате чего площадь перекрытия одних пластин другими, а следовательно, и емкость изменяются.

Диэлектриком в КПЕ чаще всего служит воздух. В малогабаритной аппаратуре, например в транзисторных карманных приемниках, широкое применение нашли КПЕ с твердым диэлектриком, в качестве которого используют пленки из износостойких высокочастотных диэлектриков (фторопласта, полиэтилена и т. п.).

Параметры КПЕ с твердым диэлектриком несколько хуже, но зато они значительно дешевле в производстве и размеры их намного меньше, чем КПБ с воздушным диэлектриком.

С условным обозначением КПЕ мы уже встречались — это символ конденсатора постоянной емкости, перечеркнутый знаком регулирования. Однако из этого обозначения не видно, какая из обкладок символизирует ротор, а какая — статор. Чтобы показать это на схеме, ротор изображают в виде дуги (рис. 5).

Рис. 5. Обозначение конденсаторов переменной емкости.

Основными параметрами КПЕ, позволяющими оценить его возможности при работе в колебательном контуре, являются минимальная и максимальная емкость, которые, как правило, указывают на схеме рядом с символом КПЕ.

В большинстве радиоприемников и радиопередатчиков для одновременной настройки нескольких колебательных контуров применяют блоки КПЕ, состоящие из двух, трех и более секций.

Роторы в таких блоках закреплены на одном общем валу, вращая который можно одновременно изменять емкость всех секцйй. Крайние пластины роторов часто делают разрезными (по радиусу). Это позволяет еще на заводе отрегулировать блок так, чтобы емкости всех секций были одинаковыми в любом положении ротора.

Конденсаторы, входящие в блок КПЕ, на схемах изображают каждый в отдельности. Чтобы показать, что они объединены в блок, т. е. управляются одной общей ручкой, стрелки, обозначающие регулирование, соединяют штриховой линией механической связи, как показано на рис. 6.

Рис. 6. Обозначение сдвоенных конденсаторов переменной емкости.

При изображении КПЕ блока в разных, далеко отстоящих одна от другой частях схемы механическую связь не показывают, ограничиваясь тЬлько соответствующей нумерацией секций в позиционном обозначении (рис. 6, секции С 1.1, С 1.2 и С 1.3).

В измерительной аппаратуре, например в плечах емкостных мостов, находят применение так называемые дифференциальные конденсаторы (от лат. differentia — различие).

У них две группы статорных и одна — роторных пластин, расположенные так, что когда роторные пластины выходят из зазоров между пластинами одной группы статора, они в то же время входят между пластинами другой.

При этом емкость между пластинами первого статора и пластинами ротора уменьшается, а между пластинами ротора и второго статора увеличивается. Суммарная же емкость между ротором и обоими статорами остается неизменной. Такие "конденсаторы изображают на схемах, как показано на рис 7.

Рис. 7. Дифференциальные конденсаторы и их обозначение на схемах.

Подстроечные конденсаторы . Для установки начальной емкости колебательного контура, определяющей максимальную частоту его настройки, применяют подстроечные конденсаторы, емкость которых можно изменять от единиц пикофарад до нескольких десятков пикофарад (иногда и более).

Основное требование к ним — плавность изменения емкости и надежность фиксации ротора в установленном при настройке положении. Оси подстроечных конденсаторов (обычно короткие) имеют шлиц, поэтому регулирование их емкости возможно только с применением инструмента (отвертки). В радиовещательной аппаратуре наиболее широко применяют конденсаторы с твердым диэлектриком.

Рис. 8. Подстроечные конденсаторы и их обозначение.

Конструкция керамического подстроечного конденсатора (КПК) одного из наиболее распространенных типов показана на рис. 8,а. Он состоит из керамического основания (статора) и подвижно закрепленного на нем керамического диска (ротора).

Обкладки конденсатора—тонкие слои серебра — нанесены методом вжигания на статор и наружную сторону ротора. Емкость изменяют вращением ротора. В простейшей аппаратуре применяют иногда проволочные подстроечные конденсаторы.

Такой элемент состоит из отрезка медной проволоки диаметром 1 ... 2 и длиной 15 ... 20 мм, на который плотно, виток к витку, намотан изолированный провод диаметром-0,2... 0,3 мм (рис. 8,б). Емкость изменяют отматыванием провода, а чтобы обмотка не сползла, ее пропитывают каким-либо изоляционным составом (лаком, кЛеем и т. п.).

Подстроечные конденсаторы обозначают на схемах основным символом, перечеркнутым знаком подстроечного регулирования (рис. 8,в).

Саморегулируемые конденсаторы

Используя в качестве диэлектрика специальную керамику, диэлектрическая проницаемость которой сильно зависит от напряженности электрического поля, можно получить конденсатор, емкость которого зависит от напряжения на его обкладках.

Такие конденсаторы получили название варикондов (от английских слов vari (able) — переменный и cond(enser) —конденсатор). При изменении напряжения от нескольких вольт до номинального емкость вариконда изменяется в 3—6 раз.

Рис. 9. Вариконд и его обозначение на схемах.

Вариконды можно использовать в различных устройствах автоматики, в генераторах качающейся частоты, модуляторах, для электрической настройки колебательных контуров и т. д.

Условное обозначение вариконда — символ конденсатора со знаком нелинейного саморегулирования и латинской буквой U (рис. 9,а).

Аналогично построено обозначение термоконденсаторов, применяемых в электронных наручных часах. Фактор, изменяющий емкость такого конденсатора—температуру среды — обозначают символом t°(pис. 9, б). Вместе с тем что такое конденсатор часто ищут

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы , особенно электролитические , которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает. Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

    Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.

    Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

    Третье, что указывается в маркировке, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .

Обозначение 100n – это значение номинальной ёмкости. Для 100n – 100 нанофарад (нФ) - 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47H C. Данная запись соответствует 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения. Подробнее об этом читайте .

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C - 0,1 мкФ. Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.


Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов .

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK , 220nM , 470nJ .

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Д опуск в % Б уквенное обозначение
лат. рус.
± 0,05p A
± 0,1p B Ж
± 0,25p C У
± 0,5p D Д
± 1,0 F Р
± 2,0 G Л
± 2,5 H
± 5,0 J И
± 10 K С
± 15 L
± 20 M В
± 30 N Ф
-0...+100 P
-10...+30 Q
± 22 S
-0...+50 T
-0...+75 U Э
-10...+100 W Ю
-20...+5 Y Б
-20...+80 Z А

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Н оминальное рабочее напряжение , B Б уквенный код
1,0 I
1,6 R
2,5 M
3,2 A
4,0 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
350 T
400 Y
450 U
500 V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Свойства конденсатора

Конденсатор не пропускает постоянный ток и является для него изолятором.

Для переменного тока конденсатор не является преградой. Сопротивление конденсатора (ёмкостное сопротивление) переменному току уменьшается с увеличением его ёмкости и частоты тока, и наоборот, увеличивается с уменьшением его ёмкости и частоты тока.

Свойство конденсатора оказывать разное сопротивление переменному току нашло широкое применение. Конденсаторы используют для фильтрации, отделения одних частот от других, отделения переменной составляющей от постоянной…

Из чего делают конденсаторы

Простейший конденсатор состоит из 2-х металлических пластин (обкладок), разделённых изолятором (диэлектриком). Если одну обкладку конденсатора зарядить положительно, а другую отрицательно, то разноимённые заряды, притягиваясь друг к другу, будут удерживаться на обкладках. Поэтому конденсатор может быть накопителем электрической энергии.

Обкладки конденсатора обычно изготавливают из алюминия, меди, серебра, тантала. В качестве диэлектрика применяют специальную конденсаторную бумагу, слюду, синтетические плёнки, воздух, специальную керамику и т.п.

Если использовать обкладки из фольги и многослойный пленочный диэлектрик, то можно изготовить конденсаторы рулонного типа, у которых удельная аккумулирующая способность находится приблизительно в пределах от 0,1 J/kg до 1 J/kg или от 0,03 mWh/kg до 0,3 mWh/kg. Из-за малой удельной аккумулирующей способности конденсаторы такого вида не подходят для длительного сохранения существенного количества энергии, но они широко применяются как источники реактивной мощности в цепях переменного тока и как емкостные сопротивления. Значительно более эффективно энергия может аккумулироваться в электролитических конденсаторах, принцип устройства которых изображен на рис. 2.

1 металлический лист или фольга (алюминий, тантал или др.),
2 диэлектрик из окиси металла (Al2O3 , Ta2O5 или др.),
3 бумага и т. п., пропитанная электролитом (H3BO3 , H2SO4 , MnO2 или др.) и глицерином.Так как толщина слоя диэлектрика в этом случае обычно остается в пределах 0,1 µm, то эти конденсаторы могут изготовляться с очень большой емкостью (до 1 F), но на относительно малое напряжение (обычно на несколько вольт).

Еще большую емкость могут иметь ультраконденсаторы (супер-конденсаторы, ионисторы), обкладками которых служит двойной электрический слой толщиной в несколько десятых долей нанометра на границе раздела электрода, изготовленного из микропористого графита, и электролита (рис. 3).

1 электроды из микропористого графита,
2 электролит


Эффективная площадь обкладок таких конденсаторов достигает, благодаря пористости, до 10 000 m2 на каждый грамм массы электродов, что позволяет достигать очень большой емкости при очень малых размерах конденсатора. В настоящее время ультраконденсаторы выпускаются на напряжение до 2,7 V и емкостью до 3 kF. Их удельная аккумулирующая способность находится обычно в пределах от 0,5 Wh/kg до 50 Wh/kg и имеются опытные образцы с удельной аккумулирующей способностью до 300 Wh/kg.
Выгодны они тогда, когда энергия потребляется в виде коротких импульсов (например, для питания стартера двигателей внутреннего сгорания) или когда требуется быстрая (секундная) зарядка аккумулирующего устройства. Например, в 2005 году в Шанхае началась опытная эксплуатация ультраконденсаторных автобусов, батарея конденсаторов которых заряжается во время стоянки автобуса на каждой остановке.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

Применение

Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

Свою родословную конденсаторы ведут от лейденской банки, которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой – станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

Конденсаторы - это не только элементы радио и электрических цепей. В природе мы встречаемся с естественными конденсаторами во время грозы, когда разноимённо заряженные облака разряжаются относительно друг друга или земли. Образуется молния и гремит гром.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе. На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для создания симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин. В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др. 1.В радиотехнической и телевизионной аппаратуре – для создания колебательных контуров, их настройки, блокировки, разделения цепей с различной частотой, в фильтрах выпрямителей и т.д.

2.В радиолакационной технике – для получения импульсов большей мощности, формирования импульсов и т.д.

3. В телефонии и телеграфии – для разделения цепей переменного и постоянного токов, разделения токов различной частоты, искрогашения в контактах, симметрирования кабельных линий и т.д.

4. В автоматике и телемеханике – для создания датчиков на емкостном принципе, разделения цепей постоянного и пульсирующего токов, искрогашения в контактах, в схемах тиратронных генераторов импульсов и т.д.

5. В технике счетно-решающих устройств – в специальных запоминающих устройствах и т.д.

6. В электроизмерительной технике – для создания образцов емкости, получения переменной емкости (магазины емкости и лабораторные переменные конденсаторы), создания измерительных приборов на емкостном принципе и т. д.

7. В лазерной технике – для получения мощных импульсов.

В современной электроэнергетике конденсаторы находят себе также весьма разнообразное и ответственное применение:

для улучшения коэффициента мощности и промышленных установок (косинусные или шунтовые конденсаторы);

для продольной емкости компенсации дальних линий передач и для регулирования напряжения в распределительных сетях (серийные конденсаторы);

для емкостного отбора энергии от линий передач высокого напряжения и для подключения к линиям передач специальной аппаратуры связи и защитной аппаратуры (конденсаторы связи);

для защиты от перенапряжений;

для применения в схемах импульсов напряжения (ГИН) и генераторов мощных импульсов тока (ГИТ), используемых при испытаниях электротехнической аппаратуры;

для электрической сварки разрядом;

для пуска конденсаторных электродвигателей (пусковые конденсаторы) и для создания нужного сдвига фаз в дополнительной обмотке этих двигателей;

в устройствах освещения люминесцентными лампами;

для подавления радиопомех, создаваемых электрическими машинами и подвижным составом электрифицированного транспорта.

Кроме электроники и электроэнергетики, конденсаторы применяют и в других неэлектротехнических областях техники и промышленности для следующих основных целей:

В металлопромышленности - в высокочастотных установках для плавки и термической обработки металлов, в электроэрозионных (электроискровых) установках, для магнитоимпульсной обработки металлов и т.д.

В добывающей промышленности (угольной, металлорудной и т.п.) – в рудничном транспорте на конденсаторных электровозах нормальной и повышенной частоты (бесконтактных), в электровзрывных устройствах с использованием электрогидравлического эффекта и т.д.

В автотракторной технике – в схемах зажигания для искрогашения в контактах и для подавления радиопомех.

В медицинской технике – в рентгеновской аппаратуре, в устройствах электротерапии и т.д.

В технике использования атомной энергии для мирных целей – для изготовления дозиметров, для кратковременного получения больших токов и т.д.

В фотографической технике – для аэрофотосъемки, получения вспышки света при обычном фотографировании и т.д.

Разнообразие областей применения обусловливает исключительно большое разнообразие типов конденсаторов, используемыз современной техникой. Поэтому наряду с миниатюрными конденсаторами, имеющими вес менее грамма и размеры порядка нескольких миллиметров, можно встретить конденсаторы с весом в несколько тонн и по высоте превышающие человеческий рост. Емкость современных конденсаторов может составлять от долей пикофарады до нескольких десятков и даже сотен тысяч микрофарад в единице, а номинальное рабочее напряжение может лежать в пределах от нескольких вольт до нескольких сотен киловольт.

Роль конденсатора в электронной схеме заключается в накоплении электрического заряда, разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и многое другое

В советское время, когда многие стационарные электронные часы питались от розетки, а компактные и дешевые аккумуляторы еще не изобрели, умельцы ставили туда конденсаторы, чтобы при пропадании электроэнергии, например кратковременном, они могли работать и не сбить свой ход.

§ 1.1. Функции и области применения


Электрические конденсаторы в электрон-

ных, радиотехнических, электротехнических

и электроэнергетических устройствах выпол-

няют функции накопителя энергии, источ-

ника реактивной мощности, частотно-зави-

симого реактивного сопротивления. Осуще-

ствляют они это благодаря своей способ-

ности накапливать электрическую энергию,

а затем отдавать ее в нагрузочную цепь.

Импульсы тока большой мощности ис-

пользуются для создания экстремальных

по напряженности магнитных полей и мощ-

ных дуговых разрядов в газах и жидко-

Импульсы высокого и сверхвысокого

напряжений применяются в технике высо-

ких напряжений в испытательных и иссле-

довательских целях.

Емкостные накопители энергии исполь-

зуются в установках для исследования

физики плазмы, термоядерных реакций, ис-

пытаний различного оборудования, в элект-

ротехнологических устройствах (магнитно-

импульсная штамповка, установки, исполь-

зующие электрогидравлический удар, им-

пульсная электросварка, намагничивание,

ультразвуковая технология, электроискро-

вая технология обработки, электроплазмо-

лиз и т. д.). Накопительные конденсаторы

широко используются в различных устрой-

ствах импульсной связи, радиолокации,

навигации, в импульсных источниках све-

та (высокоинтенсивные источники - лам-

пы-вспышки, сигнальные установки - мая-

ки, оптические квантовые генераторы - ла-

зеры и т. д.), импульсной рентгеновской

Конденсаторы применяются в технике

сейсморазведки (электродинамическое им-

пульсное возбуждение упругих волн в зем-

ной коре), для подрыва детонаторов, в ме-

дицине (импульсный дефибриллятор)

Накопители для генераторов мощных им-

пульсов тока могут быть простейшими (в

виде конденсатора или батарей конденса-

торов) и более сложными (искусственные

длинные линии, например, цепочный фор-

мирователь, либо набор параллельных LC-

формирователей).

В них конденсаторы относительно дол-

го накапливают электрическую энергию от

сравнительно маломощного источника, а

затем быстро отдают ее в нагрузку. Нако-

пительные конденсаторы используются, в

частности, в днодно-конденсаторных умно-

жителях напряжения.

Основным рабочим процессом в ряде

устройств с емкостным накоплением энер-

гии является не отдача ее в нагрузку, а

накопление. Способность конденсатора

быстро накапливать электрическую энер-

гию используется при создании различных

устройств для защиты электрического обо-

рудования и его элементов от перенапря-

жений, обусловленных грозовыми или ком-

мутационными явлениями. Это свойство, а

также сравнительно малые габариты, вы-

сокая надежность конденсаторов обусло-

вили, в частности, их широкое использова-

ние в демпфирующих цепях мощных

высоковольтных преобразователей, для вы-

равнивания напряжений на последователь-

но включенных вентилях.

В тиристорных преобразователях (вы-

прямителях, инверторах, импульсных регу-

ляторах), в бесконтактной коммутацион-

ной аппаратуре конденсаторы применяют

для принудительного включения и выклю-

чения диодов и вентилей с неполной управ-

ляемостью. Коммутирующие конденсаторы

в бесконтактных аппаратах работают в

накопительном режиме, тогда как в пре-

образователях рабочими процессами обыч-

но являются заряд и разряд (или пере-

заряд) конденсатора.

Свойство конденсатора накапливать

электрическую энергию широко применяет-

ся и для подавления импульсных помех в

различном электронном оборудовании, для

создания ячеек памяти ЭВМ, интегрирова-

ния и дифференцирования электрических

сигналов (аналоговые ЭВМ, системы ав-

томатики, управления и т. д.).

Широко используются накопительные

свойства конденсаторов при их применении

в разнообразных импульсных устройствах

малой мощности: в генераторах импульсов

тока и напряжения специальной формы

(развертывающие, измерительные устройст-

ва н т. д.). в автоколебательных и спуско-

вых устройствах. Конденсаторы очень час то служат источником реактивной мощ-

ности. Это свойство проявляется тогда,

когда на них воздействует переменное

(обычно синусоидальное по форме) напря-

жение. Ток, протекающий через конденса-

тор, опережает напряжение на угол, близ-

кий к π/2, т. е. конденсатор, почти не по-

требляя активную мощность, генерирует

реактивную. Эта способность используется

для повышения коэффициента мощности

потребителей электрической энергии путем

частичной или полной компенсации их

реактивной мощности, что снижает потери

энергии в генераторах, трансформаторах,

электрических сетях, повышает устойчи-

вость параллельной работы энергосистем,

стабилизирует напряжение у потребителей.

Для повышения устойчивости парал-

лельной работы и пропускной способности

линий электропередачи, а также для улуч-

шения режима работы энергосистем при-

меняют установки продольной компенса-

ции, главным элементом которых являют-

ся мощные батареи конденсаторов, осуще-

ствляющие компенсацию индуктивных

сопротивлений высоковольтных линий

электропередачи. Установки продольной

компенсации реактивной мощности исполь-

зуются на электрифицированных железных

В последнее время батареи конденсато-

ров продольной компенсации стали приме-

няться для руднотермнческих плавильных

печей большой мощности (тысячи и десят-

ки тысяч киловатт), т. е. при резко пере-

менной нагрузке.

Продольная емкостная компенсация

реактивной мощности эффективно исполь-

зуется для пуска асинхронных машин

большой мощности при их питании по ли-

ниям с большим сопротивлением (линии

недостаточной мощности и относительно

большой длины). В энергосистемах кон-

денсаторы применяются в батареях как

продольной, так и поперечной централизо-

ванной компенсации реактивной мощности.

Они обеспечивают снижение потерь энер-

гии и улучшают режимы работы энерго-

систем (совместно с электростанциями

обеспечивают необходимые напряжения в

узлах и потоки энергии). В обоих видах

батарей используется последовательно-па-

раллельное соединение большого числа

единичных конденсаторов.

Конденсаторы широко применяются не

только в установках централизованной

компенсации реактивной мощности, но и в

установках для групповой и индивидуаль-

ной компенсации. Такими примерами мо-

гут служить конденсаторы для светильни-

ков с газоразрядными лампами, пусковые

и рабочие конденсаторы однофазных асин-

хронных электродвигателей (в этом случае

основная функция конденсаторов заключа-

ется в создании фазового сдвига π/2

между токами обмоток двигателей), кон-

денсаторы, повышающие очень низкий

коэффициент мощности индукционных

электротермических установок промышлен-

ной и повышенных частот. Групповая и

индивидуальная компенсация реактивной

мощности потребителей дает большой эко комический эффект в связи со снижением

потерь энергии при ее передаче, уменьше-

нием посадки напряжения при пиковых

реконструкции энергетических сетей (из-за

недостаточной мощности питающих линий,

трансформаторов и т. д.).

Способность конденсаторов компенси-

ровать реактивную мощность потребителей

электроэнергии применяется не только на

частоте 50-6 0 Гц, но и на повышенных

частотах работы, например, бортовых сис-

тем транспортных средств, электротермиче-

ских установок. В этом случае существен-

но снижаются масса и габариты первично-

го генератора электроэнергии.

Компенсация конденсаторами реактив-

ной мощности асинхронной машины позво-

ляет создавать асинхронные генераторы,

эффективные при переменной скорости вра-

щения первичного двигателя (гидравличе-

ские, газовые турбины). В них конденсато-

ры обеспечивают возбуждение магнитного

потока и компенсацию реактивной мощ-

ности нагрузки.

Полная компенсация конденсаторами

реактивной мощности катушек индуктив-

ностей происходит также в мощных коле-

бательных контурах генераторов радиопе-

редатчиков. Без конденсаторов невозможна

работа этих устройств с высоким коэффи-

циентом полезного действия и малыми ис-

кажениями, а также генерирование боль-

ших активных мощностей.

Другое свойство конденсаторов - изме-

нять свое реактивное сопротивление при

переменном токе обратно пропорционально

частоте (x с =1/2 π / С)-широк о использу-

ется при создании различных фильтров в

радиотехнических, электронных, электро-

технических устройствах, служащих для

разделения напряжений и токов различных

Фильтры низких, высоких частот, поло-

совые и режекторные, представляющие со-

бой комбинацию индуктивных и емкостных,

резистнвных и емкостных элементов, явля-

ются неотъемлемыми узлами большинства

электронных и радиотехнических устройств.

Фильтры используются также в энергети-

ческих системах. С их помощью маломощ-

ные высокочастотные сигналы, применяе-

мые для связи, телемеханики, систем про-

тивоаварийной автоматики и других целей,

отделяются от напряжений промышленной

частоты высокого напряжения. Силовые

фильтры используются в электроэнергети-

ке для приближения формы напряжения к

синусоидальной при наличии источников

высших гармоник (выпрямителей), дуго-

вых печей и др.), в силовых полупровод-

никовых преобразователях, работающих в

автономном или в ведомом сетью режиме.

В реактивных фильтрах, резонансных

умножителях напряжения и других устрой-

ствах используются резонансные свойства

цепей, состоящих из конденсаторов к ии-

дуктнвностей.

Конденсаторы применяются в фильтрах

не только переменного, но н постоянного

тока, в которых полезной составляющей

является постоянное напряжение, а задача

фильтра заключается в сглаживании пуль

саций напряжения (путем снижения пере-

менной составляющей), т. е. здесь одно-

временно используется способность кон-

денсатора накапливать энергию и снижать

свое сопротивление с частотой. Такие

фильтры применяются в блоках питания

различных электронных и электротехни-

ческих устройств, например, в высоковольт-

ных установках электростатической окрас-

ки, очистки газов, в импульсных стабилиза-

торах напряжения, ЭВ М и др.

Свойство конденсаторов снижать свое

сопротивление с ростом частоты обуслав-

ливает их широкое использование в элект-

ронной и радиоэлектронной аппаратуре в

качестве блокирующего или помехоподав-

ляющего элемента. Роль конденсатора в

этом и в предыдущем случаях заключает-

ся в том, чтобы замкнуть путь высокочас-

тотных токов, не допустив их прохожде-

ния через другие цепи и элементы уст-

ройств, например в питающую сеть.

Конденсаторы являются неотъемлемым

элементом фазосдвигающих цепей элект-

ронных устройств систем автоматики, уп-

равления, в LC- и RС-генераторах, в ак-

тивных фильтрах и т. д.

Одна из многочисленных задач, решае-

мых с помощью конденсаторов, заключает-

ся в делении переменного напряжения,

осуществляемого при различных изменени-

ях в высоковольтных цепях, в электроэнер-

гетических системах, испытательных уста-

новках, в равномерном распределении на-

пряжения на разрывных промежутках воз-

душных высоковольтных выключателей и

для других целей.

Конденсаторы широко используются:

В емкостных делителях напряжения

для отбора энергии от высоковольтных ли-

ний электропередачи (при небольших мощ-

ностях стоимость конденсаторного отбора

ниже стоимости устройства отбора энергии

с помощью обычных трансформаторов);

Как балластное сопротивление в лю-

минесцентных источниках света, лампах

накаливания, а также в маломощных ус-

тройствах для зарядки аккумуляторов;

Во вторичных источниках питания со

специальными характеристиками (стабили-

заторы тока, напряжения), в частности, в

индуктивно-емкостных преобразователях,

служащих для питания неизменным током

установок плазменной технологии, сварки

Индуктивно-емкостные устройства при-

меняются и для симметрирования напря-

жений трехфазной сети при наличии несим-

метричных потребителей, а также для соз-

дания расщепителей числа фаз, необходи-

мых для питания трехфазных потребителей

от однофазной сети.

Таким образом, область применения

конденсаторов достаточно широка: энерге-

тика, промышленность, транспорт, устрой-

ства связи, автоматика, вещание, локация,

измерительная и вычислительная техника

Справочник

по электрическим

конденсаторам

Общие сведения,

выбор и применение

Под общей редакцией

кандидата технических наук

В. В. Ермуратског о

Конденсатор встречается в наборах Мастер Кит (да и вообще в электронных устройствах) почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы.

Принцип работы конденсатора

В простейшем варианте конструкция состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Чем больше отношение площади пластин к толщине диэлектрика – тем выше ёмкость конденсатора. Чтобы избежать физического увеличения размеров конденсатора до огромных размеров, конденсаторы изготавливают многослойными: например, сворачивают ленты пластин и диэлектриков в рулон.
Так как любой конденсатор имеет диэлектрик, то он не способен проводить постоянный ток, но он может сохранять электрический заряд, приложенный к его обкладкам, и в нужный момент отдавать его. Это важное свойство

Давайте договоримся: радиодеталь мы называем конденсатором, а его физическую величину – ёмкостью. То есть правильно сказать так: «конденсатор имеет ёмкость 1 мкФ», но некорректно сказать: «замени на плате вон ту ёмкость». Вас, конечно, поймут, но лучше соблюдать «правила хорошего тона».

Электрическая ёмкость конденсатора – это главный его параметр
Чем больше ёмкость конденсатора, тем больший заряд он может сохранить. Электрическая ёмкость конденсатора измеряется в Фарадах, обозначается F.
1 Фарад - очень большая ёмкость (земной шар имеет ёмкость менее 1Ф), поэтому для обозначения ёмкости в радиолюбительской практике используются следующие основные размерные величины - префиксы: µ (микро), n (нано) и p (пико):
1 микроФарад - 10-6 (одна миллионная часть), т.е. 1000000µF = 1F
1 наноФарад - 10-9 (одна миллиардная часть), т.е. 1000nF = 1µF
p (пико) - 10-12 (одна триллионная часть), т.е. 1000pF = 1nF

Как и Ом, Фарад – это фамилия физика. Поэтому, как культурные люди, пишем прописную букву «Ф»: 10 пФ, 33 нФ, 470 мкФ.

Номинальное напряжение конденсатора
Расстояние между пластинами конденсатора (особенно конденсатора большой ёмкости) очень мало, и достигает единиц микрометра. Если приложить к обкладкам конденсатора слишком высокое напряжение, слой диэлектрика может быть нарушен. Поэтому каждый конденсатор имеет такой параметр, как номинальное напряжение. При эксплуатации напряжение на конденсаторе не должно превышать номинального. Но лучше, когда номинальное напряжение конденсатора несколько выше напряжения в схеме. То есть, например, в схеме с напряжением 16В могут работать конденсаторы с номинальным напряжением 16В (в крайнем случае), 25В, 50В и выше. Но нельзя ставить в эту схему конденсатор с номинальным напряжением 10В. Конденсатор может выйти из строя, причём часто это происходит с неприятным хлопком и выбросом едкого дыма.
Как правило, в радиолюбительских конструкциях для начинающих не используется напряжение питания выше 12В, а современные конденсаторы чаще всего имеют номинальное напряжение 16В и выше. Но помнить о номинальном напряжении конденсатора очень важно.

Типы конденсаторов
О разнообразных конденсаторах можно написать много томов. Впрочем, это уже сделали некоторые другие авторы, поэтому я расскажу только самое необходимое: конденсаторы бывают неполярные и полярные (электролитические).

Неполярные конденсаторы
Неполярные конденсаторы (в зависимости от типа диэлектрика подразделяются на бумажные, керамические, слюдяные…) могут устанавливаться в схему как угодно – в этом они похожи на резисторы.
Как правило, неполярные конденсаторы имеют относительно небольшую ёмкость: до 1 мкФ.

Маркировка неполярных конденсаторов
На корпус конденсатора нанесён код из трёх цифр. Первые две цифры определяют значение ёмкости в пикофарадах (пФ), а третья – количество нулей. Так, на изображённом ниже рисунке на конденсатор нанесён код 103. Определим его ёмкость:
10 пФ + (3 нуля) = 10000 пФ = 10 нФ = 0,01 мкФ.

Конденсаторы ёмкостью до 10 пФ маркируются по-особенному: символ «R» в их кодировке обозначает запятую. Теперь Вы можете определить ёмкость любого конденсатора. Приведённая ниже табличка поможет Вам проверить себя.

Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Например, вместо конденсатора 15 нФ набор может комплектоваться конденсатором 10 нФ или 22 нФ, и это не отразится на работе готовой конструкции.
Керамические конденсаторы не имеют полярности и могут устанавливаться в любом положении выводов.
Некоторые мультиметры (кроме самых бюджетных) имеют функцию измерения ёмкости конденсаторов, и Вы можете воспользоваться этим способом.

Полярные (электролитические) конденсаторы
Есть два способа увеличения ёмкости конденсатора: либо увеличивать размер его пластин, либо уменьшать толщину диэлектрика.
Чтобы минимизировать толщину диэлектрика, в конденсаторах большой ёмкости (выше нескольких микрофарад) применяется специальный диэлектрик в виде оксидной плёнки. Этот диэлектрик нормально работает только при условии правильно приложенного напряжения на обкладках конденсатора. Если перепутать полярность напряжения, электролитический конденсатор может выйти из строя. Метка полярности всегда маркируется на корпусе конденсатора. Это может быть либо значок «+», но чаще всего в современных конденсаторах полосой на корпусе маркируется вывод «минус». Другой, вспомогательный способ определения полярности: плюсовой вывод конденсатора длиннее, но ориентироваться на этот признак можно только до того, как выводы радиодетали обрезаны.
На печатной плате также присутствует метка полярности (как правило, значок «+»). Поэтому при установке электролитического конденсатора обязательно совмещайте метки полярности и на детали, и на печатной плате.
Как правило, в радиолюбительских конструкциях допустима замена некоторых конденсаторов на близкие по номиналу. Также допустима замена конденсатора на аналогичный с бОльшим значением допустимого рабочего напряжения. Например, вместо конденсатора 330 мкФ 25В набор можно применить конденсатор 470 мкФ 50В, и это не отразится на работе готовой конструкции.

Внешний вид электролитического конденсатора (правильно установленный на плату конденсатор)

Похожие статьи