Как устроены аккумуляторы телефонов. Батареи в мобильных устройствах: Все, что нужно знать Из чего сделан аккумулятор телефона

02.08.2023
Аккумуляторы для телефонов устройство, классификация, отличия

Аккумуляторы

Приобретая мобильный телефон, человек, как правило, меньше всего задумывается над сроком его безотказной работы. А если и задумывается, то связывает его прежде всего с ненадежностью микросхем, радиоэлементов и механическими повреждениями. Исследования показывают, что первое место по отказам занимают элементы питания. В настоящее время в мобильных телефонах используют никель-кадмиевые (NiCd), никель-металл-гидридные (NiMH), литий-ионные (Li-Ion) и литий-полимерные (Li-Polymer) аккумуляторные батареи. Рассмотрим характеристики аккумуляторов.

Емкость аккумулятора

Емкость аккумулятора – максимальное количество электричества, которое можно получить от одной полной зарядки. Обозначается латинской буквой С и выражается в ампер-часах (А-ч) или миллиампер-часах (мА-ч). Так, например, аккумулятор емкостью 720 мА-ч способен отдавать в нагрузку ток 720 мА в течение оного часа или 360 мА в течение двух часов. При этом, конечно, разрядный ток не должен превышать некоторой максимальной силы для конкретного типа аккумулятора, иначе его пластины быстро выйдут из строя.

Внутреннее сопротивление аккумулятора

Чем оно меньше, тем больший ток способен отдать аккумулятор в нагрузку. Это очень важная характеристика. В режиме приема мобильный телефон потребляет небольшой ток. Однако во время разговора ток резко возрастает. В этом случае аккумуляторы с различным внутренним сопротивлением ведут себя по-разному. Никель-кадмиевые, обладающие наименьшим внутренним сопротивлением, легко отдают требуемый ток. Никель-металл-гидридные обладают самым высоким сопротивлением, поэтому дают просадку напряжения, которая может привести к сбоям либо ваш телефон выдаст сигнал, что аккумулятор разряжен. Так как мобильные телефоны в процессе работы потребляют более или менее стабильный ток, то для их питания применяют литий-ионные либо литий-полимерные аккумуляторы. Никель-металл-гидридные применяют при питании устройств, потребляющих стабильный ток.

Плотность энергии (Energy Density) заряженной батареи

Измеряется в ватт-часах, отнесенных к килограмму массы аккумулятора (встречается и к литру объема). Здесь лидируют литий-ионные и литий-полимерные аккумуляторы (110... 160 Вт/кг), заметно уступают им аккумуляторы 100… 130 Вт/кг. Никель-металл-гидридные аккумуляторы имеют этот показатель 60… 120, никель-кадмиевые - 45… 80 Вт х ч/кг. Из сказанного следует, что наименьшими размерами и весом при одинаковой емкости обладают литий-полимерные и литий-ионные аккумуляторы, несколько большими - никель-металл-гидридные. А литий-полимерным аккумуляторам можно придать практически любую форму.

Время заряда аккумулятора

Это довольно важная характеристика, поскольку при интенсивной эксплуатации аккумуляторы мобильных телефонов приходится заряжать почти ежедневно. Варьируется от 1 часа у никель-кадмиевых (при необходимости их можно зарядить за 15 минут) и 2… 4 часов у никель-металл-гидридных, литий-ионных и литий-полимерных.

Номинальное напряжение одного элемента

У никель-кадмиевых и никель-металл-гидридных аккумуляторов номинальное напряжение составляет 1,25 В, у литий-ионных и литий-полимерных - 3,6 В. Причем у первых двух типов напряжение в процессе разряда практически стабильно, в то время как у литий-ионных аккумуляторов в процессе разряда оно линейно снижается от 4,2 до 2,8 В.

Саморазряд аккумулятора

Саморазряд - уменьшение заряда заряженного, но не подключенного к потребителю энергии аккумулятора в процессе его хранения. Для никель-кадмиевых аккумуляторов это одно из слабых мест. У них потеря заряда достигает 10% в первые сутки после зарядки, а затем по 10% в месяц. Примерно такой же показатель и у никель-металл-гидридных аккумуляторов. Вне конкуренции по этому показателю литий-ионные и литий-полимерные аккумуляторы. У них саморазряд не превышает 2 – 5% в месяц, который происходит в основном из-за наличия схем контроля внутри аккумуляторов. Однако ограниченное время «жизни» этих аккумуляторов не дает полностью использовать это положительное качество.

Срок службы

Это одна из важнейших характеристик аккумуляторов, о которой пользователь задумывается почему-то в последнюю очередь. Для аккумуляторов с различной химией он определяется по-разному. Для одних аккумуляторов критичным является общее число рабочих циклов «заряд - разряд», в то время как для других - общее время их эксплуатации.
Никель-кадмиевые аккумуляторы выдерживают более 1500 циклов «заряд - разряд», и как показывает опыт, после восстановления могут проработать еще столько же. При правильном периодическом обслуживании никель-кадмиевые аккумуляторы служат от 5 до 10 и более лет, вплоть до механического износа их корпуса и внутренних контактов.
Никель-металл-гидридные аккумуляторы выдерживают около 500 циклов «заряд - разряд» и срок их службы редко превышает два года даже при весьма аккуратном их обслуживании.
Литий-ионные аккумуляторы можно заряжать-разряжать от 500 до 1000 раз. Но это число циклов полностью выбрать затруднительно из-за короткого срока службы - не более двух лет (по заявлениям производителей). Практически же литий-ионные аккумуляторы теряют свои эксплуатационные качества уже через год.
У литий-полимерных аккумуляторов число циклов «заряд - разряд» колеблется от 300 до 500, и они также редко служат более года. Кроме того, срок службы зависит и от степени разряда - при частичных разрядах он больше, чем при полных.
Никель-кадмиевые аккумуляторы имеют наименьшее время заряда, допускают наибольший ток нагрузки и обладают наименьшим соотношением цена - срок службы, но в то же время они наиболее критичны к точному соблюдению требований по правильной эксплуатации.

Характеристика/тип

Li-Polymer

Внутреннее сопротивление

Число циклов «заряд - разряд» до снижения емкости на 80%/срок службы

500-1000/1,5 года

300-500/1,5 года

Время быстрого заряда, ч

Токи нагрузки относительно емкости (С) - пиковый

Токи нагрузки относительно емкости (С) - наиболее приемлемый

Плотность энергии, Вт/кг

Саморазряд за месяц при комнатной температуре, /%

Обслуживание через

Напряжение на элементе, В

Диапазон рабочих температур, ° С

Год выхода на рынок

Сравнительная характеристика аккумуляторов

Эффект памяти

Это общеизвестная проблема для никель-кадмиевых и никель-металл-гидридных аккумуляторов. Эффект памяти состоит в частичной (временной) потере емкости аккумулятора, если он будет поставлен на зарядку до полного разряда. Аккумулятор как бы помнит точку начала очередного цикла подзарядки и при разрядке активно отдает только полученную во время последней подзарядки емкость. Иными словами, не полностью разряженный аккумулятор помнит свою предыдущую емкость и, будучи снова полностью заряженным, при разряде отдает только такой заряд, какой он отдал в предыдущем цикле разряда. Проявляется в том, что напряжение в цепи нагруженного и, казалось бы, нормально заряженного аккумулятора внезапно, раньше времени, падает. Эффект памяти реально проявляется в том, что в повседневной жизни пользователи редко дожидаются полной разрядки аккумуляторов перед тем, как поставить их на зарядку.
Физическая суть эффекта памяти заключается в том, что при неполном разряде аккумулятора происходит укрупнение частиц рабочего вещества аккумулятора, соответственно общая площадь соприкосновения рабочего вещества с электролитом уменьшается. Вследствие этого всего за несколько месяцев емкость никель-кадмиевого или никель-металл-гидридного аккумулятора может сократиться в несколько раз.
Поэтому весьма важными для этих типов батарей являются периодические обслуживания, которые состоят в полной разрядке, а затем в полной зарядке аккумулятора. Этот процесс принято называть тренировкой аккумулятора. Никель-кадмиевые аккумуляторы требуют ежемесячной тренировки, никель-металл-гидридные - раз в два-три месяца.
При заметном уменьшении емкости никель-кадмиевых и никель-металл-гидридных аккумуляторов их подвергают процедуре восстановления. Она заключается в очень глубоком разряде аккумулятора, дробящем крупные частицы рабочего вещества на более мелкие. Для этого имеется специальное оборудование, к примеру, анализатор аккумуляторных батарей С7000 канадской фирмы CADEX. Литий-ионные и литий-полимерные аккумуляторы не обладают эффектом памяти.

Устройство

Каждый аккумулятор имеет два электрода - положительный и отрицательный. Между электродами помещается разделительный слой, препятствующий разноименным электродам внутри аккумулятора соприкасаться друг с другом. Пространство между электродами заполнено электролитом (кислотным либо щелочным). Электроды могут быть выполнены как чередующиеся пластины.
Вначале аккумуляторы имели пробки, позволявшие стравливать выделяющиеся при заряде газы и сменять электролит. Позднее разработчики придумали изготавливать разные по размерам электроды, что позволило весь выделяющийся газ поглощать непрореагировавшей частью внутри аккумулятора. А это дало возможность производить аккумуляторы в герметичном корпусе.
В корпусах многих моделей аккумуляторов имеется встроенная электроника, не допускающая глубокого разряда, чрезмерного заряда или высокой температуры.

Заряд аккумуляторов

На сегодняшний день применяют три основных метода заряда аккумуляторов:
- нормальный или медленный заряд;
- быстрый заряд;
- скоростной заряд.

Отключение аккумулятора по окончании заряда производится с использованием:
- контроля температуры;
- контроля напряжения заряда;
- контроля спада напряжения заряда;
- контроля тока в конце заряда;
- таймера.

Нормальный или медленный заряд. Этот метод хотя и редко, но применяют для заряда никель-кадмиевых и никель-металл-гидридных аккумуляторов. Он дешевый, но приводит к кристаллизации элементов аккумулятора, что снижает емкость и срок службы. Для заряда литий-ионных и литий полимерных аккумуляторов данный метод применять нельзя, так как происходят необратимые изменения внутренней структуры аккумуляторов.
Зарядное устройство представляет собой источник постоянного напряжения, в выходную цепь которого последовательно включен задающий ток резистор. Зарядный ток аккумуляторов принято численно выражать в частях емкости аккумулятора С. Ток нормального заряда составляет приблизительно 0,1С. Таким образом при емкости аккумулятора 720 мА/час величина 0,1С будет составлять 72 мА.

Быстрый заряд. Используется только для заряда никель-кадмиевых аккумуляторов током 0,5С. Окончание заряда определяется достижением напряжения на аккумуляторе определенной величины.

Скоростной заряд. Характеризуется зарядным током 1С и включает в себя все способы отключения аккумулятора по окончании заряда.
Для заряда никель-кадмиевых и никель-металл-гидридных аккумуляторов применяют метод контроля окончания заряда по резкому незначительному снижению напряжения на аккумуляторе. Его называют отрицательным дельта V-зарядом. Его величина составляет 10…30 мВ на элемент.
Метод контроля температуры использует то, что в конце заряда проходит более интенсивный нагрев аккумулятора, и окончание заряда можно контролировать по скорости изменения температуры. При заряде никель-кадмиевых и никель-металл-гидридных аккумуляторов окончание заряда определяется в том случае, если изменение температуры достигнет 1°С/мин. Абсолютным порогом перегрева считается 60 °С.
Губительное действие на аккумулятор оказывает перезаряд, особенно если по окончании заряда его принудительно отключают, а затем снова подключают к зарядному устройству. При каждой такой операции инициируется цикл скоростного заряда при его высоком начальном токе. Частые подключения устройств, имеющих никель-кадмиевые и никель-металл-гидридные аккумуляторы, к внешним источникам питания значительно сокращают срок службы аккумуляторов.
Зарядные устройства литий-ионных аккумуляторов умеют определять степень заряда аккумулятора.
Особенностью заряда литий-ионных и литий-полимерных аккумуляторов является ограничение напряжения заряда. В настоящее время эти аккумуляторы можно заряжать до 4,20 В. Допустимое отклонение составляет 0,05 В.
При заряде литий-ионных и литий-полимерных аккумуляторов током 1С время заряда составляет 2-3 часа. В процессе заряда они не нагреваются. Аккумулятор достигает состояния полного заряда, когда напряжение на нем достигает 4,20 В + 0,05 В, а ток при этом значительно снижается и составляет примерно 3% от начального тока заряда.

Иногда приходится заряжать полностью разряженные аккумуляторы. В телефоне такой заряд осуществляется автоматически. А если отсутствует зарядное устройство?

При отсутствии специального зарядного устройства заряд аккумуляторов можно осуществить при помощи источника питания с регулируемым на выходе напряжением и максимальным рабочим током 2А и приборами контроля тока и напряжения следующим образом.

Сотовые телефоны очень быстро устаревают (наверное даже быстрее, чем компьютеры), и часто оказывается, что заменить старую батарейку в телефоне проблематично. Их просто не выпускают, и качественных батареек поэтому нет в продаже (китайские поделки в самопальных полиэтиленовых пакетиках не в счет — их покупать нет смысла, обычно они не держат долго заряд). Обидно выбрасывать совершенно исправный телефон, к которому очень привык.

Если умеете немного держать в руках паяльник, то можно просто решить эту проблему. Это возможно, поскольку носитель энергии во всех аккумуляторах для мобильников по технологии одинаков – почти всегда это Li-Ion (литий-ионный) или Li-Polymer (литий-полимер) элемент с напряжением в 3.6 3.7 вольта. Отличие только в габаритах аккумулятора, расположении и количестве контактов на нем. Покупаете любой (подчеркиваю — ЛЮБОЙ) аккумулятор от другого современного телефона, примерно подходящий по габаритам, и далее нужно просто вытащить оттуда носитель энергии и перенести в корпус старого аккумулятора. Далее для простоты я буду называть сборку из корпуса, контроллера и электрического элемента «аккумулятором» или «батарейкой», а электрический элемент внутри аккумулятора – «энергоносителем», или «элементом», или «банкой». Замена аккумулятора производилась для телефона Siemens ME45.

Итак, процесс восстановления старого аккумулятора состоит из нескольких простых шагов:

Шаг 1 . Раскрываете телефон, достаете старый аккумулятор, определяте его тип и емкость. Для моего Siemens ME45 это был аккумулятор типа Li-Ion, емкостью 840 ма/час, напряжением в 3.7 вольта, см. фото.

Самое главное – определить тип аккумулятора (Li-Ion или Li-Polymer). Дело в том, что от этого зависит режим заряда и устройство контроллера аккумулятора (специальная электронная схема, обеспечивающая правильный заряд). Аккумуляторы Li-Polymer боятся перезаряда, поэтому менять в старом аккумуляторе элемент Li-Ion на Li-Polymer я бы Вам не советовал.

Примечание . По напряжению Li-Ion и Li-Polymer почти совпадают. Li-Polymer имеет мЕньшее внутреннее сопротивление и бОльшую энергоемкость, чем Li-Ion при одинаковом размере и весе, поэтому аккумуляторы Li-Polymer используются в авиамоделизме для питания силовых установок. Недостаток у Li-Polymer в том, что он боится перезарядки (вздувается и может взорваться). Ни в коем случае не оставляйте без присмотра заряжающийся аккумулятор Li-Polymer, и применяйте для его заряда только специально предназначенные для Li-Polymer зарядные устройства!

Шаг 2 . Теперь стоит разобрать старый аккумулятор и ознакомиться с содержимым. Начинка не очень сложная – в корпусе находится контроллер (маленькая платка) и энергоноситель – увесистый прямоугольник с двумя контактами. Контакты контроллера выходят наружу, а внутри к нему подключен энергоноситель.

Плата контроллера видна снизу, а наружные контакты аккумулятора находятся на заднем плане, на этой фотографии внизу слева.

Энергоноситель приподнят, видна задняя часть наружных контактов, а также шина “-“ (левее, в центре) и шина “+“ энергоносителя (справа), подпаянные к контроллеру.

Это вид на контроллер «сверху». С этой стороны припаиваются шины питания от элемента (на фотографии он уже отпаян). Большой восьминогий чип 9926A – это полевой транзистор, служащий ключом, а маленькая 6-ногая микрушка 521A скорее всего специализированный чип (мне не удалось найти его описание), который измеряет напряжение элемента и определяет логику работы контроллера (управляет полевым транзистором и процессом заряда элемента).

Вид на плату контроллера «снизу» с этой стороны припаяны наружные контакты.

Шаг 3 . Заходите в магазин, показываете продавцу старый аккумулятор и просите продать такой же. Продавец, само собой, говорит, что извините, таких батареек нет. Тогда Вы просите его показать все имеющиеся у него модели аккумуляторов, и выбираете из него тот, который совпадает по типу (например, если старый аккумулятор у Вас был Li-Ion, то нужно искать тоже батарейку Li-Ion) и имеет устраивающую вас емкость (измерятеся в милиампер/часах). Чем больше емкость, тем лучше. С напряжением все проще, тут не промахнетесь — все аккумуляторы имеют внутри одну банку с напряжением 3.6 .. 3.7 вольт. Обращайте внимание также на качество упаковки и время выпуска аккумулятора, чем батарейка свежЕе, тем лучше – дольше проработает. Меняйте только Li-Ion на Li-Ion и Li-Polymer на Li-Polymer!

Шаг 4 . Аккуратно разберите новую батарейку, отделите элемент от контроллера. Если можно, постарайтесь отпаять – это упростит подключение элемента к старому контроллеру. У меня отпаять не получилось (место соединения было залито компаундом), и пришлось просто оторвать. После этой процедуры из элемента должны торчать два контакта – плюс и минус, которые надо облудить и припаять затем к старому контроллеру. Внимание! Не перепутайте полярность и не замкните случайно контакты элемента во время пайки.

Мне на этом шаге пришлось столкнуться с небольшой проблемой – положительный контакт элемента был из алюминия и наотрез отказался облуживаться. К тому же он был очень нежным (по сути – толстая фольга) и мог оторваться при любом неосторожном движении. Пришлось придумать, как сделать для него надежный контакт. Выручила старая панелька от DIP микросхем – 2 контакта от неё как раз подошли для этой цели. Они пружинили и хорошо соединялись с контактом элемента, см. фотографии.

Здесь виден энергоноситель, от него уже оторван контроллер. Слева – отрицательный контакт, его удалось облудить. Справа – положительный алюминиевый контакт и контактики от панельки, подготовленные для подсоединения. Чтобы элемент влез в корпус аккумулятора, пришлось слегка его сжать по бокам. Эту операцию надо делать очень осторожно — ни в коем случае нельзя нарушить герметичность аккумулятора (особенно относится к Li-Polymer).

Контакты панельки насажены на контакт элемента.

Потом тонкой облуженной жилкой от провода МГТФ я закрепил контакты и для надежности слегка пропаял, стараясь как можно меньше класть канифоли (чтобы она не попала между контактом элемента и контактами панельки).

Почти готовый аккумулятор. Мягкие синие прокладки (взял амортизационные шайбы от старого CD-ROMа) нужны для того, тобы элемент не болтался в корпусе аккумулятора. Осталось закрыть крышку, и продура завершена. Я не стал приклеивать крышку, а просто примотал её 2 слоями скотча.

«Старичок» с новым аккумулятором — все в порядке!

Это все, что осталось от «донора» — этикетка и выломанный контроллер.

Рассказывам об особенностях устройства батарей в мобильных девайсах.

Миллионы людей во всем мире являются активными пользователями мобильных устройств. Это плоды гигантской, мультимиллиардной индустрии, раз и навсегда изменившей наш образ жизни. Маленькие и не очень, функциональные и простые, дорогие и дешевые мобильные телефоны, планшеты и ноутбуки объединяет один фактор - все они используют для работы заряд батарей. Без них, все эти девайсы превратились бы в куски пластика, метала и текстолита, неспособные прожить и минуты без розетки.

Батареи внутри вашего мобильного устройства представляют собой чудеса химической инженерии - они способны накапливать огромный заряд энергии, способный поддерживать работоспособность устройств на протяжении часов. Как же они устроены?

Большинство современных мобильных устройств используют литий-ионные (или Li-ion) батареи, состоящие из двух основных частей: пары электродов и электролита между ними. Материалы, из которых сделаны эти электроды, варьируются (литий, графит и даже нанопровода), но все они полагаются на химические процессы в основе которых стоит литий.

Это химически активный метал, что подразумевает его способность вступать в реакцию с другими элементами. Чистый литий настолько активен, что воспламеняется под воздействием воздуха, поэтому большинство батарей используют его более безопасную разновидность, именуемую литий оксид кобальта.

Между двух электродов находится электролит, в роли которого обычно выступает жидкий органический растворитель, способный пропускать ток. Когда литий-ионная батарея заряжена, молекулы литий оксид кобальта удерживают электроны, которые затем высвобождаются, когда ваш телефон работает.

Литий-ионные батареи являются наиболее распространенными, потому что могут накапливать большой заряд при малом размере. Это измеряется по шкале плотности энергии на единицу массы. Для литий-ионной батареи этот показатель равен 0,46–0,72 МДж/кг. Для сравнения, у Никель-металл-гидридного аккумулятора (Ni-MH) он равняется 0,33 МДж/кг. Иными словами, литий-ионные батареи меньше и легче, чем другие типы аккумуляторов, что подразумевает более компактные девайсы с более продолжительной «живучестью» от одного заряда.

Емкость аккумулятора


Емкость батареи измеряется в миллиампер-часах (мАч), что означает какое количество энергии сможет выдать аккумулятор за конкретный промежуток времени. К примеру, если емкость батареи равна 1000 мАч, то она сможет предоставить вам 1000 миллиампер на протяжении 1 часа. Если ваш девас будет потреблять 500 миллиампер в час, то проработает он уже 2 часа.

Однако понятие «живучести батареи» чуть сложнее, вышеописанного принципа, так как потребление энергии варьируется в зависимости от того, какие задачи девайс выполняет. Например, если у него включен экран, работает антенна сотовой связи, а процессор загружен тяжелой работой, то девайс будет потреблять больше энергии, чем когда экран выключен, а процессор и антенна находятся в режиме ожидания.

Именно поэтому не нужно слепо полагаться на заявленные производителем показателям автономности работы - производитель может выдавать эти цифры с учетом основе яркости экрана, без включения некоторых функций, как-то Wi-Fi или GPS. Стоит отметить, что Apple в этом отношении действует более честно, указывая «живучесть» устройства на основании выполнения конкретных задач. Если вам любопытно сколько энергии поглощает в том или ином режиме работы, советуем воспользоваться специальным приложением Battery Life Pro.

Контроль за потоком энергии


Так как у литий-ионных батарей имеется тенденция к возгоранию, они должны быть подвержены тщательному контролю. Производители батарей достигли этого путем включения специального контроллера, который следит за силой тока. В итоге, каждый аккумулятор содержит внутри маленький компьютер, который предотвращает слишком быструю разрядку и потерю заряда до опасно низкого уровня. Этот компонент также регулирует силу тока во время зарядки, понижая его по мере того, как заряд батареи приближается к максимальной отметке, чтобы избежать чрезмерной зарядки.

Именно поэтому, полностью разряженный девайс, поставленный на подзарядку, греется в этом процессе намного сильнее, чем лишь немного разряженный.

Будущее аккумуляторов


Технологии по производству батарей не стоят на месте - множество исследовательских лабораторий по всему миру исследуют новые технологии, способные заменить литий, а также новые походы по созданию литий-ионных батарей. Среди новых технологий, много работы было проделано с супер-конденсаторами, в которых батарея хранит энергию в форме электричества, а затем высвобождает ее подобно вспышке на фотоаппарате.

Супер-конденсаторы заряжаются намного быстрее, так как в этом процессе практически не задействованы химические реакции, но современные представители такого рода накопителей способны отдавать заряд лишь короткими порциями, что является противоположностю тому, что требуется для большинства мобильных устройств.

Топливные элементы на основе водорода, тоже являются альтернативой существующим батареям. Система топливных элементов от Nectar, представленная на недавней CES, использует десятидолларовый картридж, способный питать мобильный телефон до двух недель. Однако топливные элементы все еще слишком велики, чтобы поместится в телефоне - та же система от Nectar просто подзаряжает литий-ионную батарею, а не заменяет ее.

А вот сера вполне может занять место внутри литий-ионных батарей. Ученые из Стэндфордского Университета недавно представили нанотехнологию по включению серы в химический состав батареи, что увеличило ее емкость в пять раз, а также увеличило срок службы. В то же время, эта технология находится пока на ранней стадии развития и не выйдет на рынок в ближайшие несколько лет.

P.S. Аккумуляторы в мобильных устройствах, равно как и обычные батарейки, требуют определенной утилизации - просто так выбрасывать их в мусорный бак нельзя. Поэтому рады напомнить вам, что iLand готов взять на себя утилизацию отживших свое элементов питания. Просто принесите их к нам в офис, а об остальном мы позаботимся!

Аккумуляторы для мобильных устройств

Устройство и основные параметры

Сотовые телефоны и переносные компьютеры, радиостанции и радиотелефоны, источники бесперебойного питания, кинокамеры и фотоаппараты, ручные мощные инструменты, медицинские приборы, разнообразное производственное оборудование — вот далеко не полный перечень устройств, нормальная работоспособность которых напрямую зависит от состояния аккумуляторов. В связи с этим, знание характеристик, особенностей и условий эксплуатации различных типов аккумуляторов приобретает особое значение и является залогом безотказной работы мобильных устройств и портативного оборудования.

Если Вы любопытны и обладаете некоторыми навыками по порче игрушек, приобретенными еще в детстве, то уже наверняка познакомились с внутренним устройством своего бывшего в эксплуатации аккумулятора. Что же там внутри? (Не советую разбирать, это связано с риском получения физических повреждений). Вообще то ничего особенного. Круглые или призматические «батарейки», каких навалом в ближайшем магазине, причем по гораздо более низкой цене. Однако первое впечатление — обманчиво. Перед Вами не просто батарейки, а аккумуляторы. И отличаются они от батареек тем, что допускают (в силу обратимости протекающих в них реакций) многократные циклы разряда — заряда. В этом их преимущество перед батарейками, но с другой стороны и «головная боль», которую они приносят в случае потери работоспособности. И если с первыми все просто: купил, вставил, истощились, выбросил и купил новые, то с аккумуляторами дело обстоит сложнее. Для них последовательность действий иная: купил; подготовил к работе; пользуешься, соблюдая правила эксплуатации; и только когда уже совсем невмоготу — покупаешь новый.

Итак, чтобы не было мучительно больно за бесцельно потраченные деньги, ниже информация для любопытных и любознательных на тему: что нужно знать об аккумуляторах для мобильных телефонов и портативных компьютеров.

Устройство

Любой аккумулятор, как правило, состоит из нескольких единичных элементов, соединенных последовательно для увеличения значения вырабатываемого напряжения и упакованных в общий корпус. С конструкцией единичного элемента аккумулятора, например никель-металлгидридного, с электрохимическими реакциями, проходящими внутри него, и другими полезными сведениями (на английском языке) можно познакомиться на сайте фирмы Panasonic , загрузив файл в формате pdf Overview information on NiMH Batteries in PDF Format — 137KB .

Кроме единичных элементов аккумуляторы на основе никеля содержат внутри тепловой предохранитель и датчик температуры (последний в NiCd аккумуляторах может отсутствовать). Тепловой предохранитель обеспечивает безопасность при больших токах заряда, а выходной сигнал датчика температуры обрабатывается зарядным устройством. В зависимости от значения температуры «грамотное» зарядное устройство обеспечивает различные режимы заряда аккумулятора: быстрый, медленный и переключение от одного к другому.

Литий-ионные аккумуляторы помимо теплового предохранителя и датчика температуры содержат специальную управляющую интегральную схему и управляющие ключи. Все это в совокупности призвано защитить потребителя от физических повреждений в случае нарушения электрических режимов эксплуатации аккумулятора.

ОСНОВНЫЕ ПАРАМЕТРЫ АККУМУЛЯТОРОВ

Да будет Вам известно, что аккумулятор, как электрический прибор, характеризуется следующими основными параметрами: типом электрохимической системы, напряжением, электрической емкостью, внутренним сопротивлением, током саморазряда и сроком службы. Причем, в зависимости от сферы применения на первый план выступают то одни параметры, то другие. Например, аккумулятор для сотовых телефонов должен оцениваться по совокупности значений трех его основных характеристик: реальной емкости, внутреннему сопротивлению и току саморазряда, а аккумулятор домашнего радиотелефона с радиусом действия до 100 метров достаточно оценить только по емкости и саморазряду. При недооценке или игнорировании какого-либо параметра или преувеличении важности одного из них (как правило, емкости) можно оказаться в ситуации «у разбитого корыта».

Напряжение . Напряжение аккумулятора определяется тем устройством, для питания которого он предназначен. Если требуемое значение напряжения не обеспечивается одним элементом, то аккумулятор собирается из нескольких элементов, соединенных последовательно. Например, в сотовых телефонах различных моделей используются аккумуляторы напряжением 3,6 В (1 Li-ion элемент или 3 NiCd, или 3 NiMH элемента), 4,8 В (только 3 NiCd или 3 NiMH элемента), 6 В (только 5 NiCd или 5 NiMH элементов), 7,2 В (2 Li-ion элемента). Таким образом, если в телефоне используются 4 NiMH аккумулятора общим напряжением 4,8 В (как, например, в некоторых последних моделях фирмы Ericsson), то использование в нем Li-ion аккумуляторов невозможно. Напряжение аккумулятора в процессе работы не постоянно. Оно максимально сразу после окончания заряда, а затем в процессе работы или хранения уменьшается. В конце концов, оно уменьшается до такой величины, что сотовый телефон не включается или автоматически выключается. При оценке состояния аккумулятора измерение его напряжения необходимо производить под нагрузкой, на которую он рассчитан.

Электрическая емкость . Номинальная электрическая емкость — это то количество энергии, которым аккумулятор теоретически должен обладать в заряженном состоянии. Данный параметр аналогичен емкости какого-либо сосуда, например, стакана. Так в стандартный граненый стакан можно налить 200 мл воды (по ободок), в конкретный аккумулятор можно закачать также лишь вполне определенное количество энергии. Но определяется это количество энергии (емкость) не в момент закачивания (заливания), а при обратном процессе — разряде (выливании энергии) аккумулятора постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется емкость соответственно в ампер-часах (А·час) или миллиампер-часах (мА·час) и обозначается буквой «С». Значение емкости указывается на этикетке аккумулятора или зашифровано в обозначении его типа. Реальное значение емкости нового аккумулятора на момент ввода его в эксплуатацию колеблется от 80 до 110% от номинального значения и зависит: от фирмы-изготовителя, условий и срока хранения и технологии ввода в эксплуатацию. Теоретически аккумулятор, например, номинальной емкостью 1000 мА*час может отдавать ток 1000 мА в течение одного часа, 100 мА в течение 10 часов, или 10 мА в течение 100 часов. Практически же, при высоком значении тока разряда номинальная емкость не достигается, а при низком токе — превышается.

В процессе эксплуатации емкость аккумулятора уменьшается. Скорость уменьшения зависит от типа электрохимической системы, технологии обслуживания в процессе работы, используемых зарядных устройств, условий и срока эксплуатации. Используя ту же аналогию со стаканом, можно сказать, что количество наливаемой в стакан воды будет уменьшаться, если будете наливать воду с большим количеством механических примесей, а сливать — отстоявшуюся. Тогда в стакане постепенно будет накапливаться осадок, уменьшающий его полезную емкость. В аккумуляторе подобный «осадок» образуется в процессе циклов заряда / разряда.

Внутреннее сопротивление . Внутреннее сопротивление аккумулятора (сопротивление источника тока) определяет его способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома (вспомните курс школьной физики). При низком значении внутреннего сопротивления, аккумулятор способен отдать в нагрузку больший пиковый ток (без существенного уменьшения напряжения на его выводах), а значит и большую пиковую мощность. В то время как высокое значение сопротивления приводит к резкому уменьшению напряжения на выводах аккумулятора при резком увеличении тока нагрузки. Такой коллапс (уменьшение) напряжения характеризует «слабость» внешне хорошего аккумулятора, потому что запасенная энергия не может быть полностью выдана в нагрузку.

Другими словами, все вышесказанное о внутреннем сопротивлении аккумулятора может быть проиллюстрировано следующим образом. Представим себе, что Вам необходимо за час полить садовый участок из бака (аккумулятор), который Вы ранее заполнили водой. При нормальном положении вещей Вы подключаете к сливному крану шланг, полностью открываете кран и поливаете участок в течение часа до тех пор, пока вода в баке не закончится. А теперь предположим, что сливной кран у вашего бака заклинило, открыть его можно только чуть-чуть и вода сочится из него лишь тоненькой струйкой. Вроде бы и вода в баке есть (аккумулятор заряжен), а нормально поливать невозможно. Кран в данном случае играет роль внутреннего сопротивления для бака. Если струя из крана большая, то внутреннее сопротивление бака мало, если — маленькая — внутреннее сопротивление бака большое.

Что имеем практически? Сотовый телефон в режиме ожидания потребляет от аккумулятора небольшой ток и пропускной способности крана его аккумулятора вполне хватает для питания телефона. Как только поступает входящий звонок или Вы начинаете делать исходящий, телефону требуется в десятки раз больше энергии для нормальной работы в режиме передачи, поэтому требуется увеличить пропускную способность крана. Если кран — нормальный, то он пропустит через себя этот увеличенный поток энергии, если его — заклинило, то — нет, и телефон отключается. Это особенно характерно для сотовых телефонов стандартов NMT, AMPS, транковых и обычных радиостанций, портативных компьютеров.

Внутреннее сопротивление аккумулятора зависит от типа его электрохимической системы, емкости, числа элементов в аккумуляторе, соединенных последовательно, и возрастает к концу срока эксплуатации.

Саморазряд . Явление саморазряда в большей или меньшей степени характерно для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены. Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCd аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH — немного больше, а для Li-ion пренебрежимо мал и оценивается за месяц. Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается.

Саморазряд аккумуляторов зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Он резко возрастает при повышении окружающей температуры, повреждении внутреннего сепаратора аккумулятора из-за неправильного обслуживания и вследствие процесса старения.

Срок службы (срок эксплуатации) аккумулятора . Его принято оценивать по количеству циклов заряда / разряда, которое аккумулятор выдерживает в процессе эксплуатации без значительного ухудшения своих основных параметров: емкости, саморазряда и внутреннего сопротивления. Срок службы зависит от многих факторов: методов заряда, глубины разряда, процедуры обслуживания или его отсутствия, температуры и электрохимической природы аккумулятора. Кроме того, он определяется временем, прошедшим со дня изготовления, особенно для Li-ion аккумуляторов. Аккумулятор, как правило, считается вышедшим из строя после уменьшения его емкости ниже 80% от номинального значения.

Для более подробного и профессионального ознакомления с аккумуляторами можно порекомендовать сайт фирмы Panasonic , где приведены подробнейшие справочные данные и аналитические материалы о NiCd, NiMH, Li-ion аккумуляторах, производимых этой фирмой (на английском языке). К сожалению, фирма не дала разрешения на перевод и публикацию этой информации на русском языке, сославшись на отсутствие ее представительства в России в этой области и невозможности оценки переведенных материалов. Но размещенные там сведения представляют определенный интерес как для разработчиков аппаратуры с питанием от аккумуляторов, так и для пользователей, поэтому ниже приведен краткий перечень освещаемых там вопросов:

  • внешний вид;
  • внутреннее устройство;
  • электрохимические реакции, происходящие внутри аккумулятора;
  • особенности;
  • пять основных характеристик: зарядные, разрядные, число циклов заряда / разряда, хранение (саморазряд), безопасность с графиками и пояснениями;
  • методы заряда;
  • упаковка элементов в аккумуляторы;
  • предосторожности при разработке устройств с аккумуляторами.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. .

Более подробная информация на русском языке об аккумуляторах для мобильной техники связи, компьютеров и других портативных приборов, советы по эксплуатации и обслуживанию приведены в

ССЫЛКИ

  1. Cadex Electronics Inc. , Vancouver, BC , Canada — разработчик и производитель зарядных устройств, анализаторов и систем обслуживания аккумуляторов (на английском языке).
  2. Аккумуляторы для мобильных устройств и портативных компьютеров . Анализаторы аккумуляторов (на русском языке).
  3. , производимых фирмой Panasonic (на английском языке).

Ушли в прошлое времена, когда аккумуляторные батареи для сотовых телефонов собирали аналогично автомобильным, только в миниатюре. Лишь 20 лет назад аккумулятор сотового телефона был устроен из частей как бы повторяющих весь комплекс устройств большего собрата. На рисунке показан разрез одного из таких элементов.

Наука и практика совместными усилиями продвигает технический прогресс. В 1991 году появились литий-ионные аккумуляторы, в которых катодный материал электродов наносится на алюминиевую фольгу, анодный - на медную.

Ионы лития, под воздействием электрического тока, внедряются в кристаллическую решетку графита и образуют с молекулами углерода химические связи. При разрыве этих связей высвобождается энергия, превращающаяся на полюсах батареи в электрический ток.

В последние годы появились литий-полимерные аккумуляторы.

На схеме видно как просто устроен такой аккумулятор для сотового телефона.

Банки аккумулятора телефона

Банки аккумулятора – это мягкие пластиковые пакеты, заполненные раствором лития в полимере, по консистенции похожим на сметану. Для контроля за состоянием батареи к банкам подключен контроллер. Он устроен в виде электронной платы и может ограничивать подключение зарядного устройства, не соответствующего по параметрам, и аккумулятор сотового телефона заряжаться не будет, как бы мы ни старались. Вместо обычных 2 контактов для соединения с платой сотового телефона в устройстве аккумулятора применяется коннектор – многополюсное соединение.

Как устроен аккумулятор телефона и принцип его работы

Процесс накапливания и отдачи энергии таких источников постоянного тока аналогичен литий-ионным аккумуляторам, но их производство гораздо дешевле, хотя по некоторым характеристикам они проигрывают своим предшественникам.

Основные предосторожности, которые нужно соблюдать при использовании малогабаритных телефонных аккумуляторов, ничем не отличаются от эксплуатационных мер безопасности кислотных или щелочных источников постоянного тока, устанавливаемых на автомобилях. Заряд повышенным напряжением, приводящим к перегреву или короткое замыкание банок аккумулятора может привести к пожару. А от маленькой искры, как известно, разгорается большое пламя.

Именно поэтому на каждом аккумуляторе установлен контроллер батареи, отключающий зарядку при достижении определенного значения и выключающий телефон, когда разрядка доходит до критической черты.

Похожие статьи