Как собрать гаусс пушку в домашних условиях. Легендарная гаусс-пушка своими руками

29.04.2019

Проект был начат в 2011 году.Это был проект подразумевающий полностью автономную автоматическую систему для развлекательных целей, с энергией снаряда порядка 6-7Дж, что сравнимо с пневматикой. Планировалось 3 автоматических ступеней с запуском от оптических датчиков, плюс мощный инжектор-ударник засылающий снаряд из магазина в ствол.

Компоновка планировалась такой:

Тоесть класический Булл-пап, что позволило вынести тяжелые аккумуляторы в приклад и тем самым сместить центр тяжести ближе к ручке.

Схема выглядит так:

Блок управления в последствии был разделен на блок управления силовым блоком и блок общего управления. Блок конденсаторов и блок коммутации были обьеденены в один. Так-же были разработаны резервные системы. Из них были собраны блок управления силовым блоком, силовой блок, преобразователь, распределитель напряжений, часть блока индикации.

Представляет собой 3 компаратора с оптическими датчиками.

Каждый датчик имеет свой компаратор. Это сделано для повышения надежности, так при выходе из строя одной микросхемы откажет только одна ступень, а не 2. При перекрытии снарядом луча датчика сопротивление фототранзистора меняется и срабатывает компаратор. При классической тиристорной коммутации управляющие выводы тиристоров можно подключать напрямую к выходам компараторов.

Датчики необходимо устанавливать так:

А устройство выглядит так:

Силовой блок имеет следующую простую схему:

Конденсаторы C1-C4 имеют напряжение 450В и емкость 560мкФ. Диоды VD1-VD5 применены типа HER307/ В качестве коммутации применены силовые тиристоры VT1-VT4 типа 70TPS12.

Собранный блок подключенный к блоку управления на фото ниже:

Преобразователь был применен низковольтный, подробнее о нем можно узнать

Блок распределения напряжений реализован банальным конденсаторным фильтром с силовым выключателем питания и индикатором, оповещающим процесс заряда аккумуляторов. Блок имеет 2 выхода- первый силовой, второй на все остальное. Так-же он имеет выводы для подключения зарядного устройства.

На фото блок распределения крайний справа сверху:

В нижнем левом углу резервный преобразователь, он был собран по самой простой схеме на NE555 и IRL3705 и имеет мощность около 40Вт. Предполагалось использовать его с отдельным небольшим аккумулятором, включая резервную систему при отказе основной или разряде основного аккумулятора.

Используя резервный преобразователь были произведены предварительные проверки катушек и проверялась возможность использования свинцовых аккумуляторов. На видео одноступенчатая модель стреляет в сосновую доску. Пуля со специальным наконечником повышенной пробивной способности входит в дерево на 5мм.

В пределах проекта так-же разрабатывалась универсальная ступень, как главный блок для следующих проектов.

Эта схема представляет собой блок для электромагнитного ускорителя, на основе которого можно собрать многоступенчатый ускоритель с числом ступеней до 20. Ступень имеет классическую тиристорную коммутацию и оптический датчик. Энергия накачиваемая в конденсаторы- 100Дж. Кпд около 2х процентов.

Использован 70Вт преобразователь с задающим генератором на микросхеме NE555 и силовым полевым транзистором IRL3705. Между транзистором и выходом микросхемы предусмотрен повторитель на комплементарной паре транзисторов, необходимый для снижения нагрузки на микросхему. Компаратор оптического датчика собран на микросхеме LM358, он управляет тиристором, подключая конденсаторы к обмотке при прохождении снарядом датчика. Параллельно трансформатору и ускоряющей катушки применены хорошие снабберные цепи.

Методы повышения КПД

Так-же рассматривались методы повышения КПД, такие как магнитопровод, охлаждение катушек и рекуперация энергии. О последней расскажу подробнее.

ГауссГан имеет очень малый КПД, люди работающие в этой области давно разыскивают способы повышения КПД. Одним из таких способов является рекуперация. Суть ее состоит в том чтобы вернуть не используемую энергию в катушке обратно в конденсаторы. Таким образом энергия индуцируемого обратного импульса не уходит в никуда и не цепляет снаряд остаточным магнитным полем, а закачивается обратно в конденсаторы. Этим способом можно вернуть до 30 процентов энергии, что в свою очередь повысит КПД на 3-4 процента и уменьшит время перезарядки, увеличив скорострельность в автоматических системах. И так- схема на примере трехступенчатого ускорителя.

Для гальванической развязки в цепи управления тиристоров использованы трансформаторы T1-T3. Рассмотрим работу одной ступени. Подаем напряжение заряда конденсаторов, через VD1 конденсатор С1 заряжается до номинального напряжения, пушка готова к выстрелу. При подаче импульса на вход IN1, он трансформируется трансформатором Т1, и попадает на управляющие выводы VT1 и VT2. VT1 и VT2 открываются и соединяют катушку L1 с конденсатором C1. На графике ниже изображены процессы во время выстрела.

Больше всего нас интересует часть начиная с 0.40мсек, когда напряжение становится отрицательным. Именно это напряжение при помощи рекуперации можно поймать и вернуть в конденсаторы. Когда напряжение становится отрицательным, оно проходя через VD4 и VD7 закачивается в накопитель следующей ступени. Этот процесс так-же срезает часть магнитного импульса, что позволяет избавится от тормозящего остаточного эффекта. Остальные ступени работают подобно первой.

Статус проекта

Проект и мои разработки в этом направлении в общем были приостановлены. Вероятно в скором будущем я продолжу свои работы в этой области, но ничего не обещаю.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Блок управления силовой частью
Операционный усилитель

LM358

3 В блокнот
Линейный регулятор 1 В блокнот
Фототранзистор SFH309 3 В блокнот
Светодиод SFH409 3 В блокнот
Конденсатор 100 мкФ 2 В блокнот
Резистор

470 Ом

3 В блокнот
Резистор

2.2 кОм

3 В блокнот
Резистор

3.5 кОм

3 В блокнот
Резистор

10 кОм

3 В блокнот
Силовой блок
VT1-VT4 Тиристор 70TPS12 4 В блокнот
VD1-VD5 Выпрямительный диод

HER307

5 В блокнот
C1-C4 Конденсатор 560 мкФ 450 В 4 В блокнот
L1-L4 Катушка индуктивности 4 В блокнот

LM555

1 В блокнот
Линейный регулятор L78S15CV 1 В блокнот
Компаратор

LM393

2 В блокнот
Биполярный транзистор

MPSA42

1 В блокнот
Биполярный транзистор

MPSA92

1 В блокнот
MOSFET-транзистор

IRL2505

1 В блокнот
Стабилитрон

BZX55C5V1

1 В блокнот
Выпрямительный диод

HER207

2 В блокнот
Выпрямительный диод

HER307

3 В блокнот
Диод Шоттки

1N5817

1 В блокнот
Светодиод 2 В блокнот
470 мкФ 2 В блокнот
Электролитический конденсатор 2200 мкФ 1 В блокнот
Электролитический конденсатор 220 мкФ 2 В блокнот
Конденсатор 10 мкФ 450 В 2 В блокнот
Конденсатор 1 мкФ 630 В 1 В блокнот
Конденсатор 10 нФ 2 В блокнот
Конденсатор 100 нФ 1 В блокнот
Резистор

10 МОм

1 В блокнот
Резистор

300 кОм

1 В блокнот
Резистор

15 кОм

1 В блокнот
Резистор

6.8 кОм

1 В блокнот
Резистор

2.4 кОм

1 В блокнот
Резистор

1 кОм

3 В блокнот
Резистор

100 Ом

1 В блокнот
Резистор

30 Ом

2 В блокнот
Резистор

20 Ом

1 В блокнот
Резистор

5 Ом

2 В блокнот
T1 Трансформатор 1 В блокнот
Блок распределения напряжений
VD1, VD2 Диод 2 В блокнот
Светодиод 1 В блокнот
C1-C4 Конденсатор 4 В блокнот
R1 Резистор

10 Ом

1 В блокнот
R2 Резистор

1 кОм

1 В блокнот
Выключатель 1 В блокнот
Батарея 1 В блокнот
Программируемый таймер и осциллятор

LM555

1 В блокнот
Операционный усилитель

LM358

1 В блокнот
Линейный регулятор

LM7812

1 В блокнот
Биполярный транзистор

BC547

1 В блокнот
Биполярный транзистор

BC307

1 В блокнот
MOSFET-транзистор

AUIRL3705N

1 В блокнот
Фототранзистор SFH309 1 В блокнот
Тиристор 25 А 1 В блокнот
Выпрямительный диод

HER207

3 В блокнот
Диод 20 А 1 В блокнот
Диод 50 А 1 В блокнот
Светодиод SFH409 1

Несмотря на относительно скромные размеры, пистолет Гаусса – это самое серьезное оружие, которое мы когда-либо строили. Начиная с самых ранних этапов его изготовления, малейшая неосторожность в обращении с устройством или отдельными его компонентами может привести к поражению электрическим током. Будьте внимательны!

Главный силовой элемент нашей пушки – катушка индуктивности

Обладать оружием, которое даже в компьютерных играх можно найти только в лаборатории сумасшедшего ученого или возле временного портала в будущее, – это круто. Наблюдать, как равнодушные к технике люди невольно фиксируют на устройстве взгляд, а заядлые геймеры спешно подбирают с пола челюсть, – ради этого стоит потратить денек на сборку пушки Гаусса.

Как водится, начать мы решили с простейшей конструкции – однокатушечной индукционной пушки. Эксперименты с многоступенчатым разгоном снаряда оставили опытным электронщикам, способным построить сложную систему коммутации на мощных тиристорах и точно настроить моменты последовательного включения катушек. Вместо этого мы сконцентрировались на возможности приготовления блюда из повсеместно доступных ингредиентов. Итак, чтобы построить пушку Гаусса, прежде всего придется пробежаться по магазинам. В радиомагазине нужно купить несколько конденсаторов с напряжением 350–400 В и общей емкостью 1000–2000 микрофарад, эмалированный медный провод диаметром 0,8 мм, батарейные отсеки для «Кроны» и двух 1,5-вольтовых батареек типа С, тумблер и кнопку. В фототоварах возьмем пять одноразовых фотоаппаратов Kodak, в автозапчастях – простейшее четырехконтактное реле от «Жигулей», в «продуктах» – пачку соломинок для коктейлей, а в «игрушках» – пластмассовый пистолет, автомат, дробовик, ружье или любую другую пушку, которую вы захотите превратить в оружие будущего.

Полностью читайте в свежем номере Журнала "Популярная механика"

Всех кого интересует эта тема прошу сюда:



Пушка Гаусса (англ. Gauss gun, Gauss cannon, Coilgun) - одна из разновидностей электромагнитного ускорителя масс. Названа по имени ученого и математика Гаусса, сформулировавшего математические принципы, используемые в оружии.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол (как правило, из диэлектрика). В один из концов ствола вставляется снаряд (сделанный из ферромагнетика). При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. Если в момент прохождения снаряда через середину соленоида отключить в нём ток, то магнитное поле исчезнет, и снаряд по инерции вылетит из другого конца ствола. Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы.

Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней уже успевал бы уменьшится до минимального значения, то есть заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатой пушки Гаусса будет максимальным.

Пушка Гаусса - одна из разновидностей электромагнитного ускорителя масс.В основе работы ускорителя лежит принцип электромагнитной индукции: снаряд из ферромагнетика разгоняется мощным магнитным полем, производимым одной или несколькими катушками. Так как импульс в катушке должен быть коротким и мощным, то для создания этого импульса используют конденсаторы.
Устройство достаточно простое в сборке, для него не нужно никаких редких или дорогих деталей.

В данной статье представлена базовая схема стационарной гаусс-пушки с питанием от сети 220В 50Гц. Эту схему можно всячески модернизировать (например, установить преобразователь с большим КПД и мощностью или установить батарею из большего количества конденсаторов с большей емкостью и номинальным напряжением.) для повышения мощности ускорителя, что является ценным для начинающих радиолюбителей.

Итак, схема:

На схеме присутствуют:
1. Преобразователь 220VАС=>400VDC
Конденсатор С1 играет роль токового фильтра.
Диоды D1 и D2 - выпрямитель
Конденсатор С2 имеет небольшую емкость и за счет этого быстро заряжается до верхнего номинала и разряжается в цепь. В результате на выходе получаем 400V постоянного тока.
2. Накопительная часть.
Два конденсатора С3 и С4 накапливают энергию для выстрела.
Вольтметр служит для определения степени зарядки конденсаторов.
3. Соленоид
Создает магнитное поле, разгоняющее снаряд.

Фотографии устройства.


Готовая установка.


Блок конденсаторов и преобразователь.


Снаряды - обрезки стальной скрепки (ничего другого не было.)

Описание работы:
После подключения в сеть вольтметр показывает напряжение на конденсаторах (в моем случае он останавливается на 400 Вольтах)
Когда конденсаторы заряжены, укладываем снаряд в ствол и жмем на кнопку.В момент нажатия конденсаторы разряжаются на катушку, но преобразователь продолжает работать и ток от него идет через соленоид в обход разрядившихся конденсаторов.
Когда кнопку "пуск" отпускают, конденсаторы снова начинают заряжаться.

Из деталей нужно всего-ничего. Диоды 1N4007 2 штуки, неполярный конденсатор с напряжением не менее 250 вольт и емкостью не более 1 мкФ, конденсатор электролитический высоковольтный. Катушку можно намотать проводом 0.8мм. (я, например, расковырял ненужный импульсный трансформатор). Все эти детали, кроме неполярного конденсатора и провода можно выдрать из лампы-экономки (у всех есть перегоревшие).

Ствол - корпус от гелевой ручки.

Пробный запуск прошел отлично. При емкости батареи конденсаторов около 73 микрофарад снаряд имеет малую пробивную способность, но летит на 4 метра при этом сталкиваясь с целью в виде коробки с очень сочным, громким хлопком. Возможно это связано с малой массой снаряда. Тем не менее "сил" у катушки хватает чтобы выбрасывать из ствола надфиль, но выстрелить им невозможно т.к. магнитное поле тормозит ту часть, которая еще проходит через катушку.

Для начинающих: первый признак того, что схема исправна, соединения деталей хорошо пропаяны и катушка намотана верно - при выстреле нет никаких искр.
Кроме того для коммутации катушки необходимо применять тиристор, но я нарушил святое правило гауссостроителей и поставил обычную кнопку по типу такой, которая стоит на БП компьютера.

И еще напоследок: у схемы есть очень неприятный недостаток: конструкция преобразователя такова, что при вытаскивании его из розетки,он остается заряженным и вилка может больно ударить током. Думаю от этого недостатка можно избавиться, если поставить параллельно входному конденсатору резистор.

Напоминаю, что данную схему можно дополнительно улучшать, что является очень ценным для начинающих радиолюбителей.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VD1, VD2 Выпрямительный диод

1N4007

2 В блокнот
С1 Конденсатор 470нФ 400В 1 В блокнот
С2 3.3мкФ 400В 1 Можно на большее напряжение В блокнот
С3, С4 Электролитический конденсатор От 100 мкФ 400В 1 Чем больше тем лучше В блокнот
L1 Катушка индуктивности 1 100-150в-в проводом 0.8мм

Во-первых, редакция Science Debate поздравляет всех артиллеристов и ракетчиков! Ведь сегодня 19 ноября - День ракетных войск и артиллерии. 72 года назад, 19 ноября 1942 года с мощнейшей артиллерийской подготовки началось контрнаступление Красной Армии в ходе Сталинградской Битвы.

Именно поэтому мы сегодня приготовили для вас публикацию, посвященную пушкам, но не обычным, а пушкам Гаусса!

Мужчина, даже став взрослым, в душе остается мальчишкой, вот только игрушки у него меняются. Компьютерные игры стали настоящим спасением для солидных дядей, которые в детстве не доиграли в «войнушку» и теперь имеют возможность наверстать упущенное.

У компьютерных боевиков часто встречается футуристическое оружие, которое не встретишь в реальной жизни – знаменитая пушка Гаусса, которую может подбросить какой-нибудь чокнутый профессор или ее случайно можно отыскать в секретной хронике.

А возможно ли обзавестись Гаусс-пушкой в реале?

Оказывается можно, и сделать это не так сложно, как может показаться на первый взгляд. Давайте, скорее, выясним, что такое пушка Гаусса в классическом понимании. Пушка Гаусса – это оружие, в котором используется метод электромагнитного ускорения масс.

В основе конструкции этого грозного оружия лежит соленоид – цилиндрическая обмотка из проводов, где длина провода во много раз больше диаметра обмотки. Когда будет подан электрический ток, в полости катушки (соленоида) возникнет сильное магнитное поле. Оно втянет снаряд внутрь соленоида.

Если в момент, когда снаряд дойдет до центра, убрать напряжение, то магнитное поле не помешает двигаться телу по инерции, и оно вылетит из катушки.

Собираем Гаусс-пушку в домашних условиях

Для того чтобы создать пушку Гаусса своими руками, нам для начала, понадобится катушка индуктивности. На бобину аккуратно намотайте эмалированный провод, без резких перегибов, чтобы ни в коем случае не повредить изоляцию.

Первый слой, после наматывания, залейте суперклеем, подождите, пока он высохнет, и приступайте к следующему слою. Таким же образом нужно намотать 10-12 слоев. Готовую катушку надеваем на будущий ствол оружия. На один из его краев следует надеть заглушку.

Для того чтобы получить сильный электрический импульс, отлично подойдет батарея конденсаторов. Они способны отдавать накопленную энергию в течение короткого времени, пока пуля дойдет до середины катушки.

Для зарядки конденсаторов понадобится зарядное устройство. Подходящее устройство есть в фотографических аппаратах, оно служит для возникновения вспышки. Конечно, речь не идет о дорогой модели, которую мы будем препарировать, но одноразовые «Кодаки» сгодятся.

К тому же в них, кроме зарядки и конденсатора, прочих электроэлементов нет. Разбирая фотоаппарат, будьте осторожны, чтобы вас не ударило электрическим током. С устройства для зарядки смело удаляйте скобы для батареек, отпаяйте конденсатор.

Таким образом, нужно подготовить приблизительно 4-5 плат (можно больше, если желание и возможности позволяют). Вопрос выбора конденсатора заставляет сделать выбор между мощностью выстрела и временем, которое понадобится для зарядки. Большая емкость конденсатора требует и большего отрезка времени, снижая скорострельность, так что придется искать компромисс.

Светодиодные элементы, установленные на зарядные контуры, сигнализируют светом о том, что необходимый уровень зарядки достигнут. Конечно, можно подключить дополнительные зарядные контуры, но не переусердствуйте, чтобы не спалить ненароком транзисторы на платах. Для того чтобы разрядить батарею, в целях безопасности лучше всего установить реле.

Управляющий контур подключаем к батарейке через кнопку спуска, а управляемый – в цепь, между катушкой и конденсаторами. Для того чтобы совершить выстрел, необходимо подать питание на систему, и, после светового сигнала, зарядить оружие. Питание отключаем, прицеливаемся и стреляем!

Если процесс вас увлек, а полученной мощности маловато, то вы можете приступить к созданию многоступенчатой пушки Гаусса, ведь она должна быть именно такой.

25 марта 2015 в 15:42

Электромагнитная пушка Гаусса на микроконтроллере

  • Разработка робототехники

Всем привет. В данной статье рассмотрим, как изготовить портативную электромагнитную пушку Гаусса, собранную с применением микроконтроллера. Ну, насчет пушки Гаусса я, конечно, погорячился, но то, что это – электромагнитная пушка, нет сомнения. Данное устройство на микроконтроллере было разработано для того, чтобы обучить начинающих программированию микроконтроллеров на примере конструирования электромагнитной пушки своими руками.Разберем некоторые конструктивные моменты как в самой электромагнитной пушке Гаусса, так и в программе для микроконтроллера.

С самого начала нужно определиться с диаметром и длиной ствола самой пушки и материалом, из которого она будет изготовлена. Я применил пластиковый футляр диаметром 10 мм из-под ртутного термометра, поскольку он у меня валялся без дела. Вы можете использовать любой доступный материал, обладающий не ферромагнитными свойствами. Это стекло, пластик, медная трубка и т. д. Длина ствола может зависеть от количества применяемых электромагнитных катушек. В моем случае используется четыре электромагнитных катушки, длина ствола составила двадцать сантиметров.

Что касается диаметра применяемой трубки, то в процессе работы электромагнитная пушка показала, что нужно учитывать диаметр ствола относительно применяемого снаряда. Проще говоря, диаметр ствола не должен намного превышать диаметр применяемого снаряда. В идеале, ствол электромагнитной пушки должен подходить под сам снаряд.

Материалом для создания снарядов послужила ось от принтера диаметром пять миллиметров. Из данного материала и были изготовлены пять болванок длиной 2,5 сантиметра. Хотя также можно применять стальные болванки, скажем, из проволоки или электрода – что найдется.

Нужно уделить внимание и весу самого снаряда. Вес по возможности должен быть небольшим. Мои снаряды слегка тяжеловаты получились.

Перед созданием данной пушки были проведены эксперименты. В качестве ствола использовалась пустая паста от ручки, в качестве снаряда – иголка. Иголка с легкостью пробивала обложку журнала, установленного неподалеку от электромагнитной пушки.

Поскольку оригинальная электромагнитная пушка Гаусса строится по принципу заряда конденсатора большим напряжением, порядка трехсот вольт, то в целях безопасности начинающим радиолюбителям следует запитывать её низким напряжением, порядка двадцати вольт. Низкое напряжение приводит к тому, что дальность полета снаряда не очень большая. Но опять же, всё зависит от количества применяемых электромагнитных катушек. Чем больше электромагнитных катушек применяется, тем больше получается ускорение снаряда в электромагнитной пушке. Также имеют значение диаметр ствола (чем меньше диаметр ствола, тем снаряд летит дальше) и качество намотки непосредственно самих электромагнитных катушек. Пожалуй, электромагнитные катушки – самое основное в устройстве электромагнитной пушки, на это нужно обратить серьёзное внимание, чтобы добиться максимального полета снаряда.

Я приведу параметры своих электромагнитных катушек, у вас они могут быть другими. Катушка наматывается проводом диаметром 0,2 мм. Длина намотки слоя электромагнитной катушки составляет два сантиметра и содержит шесть таких рядов. Каждый новый слой я не изолировал, а начинал намотку нового слоя на предыдущий. Из-за того, что электромагнитные катушки запитываются низким напряжением, вам нужно получить максимальную добротность катушки. Поэтому все витки наматываем плотно друг другу, виток к витку.

Что касается подающего устройства, то тут особые пояснения не нужны. Все паялось из отходов фольгированного текстолита, оставшегося от производства печатных плат. На рисунках все подробно отображено. Сердцем подающего устройства является сервопривод SG90, управляемый микроконтроллером.

Подающий шток изготовлен из стального прутка диаметром 1,5 мм, на конце штока запаяна гайка м3 для сцепления с сервоприводом. На качалке сервопривода для увеличения плеча установлена загнутая с двух концов медная проволока диаметром 1,5 мм.

Данного нехитрого устройства, собранного из подручных материалов, вполне хватает, чтобы подать снаряд в ствол электромагнитной пушки. Подающий шток должен полностью выходить из загрузочного магазина. В качестве направляющей для подающего штока послужила треснувшая латунная стойка с внутренним диаметром 3 мм и длиной 7 мм. Жалко было выбрасывать, вот и пригодилось, собственно, как и кусочки фольгированного текстолита.

Программа для микроконтроллера atmega16 создавалась в AtmelStudio, и является полностью открытым проектом для вас. Рассмотрим некоторые настройки в программе микроконтроллера, которые придется произвести. Для максимально эффективной работы электромагнитной пушки вам понадобится настроить в программе время работы каждой электромагнитной катушки. Настройка производится по порядку. Сначала подпаиваете в схему первую катушку, все остальные не подключаете. Задаете в программе время работы (в миллисекундах).

PORTA |=(1<<1); // катушка 1
_delay_ms(350); / / время работы

Прошиваете микроконтроллер, и запускаете программу на микроконтроллере. Усилия катушки должно хватать на то, чтобы втянуть снаряд и придать начальное ускорение. Добившись максимального вылета снаряда, подстраивая время работы катушки в программе микроконтроллера, подключаете вторую катушку и также настраиваете по времени, добиваясь еще большей дальности полета снаряда. Соответственно, первая катушка остается включенной.

PORTA |=(1<<1); // катушка 1
_delay_ms(350);
PORTA &=~(1<<1);
PORTA |=(1<<2); // катушка 2
_delay_ms(150);

Таким способом настраиваете работу каждой электромагнитной катушки, подключая их по порядку. По мере увеличения количества электромагнитных катушек в устройстве электромагнитной пушке Гаусса скорость и, соответственно, дальность снаряда должны также увеличиваться.

Данную кропотливую процедуру настройки каждой катушки можно избежать. Но для этого придется модернизировать устройство самой электромагнитной пушки, установив датчики между электромагнитными катушками для отслеживания перемещения снаряда от одной катушки к другой. Датчики в сочетании с микроконтроллером позволят не только упростить процесс настройки, но и увеличат дальность полета снаряда. Данные навороты я не стал делать и усложнять программу микроконтроллера. Целью было реализовать интересный и несложный проект с применением микроконтроллера. Насколько он интересен, судить, конечно, вам. Скажу честно, я радовался, как ребенок, «молотя» из данного устройства, и у меня созрела идея более серьезного устройства на микроконтроллере. Но это уже тема для другой статьи.

Программа и схема -

Похожие статьи