Как отличить что разбито - тачскрин(стекло, сенсорное стекло) или дисплей. Как это работает: сенсорный экран - futureez

13.10.2019

iPhone 2G был первым мобильным телефоном, управление которым полностью строилось на взаимодействии с сенсорным экраном. С момента его презентации прошло больше десяти лет, но многие из нас все еще не знают, как устроен Touchscreen. А ведь мы сталкиваемся с этим интуитивным средством ввода не только в смартфонах, но и в банкоматах, платежных терминалах, компьютерах, автомобилях и самолетах - буквально повсюду.
До тачскринов самым распространенным интерфейсом для ввода команд в электронные устройства были различные клавиатуры. Хотя, кажется, что у них с тачскринами нет ничего общего, на самом деле то, насколько сенсорный экран по принципам работы схож с клавиатурой, может удивить. Давайте рассмотрим их устройство в деталях.

Клавиатура представляет собой печатную плату, на которой устанавливается несколько рядов переключателей-кнопок. Вне зависимости от их конструкции, мембранной или механической, при нажатии каждой из клавиш происходит одно и то же. На компьютерной плате под кнопкой замыкается электрическая цепь, компьютер регистрирует прохождение тока в этом месте схемы, «понимает», какая клавиша нажата и выполняет соответствующую ей команду. В случае с сенсорным экраном происходит почти тоже самое.

Существует порядка десятка различных видов сенсорных экранов, однако большинство из этих моделей или давно устарело и не используется, или относится к экспериментальным и вряд ли когда-нибудь появится в серийных устройствах. Прежде всего, я расскажу об устройстве актуальных технологий, тех из них, с которыми постоянно взаимодействуете или хотя бы можете столкнуться в повседневной жизни.

Резистивный сенсорный экран

Резистивные сенсорные экраны изобретены еще в 1970 году и с тех пор изменились мало.
В дисплеях с такими сенсорами над матрицей располагается пара дополнительных слоев. Впрочем, оговорюсь, матрица здесь вовсе не обязательна. Первые резистивные сенсорные устройства не были экранами вовсе.

Нижний сенсорный слой состоит из стеклянной основы и называется резистивным слоем. На него наносится прозрачное металлическое покрытие, хорошо передающее ток, например, из такого полупроводника, как оксид индия-олова. Верхний слой тачскрина, с которым взаимодействует пользователь нажимая на экран, сделан из гибкой и упругой мембраны. Он называется проводящим слоем. В пространстве между слоями оставляют воздушную прослойку, либо равномерно усеивают его микроскопическими изолирующими частицами. По краям к сенсорному слою подводится четыре, пять или восемь электродов, связывающих его с датчиками и микроконтроллером. Чем больше электродов, тем выше чувствительность резистивного такчскрина, поскольку изменение напряжения на них постоянно отслеживается.


Вот экран с резистивным тачскрином включен. Пока ничего не происходит. Электрический ток свободно течет по проводящему слою, но когда пользователь дотрагивается до экрана, мембрана сверху прогибается, изолирующие частицы расступаются, и она касается нижнего слоя тачскрина, вступает в контакт. За этим следует изменение напряжения разом на всех электродах экрана.

Контроллер тачскрина обнаруживает изменения напряжения и считывает показания с электродов. Четыре, пять, восемь значений и все разные. По разнице в показаниях между правым и левым электродами микроконтроллер вычислит X-координату нажатия, а по различиям в напряжении на верхнем и нижнем электродах, определит Y-координату и, таким образом, сообщит компьютеру точку, в которой слои сенсорного слоя экрана соприкоснулись.

Резистивные сенсорные экраны могут похвастать длинным перечнем недостатков. Так, они в принципе не способны распознать двух одновременных нажатий, не говоря уже о большем числе. Они плохо ведут себя на холоде. Из-за необходимости в прослойке между слоями сенсора, матрицы таких экранов заметно теряют в яркости и контрастности, склонны бликовать на солнце, и в целом выглядят заметно хуже. Тем не менее, там, где качество изображения играет второстепенную роль, их продолжают применять в силу устойчивости к загрязнениям, возможности использования в перчатках и, что самое главное, низкой стоимости.

Такие средства ввода повсеместно монтируются в недорогих массовых устройствах, вроде информационных терминалов в общественных местах и все еще встречаются в устаревающих гаджетах, типа дешевых MP3-плееров.

Инфракрасный сенсорный экран

Следующим, куда менее распространенным, но, тем не менее, актуальным вариантом сенсорного экрана является инфракрасный тачскрин. Он не имеет ничего общего с резистивным сенсором, хотя и выполняет схожие функции.

Инфракрасный тачскрин сконструирован из массивов светодиодов и светочувствительных фотоэлементов, расположенных на противоположных сторонах экрана. Светодиоды подсвечивают поверхность экрана невидимым инфракрасным светом, образуя на ней нечто вроде паутины или координатной сетки. Это напоминает охранную сигнализацию, какой ее показывают в шпионских боевиках или компьютерных играх.

Когда к экрану что-то прикасается, не важно палец это, рука в перчатке, стилус, или карандаш, два или более луча прерываются. Фотоэлементы фиксируют это событие, контроллер тачскрина выясняет, какие из них недополучают инфракрасный свет и по их положению вычисляет зону экрана, в которой возникло препятствие. Остальное - сопоставить прикосновение с тем, какой элемент интерфейса находится на экране в этом месте - задача программного обеспечения.

Сегодня с инфракрасными сенсорными экранами можно столкнуться в тех гаджетах, чьи экраны обладают нестандартной конструкцией, там, где добавлять дополнительные сенсорные слои технически сложно или нецелесообразно - в электронных книгах на базе дисплеев E-link, например, Amazon Kindle Touch и Sony Ebook. Кроме того, устройства с подобными сенсорами из-за простоты и ремонтопригодности приглянулись военным.

Емкостный сенсорный экран

Если в резестивных сенсорных экранах компьютер регистрирует изменение проводимости, последовавшее за нажатием на экран, непосредственно между слоями сенсора, то емкостные сенсоры фиксируют прикосновение непосредственно.

Человеческое тело, кожа - хорошие проводники электричества и обладают электрическим зарядом. Обычно это замечаешь пройдясь по шерстяному ковру или сняв любимый свитер, а затем прикоснувшись к чему-либо металлическому. Все мы знакомы со статическим электричеством, испытывали его действие на себе и видели крошечные искры, срывающиеся с наших пальцев в темноте. Более слабый, незаметный обмен электронами между человеческим телом и различными проводящими поверхностями происходит постоянно и именно его фиксируют емкостные экраны.

Первые такие тачскрины назывались поверхностно-емкостными и были логичным развитием резистивных сенсоров. В них всего один проводящий слой, похожий на тот, что использовался ранее, устанавливался прямо поверх экрана. К нему также присоединялись чувствительные электроды, на этот раз по углам сенсорной панели. Следящие за напряжением на электродах датчики и их программное обеспечение были сделаны заметно чувствительнее и теперь могли улавливать малейшие изменения в течении электрического тока по экрану. Когда палец (другой проводящий ток предмет, например, стилус) касается поверхности с поверхностно-емкостным тачскрином, проводящий слой немедленно начинает обмениваться с ним электронами, а микроконтроллер это замечает.

Появление поверхностно-емкостных тачскринов стало прорывом, однако из-за того, что нанесенный прямо поверх стекла токопроводящий слой было легко повредить, они не были пригодны для устройств нового поколения.


Для создания первого iPhone потребовались проекционно-емкостные сенсоры. Этот тип тачскринов быстро стал наиболее распространенным в современной потребительской электронике: смартфонах, планшетах, ноутбуках, моноблоках и прочих бытовых устройствах.

Верхний слой экрана с тачскрином этого типа выполняет защитную функцию и может быть сделан из закаленного стекла, например, знаменитого Gorilla Glass. Ниже располагаются тончайшие электроды, образующие сетку. Поначалу их накладывали друг на друга в два слоя, затем для уменьшения толщины экрана стали располагать на одном уровне.

Выполненные из полупроводниковых материалов, в том числе уже упоминавшегося оксида индия-олова, эти токопроводящие волоски создают электростатическое поле в местах своего пересечения.


Когда палец касается стекла, за счет электропроводных свойств кожи он искажает локальное электрическое поле в местах ближайших пересечений электродов. Это искажение может быть измерено, как изменение емкости в отдельно взятой точке сетки.

Поскольку массив электродов делается достаточно мелким и плотным, такая система способна отслеживать касание очень точно и без проблем улавливает сразу несколько прикосновений. Кроме того, отсутствие дополнительных слоев и прослоек в бутерброде из матрицы, сенсора и защитного стекла положительно сказывается на качестве изображения. Правда, по той же причине, разбитые экраны, как правило, заменяются полностью. Однажды собранный воедино, экран с проекционно-емкостным сенсором чрезвычайно сложно поддается ремонту.

Сейчас преимущества проекционно-емкостных тачскринов не звучат, как что-то удивительное, но на момент презентации iPhone они обеспечили технологии колоссальный успех, несмотря на объективные минусы - чувствительность к загрязнениям и влажности.

Чувствительные к давлению сенсорные экраны - 3D Touch

Идейным предшественником сенсорных экранов, чувствительных к давлению, стала фирменная технология Apple, под названием Force Touch, применявшаяся в умных часах компании, MacBook, MackBook Pro и Magic Trackpad 2.

Опробовав на этих устройствах интерфейсные решения и различные сценарии использования распознавания силы нажатия, Apple начала внедрение похожего решения в свои смартфоны. В iPhone 6s и 6s Plus распознавание и измерение давления стало одной из функций тачскрина и получило коммерческое наименование 3D Touch.


Хотя в Apple и не скрывали, что новая технология лишь модифицирует привычные нам емкостные сенсоры и даже показали схему, в общих чертах объяснявшую принцип ее действия, подробности об устройстве сенсорных экранов с 3D Touch появились только после того, как первые iPhone нового поколения были разобраны энтузиастами.

Для того, чтобы научить емкостной сенсорный экран распознавать нажатия и различать несколько степеней давления, инженерам из Купертино потребовалось пересобрать бутерброд сенсорного экрана. Они внесли изменения в отдельные его части и добавили к емкостному еще один, новый слой. И, что интересно, делая это, они явно вдохновлялись устаревшими резистивными экранами.


Сетка емкостных сенсоров осталась без изменений, однако она была перенесена назад, ближе к матрице. Между набором электрических контактов, следящих за местом прикосновения к дисплею, и защитным стеклом был интегрирован дополнительный массив из 96 отдельных датчиков.


Его задача заключалась не в том, чтобы определить местоположение пальца на экране iPhone. С этим по-прежнему отлично справлялся емкостный тачскрин. Эти пластины необходимы для обнаружения и измерения степени изгиба защитного стекла. Компания Apple специально для iPhone заказала у Gorilla Glass разработку и производство такого защитного покрытия, которое бы сохраняло прежнюю прочность и, в то же время, было достаточно гибким, чтобы экран мог реагировать на давление.

На этой разработке можно было закончить материал, повествующий о сенсорных экранах, если бы не еще одна технология, которой несколько лет назад прочили большое будущее.

Волновые сенсорные экраны

Неожиданно, но они не используют электричество и даже не имеют ничего общего со светом. Технология Surface Acoustic Wave system для определения точки прикосновения применяет поверхностные акустические волны, распространяющиеся вдоль поверхности экрана. Ультразвук, создаваемый пьезоэлектрическими элементами по углам, слишком высок для того, чтобы его мог уловить человеческий слух. Он распространяется взад и вперед, многократно отражаясь от краев экрана. Звук анализируется на предмет аномалий, создаваемых прикасающимися к экрану предметами.

Недостатков у волновых сенсорных экранов не много. Они начинают ошибаться после сильного загрязнения стекла и в условиях сильного шума, но, при этом, в экранах с таким сенсором нет дополнительных слоев, увеличивающих толщину и влияющих на качество изображения. Все компоненты сенсора прячутся под рамкой дисплея. Кроме того, волновые сенсоры позволяют точно подсчитывать площадь соприкосновения экрана с пальцем или другим предметом и по этой площади косвенно рассчитать силу нажатия на экран.

Мы уже вряд ли столкнемся с этой технологией в смартфонах из-за нынешней моды на безрамочные дисплеи, но несколько лет назад компания Samsung экспериментировала с Surface Acoustic Wave system в моноблоках, а в качестве комплектующих для игровых автоматов и рекламных терминалов панели с акустическими тачскринами продаются и сейчас

Вместо заключения

За очень краткий срок тачскрины завоевали мир электроники. Несмотря на отсутствие тактильного отклика и другие свои недостатки, сенсорные экраны стали очень интуитивным, понятным и удобным методом ввода информации в компьютеры. Не в последнюю очередь, своим успехом они обязаны разнообразием технических реализаций. Каждая со своими преимуществами и недостатками, подходящая для своего класса устройств. Резистивные экраны для самых дешевых и массовых гаджетов, емкостные экраны для смартфонов и планшетов и настольных компьютеров с которыми мы взаимодействуем каждый день и инфракрасные тачскрины для тех случаев, когда конструкцию экрана следует оставить в неприкосновенности. В заключение, остается лишь констатировать, что сенсорные экраны с нами надолго, замены им в ближайшем будущем не предвидится.

В наше время сенсорные экраны уже давно перестали быть экзотикой. Внешне они все похожи, но являются ли эти дисплеи одинаковыми на самом деле? Давайте рассмотрим конструкцию основных типов чувствительных экранов, их достоинства, недостатки и область применения.

На сегодняшний день наибольшее распространение получили сенсоры, основанные на емкостной и резистивной технологиях, а также на их разновидностях.

«Мультитач»

Так называется технология, позволяющая распознавать нажатия на сенсорный экран в нескольких точках одновременно. Это открывает новые возможности в управлении устройством. Примером использования технологии «мультитач» может служить интерфейс Apple iPhone.

Емкостные сенсорные экраны

Например: Тне Prada Phoneby LG

Сенсорный дисплей, работающий по емкостному принципу, фактически реагирует на прикосновение. Он представляет собой стеклянную панель, покрытую прозрачным проводящим составом. По углам панели размещены четыре электрода, к которым подводится переменный ток. В тот момент, когда пользователь прикасается пальцем к такому экрану, электрический заряд с проводящего слоя перетекает по коже на тело человека. Контроллер экрана замеряет силу образующегося при этом тока по всем четырем электродам - она пропорциональна расстоянию от угла панели до точки касания. Сопоставляя полученные значения, можно узнать точные координаты места касания. Сенсоры, действующие по такому принципу, можно отличить «на ощупь» - они срабатывают от легкого прикосновения, причем быстрее и четче реагируют на нажатие подушечкой пальца, чем ногтем. Более того, на нажатия любыми другими предметами они не реагируют, в особенности если те являются непроводящими. Поэтому телефоном с таким экраном невозможно управлять рукой в перчатке. К тому же при снижении температуры электрические характеристики сенсора меняются, и экран начинает работать хуже. Добавим, что этот принцип, как правило, используется в ноутбучных тачпадах.

Например: Apple iPhone

Проекционно-емкостные экраны

Существует еще одна разновидность емкостного сенсора - проекционно-емкостный экран. На тыльной стороне его находится сетка электродов. В месте касания руки изменяется электрическая емкость (по законам электродинамики человеческое тело представляет собой конденсатор), контроллер определяет, в каком пересечении электродов это произошло, и вычисляет координаты. Подобные экраны, кроме высокой прозрачности и долговечности, имеют еще два важных преимущества - стекло-подложка может быть сделана сколь угодно прочной (и довольно толстой), к тому же они поддерживают «мультитач». Минус - более низкая точность по сравнению с обычной емкостной технологией.

Резистивные сенсорные экраны

Например: HTC Touch Diamond

Резистивный сенсор де-факто реагирует на давление. Экран состоит из двух пластин, между которыми находится состав, не проводящий электрический ток. Если коснуться наружной гибкой (и прозрачной) пластины пальцем (или любым другим предметом - в данном случае это не имеет значения), пластины замыкаются и в точке касания начинает протекать ток. Чтобы определить место касания, контроллер экрана попарно замеряет напряжение между электродами, размещенными по краям панели. Такой экран называется 4-проводным (существуют также 5-проводные, имеющие некоторые отличия).

Особенность резистивного экрана состоит в том, что для его срабатывания требуется физическое усилие, причем нажатия ногтем он распознает лучше, чем подушечкой, реагирует на любые прикасающиеся к поверхности предметы. Устройства с резистивными экранами часто комплектуются стилусами. Такой дисплей обеспечивает более высокую точность управления (стилусом реально попасть буквально в пиксел, тогда как пальцем на емкостном экране - только в достаточно большую по площади область), но из-за постоянного контакта с твердыми предметами гибкая пластина быстро покрывается царапинами. Именно резистивными экранами оснащено большинство мобильных устройств.

Другие типы сенсорных экранов

Существует еще ряд сенсорных технологий, нередко довольно экзотических. Например, использование сетки инфракрасных лучей или даже генерация ультразвуковых колебаний. Последняя известна как технология поверхностно-акустических волн. Есть системы и на основе камер, отслеживающих движение (здесь также поддерживается «мультитач»), и на основе тензопокрытий, при деформации которых меняется электрическое сопротивление.

Если вы не относитесь к числу подкованных в техническом плане пользователей и перед вами в скором будущем станет вопрос выбора мобильного телефона или смартфона с сенсорным экраном, наверняка, читая спецификации мобильных устройств вы встретите такие термины, как «емкостный экран» или «резистивный экран». И тут вам в голову придет вполне логичный вопрос – какой из них лучше: резистивный или емкостный? Давайте выясним, чем отличаются сенсорные дисплеи, какие их виды существуют и в чем заключаются их преимущества и недостатки.

РЕЗИСТИВНЫЕ ЭКРАНЫ

Если говорить доступным языком, избегая мудрых технических терминов и оборотов, то резистивный сенсорный экран представляет собой гибкую прозрачную мембрану, на которую нанесено токопроводящее (иначе говоря – резистивное) покрытие. Под мембраной находится стекло, также покрытое токопроводящим слоем. Принцип действия резистивного экрана состоит в том, что при нажатии на экран пальцем или стилусом происходит замыкание стекла с мембраной в конкретной точке. Микропроцессор фиксирует изменение напряжения мембраны и вычисляет координаты касания. Чем точнее нажатие, тем процессору проще вычислить точные координаты. Поэтому с резистивными экранами на много проще работать со стилусом.

Основные преимущества резистивных экранов заключаются в том, что они сравнительно дешевы в производстве, а также в том, что данный тип дисплея реагирует на нажатие любыми предметами. Это очень полезно при проведении презентаций, тем более что цены на проекторы сегодня падают с каждым днем.

Недостатки резистивных экранов таковы: невысокая прочность; небольшая долговечность (порядка 35 млн. нажатий на точку); невозможность реализации ; большое число ошибок при обработке таких жестов, как скольжение, перелистывание.

Так какой экран лучше: резистивный или емкостный?

Если вы внимательно прочитали данную статью, то без проблем сможете и сами сделать вывод. Я же лишь скажу о том, что спор это обречен на провал. Некоторым пользователям нравится работать со стилусом и они не приемлют емкостные дисплеи. Но все же большинству комфортнее управлять устройством, оборудованным емкостным экраном – это удобнее, да и возможность мультитача решает многое. Ведь не спроста все современные смартфоны и планшеты, работающие под управлением Android, имеют именно емкостные дисплеи.

Статьи по теме:

Пользователи, никогда ранее не имевшие дела с операционной системой Android и купив смартфон на базе данной операционки, не редко сталкиваются с раз...

Всевозможных программ и игр для Android великое множество. Поэтому у большинства владельцев Androad-смартфонов в аппаратах установлено достаточно бо...

О том, у какого телефона экран лучше, ходят постоянные споры. Особенно между владельцами техники Apple и теми, кто предпочитает устройства на платформе Android.

Это простая инфографика красиво раскладывает по полочкам все преимущества того или иного типа сенсорного экрана. Надеюсь, при покупке очередного смартфона она поможет вам сделать правильный выбор и не переплачивать кругленькую сумму.

Итак, сущестует три типа сенсорных экранов: Резистивные (Resistive), Емкостные (Capacitive) и Инфракрасные (Infrared)

Резистивные (Resistive)

Телефоны с резистивными экранами: Samsung Messager Touch, Samsung Instinct, HTC Touch Diamond, LG Dare

Как они работают? Маленькие точки разделяют несколько слоев материала, который передает ток. Когда верхний гибкий слой надавливает на нижний слой, электрический ток меняется и рассчитывается место воздействия, то есть прикосновения.

Сколько стоит изготовление? Расходы на изготовление резистивных сенсорных экранов не очень велики — $ .

Материал экрана. Слой гибкого материала (обычно пленка из полиэстра) накладывается сверху на стекло.

Инструменты воздействия. Пальцы, пальцы в перчатках или стилус.

Видимость на улице. Плохая видимость в солнечную погоду.

Возможность мультижестов. Нет.

Долговечность. Для его стоимости экран служит достаточно долго. Легко царапается и подвержен другим мелким повреждениям. Довольно быстро изнашивается и требует замены.

Емкостные

Телефоны с емкостными сенсорными экранами: Huawei Ascend, Sanyo Zio, iPhone, HTC Hero, DROID Eris, Palm Pre, Blackberry Storm.

Как они работают? Ток транслируется из углов экрана. Когда палец касается экрана, он меняет направление тока и таким образом рассчитывается место касания.

Сколько стоит изготовление? Достаточно дорого — $$ .

Материал экрана. Стекло.

Инструменты воздействия. Только пальцы без перчаток.

Видимость на улице. Видимость в солнечный день хорошая.

Возможность мультижестов. Есть.

Долговечность.

Инфракрасные

Телефоны с инфракрасными сенсорными экранами: Samsung U600 (тепло), Neonode N2 (оптический).

Как они работают? Для того, чтобы среагировал тепло-чувствительный экран, к нему нужно прикоснуться теплым объектом. Оптический экран использует сетку невидимых датчиков прямо над экраном. Точка касания рассчитывается на основе той точки, где ось x-y была нарушена.

Сколько стоит изготовление? Очень дорого — $$$ .

Материал экрана. Стекло.

Инструменты воздействия. Оптический — пальцы, перчатки и стилус. Тепло-чувствительный — теплые пальцы без перчаток.

Видимость на улице. Видимость в солнечную погоду хорошая, но сильный солнечный свет влияет на продуктивность и точность.

Возможность мультижестов. Да.

Долговечность. Служит достаточно долго. Стекло разрушается только от серьезных повреждений.

Нечасто мы задумываемся о том, как работает дисплей устройства лежащего у нас в руках. Но иногда бывают случаи, когда недавно купленный телефон или планшет отказывается реагировать на привычное цифровое перо от старого девайса. В этом случае, становится очевидным, что экран новинки собран по какой-то другой технологии. Тут уже вспоминается, что есть резистивные экраны и емкостные, последние из которых постепенно вытесняют первых.

Стоит заметить, что мало кто знает о различии между поверхностно- и проекционно-емкостными дисплеями. А ведь экраны почти всех современных планшетов, смартфонов с Android или iOS от Apple относятся именно к проекционно-емкостным, благодаря которым и возможна такая уже необходимая функция, как мультитач.

Поверхностно-емкостные экраны

Все емкостные скрины при работе используют тот факт, что все предметы, обладающие электрической емкостью, тело человека в том числе, хорошо проводят переменный ток.

Первые экземпляры емкостных тач-скринов работали на постоянном токе, что упрощало устройство электроники, аналого-цифрового преобразователя в частности, но загрязненность экрана или рук часто приводила к сбоям. Для постоянного тока даже ничтожное емкостное сопротивление является непреодолимой преградой.

Емкостные экраны так же, как и резистивные собраны в простейшем случае из LCD или AMOLED экрана, дающего изображение в самом низу и сенсорной активной панели поверху .

Активная часть поверхностно-емкостных экранов представляет собой кусок стекла, покрытый на одной стороне прозрачным, с высоким сопротивлением материалом. В качестве этого электропроводящего вещества применяется оксид индия или оксид олова.

По углам экрана расположены четыре электрода, через которые подается небольшое переменное напряжение, одинаковое со всех сторон. При касании поверхности экрана электропроводящим предметом или напрямую пальцем появляется утечка тока через тело человека. Протекание ничтожно малых токов регистрируется одновременно во всех четырех углах датчиками, а микропроцессор по разности величин токов определяет координаты места касания.

Поверхностно-емкостной экран всё ещё хрупок, так как его проводящее покрытие нанесено на внешнюю поверхность и ничем не защищено. Но не такой нежный, как резистивный, поскольку на его поверхности нет тонкой мягкой мембраны. Отсутствие мембраны улучшает прозрачность дисплея, и позволяет применять менее яркую и энергоэкономную подсветку.

Проекционно-ёмкостные экраны

Этот тип сенсорного экрана способен определять одновременно координаты двух и более точек прикосновения, то есть поддерживает функцию мультитач. Именно этого типа дисплеи устанавливаются на все современные мобильные устройства.

Работают они по схожему с поверхностно-емкостными экранами принципу, отличие заключается в том, что активный проводящий слой у них нанесен внутри, а не на внешней поверхности. Благодаря чему активная панель получается значительно более защищенной. Можно закрыть её стеклом толщиной вплоть до 18 мм, таким образом, сделав сенсорный экран крайне вандалоустойчивым.

При прикосновении к сенсорному экрану, между пальцем человека и одним из электродов за стеклом образуется небольшая ёмкость. Микроконтроллер прощупывает импульсным током, в каком именно месте на сетке электродов возросло напряжение из-за внезапно образовавшейся ёмкости. На стекающие капли воды экран не реагирует, так как такие проводящие помехи легко подавляются программным методом.

Общим недостатком для всех емкостных экранов является невозможность работать с ними любыми изолирующими предметами. Можно только специальным стилусом или голым пальцем. На удобное пластмассовое перо или руку в теплой перчатке они не среагируют.

Травление печатных плат Самодельный миниатюрный низковольтный паяльник Хитрый способ распайки плат

Похожие статьи