К155ла3 цоколевка. Эксперименты с RS-триггером. Внешний вид и конструктивное исполнение

27.06.2020

На микросхемах серии K155ЛA3 можно собирать низкочастотные и высокочастотные генераторы небольших размеров, которые могут быть полезны при проверке, ремонте и налаживании различной радиоэлектронной аппаратуры. Рассмотрим принцип действия ВЧ генератора, собранного на трех инверторах (1).

Структурная схема

Конденсатор С1 обеспечивает положительную обратную связь между выходом второго и входом первого инвертора необходимую для возбуждения генератора.

Резистор R1 обеспечивает необходимое смещение по постоянному току, а также позволяет осуществлять небольшую отрицательную обратную связь на частоте генератора.

В результате преобладания положительной обратной связи над отрицательной на выходе генератора получается напряжение прямоугольной формы.

Изменение частоты генератора в широких пределах производится подбором емкости СІ и сопротивления резистора R1. Генерируемая частота равна fген = 1/(С1 * R1). С понижением питания эта частота уменьшается. По аналогичной схеме собирается и НЧ генератор подбором соответствующим образом С1 и R1.

Рис. 1. Структурная схема генератора на логической микросхеме.

Схема универсального генератора

Исходя из вышеизложенного, на рис. 2 представлена принципиальная схема универсального генератора, собранная на двух микросхемах типа K155ЛA3. Генератор позволяет получить три диапазона частот: 120...500 кГц (длинные волны), 400...1600 кГц (средние волны), 2,5...10 МГц (короткие волны) и фиксированную частоту 1000 Гц.

На микросхеме DD2 собран генератор низкой частоты, частота генерации которого составляет примерно 1000 Гц. В качестве буферного каскада между генератором и внешней нагрузкой используется инвертор DD2.4.

Низкочастотный генератор включается выключателем SA2, о чем свидетельствует красное свечение светодиода VD1. Плавное изменение выходного сигнала генератора НЧ производится переменным резистором R10. Частота генерируемых колебаний устанавливается грубо подбором емкости конденсатора С4, а точно — подбором сопротивления резистора R3.

Рис. 2. Принципиальная схема генератора на микросхемах К155ЛА3.

Детали

Генератор ВЧ собран на элементах DD1.1...DD1.3. В зависимости от подключаемых конденсаторов С1...СЗ генератор выдает колебания соответствующие КВ, СВ или ДВ.

Переменным резистором R2 производится плавное изменение частоты высокочастотных колебаний в любом поддиапазоне выбранных частот. На входы инвертора 12 и 13 элемента DD1.4 подаются колебания ВЧ и НЧ. В результате чего на выходе 11 элемента DD1.4 получаются модулированные высокочастотные колебания.

Плавное регулирование уровня промодулированных высокочастотных колебаний производится переменным резистором R6. С помощью делителя R7...R9 выходной сигнал можно изменить скачкообразно в 10 раз и 100 раз. Питается генератор от стабилизированного источника напряжением 5 В, при подключении которого загорается светодиод VD2 зеленого свечения.

В универсальном генераторе используются постоянные резисторы типа МЛТ-0,125, переменные — СП-1. Конденсаторы С1...СЗ — КСО, С4 и С6 — К53-1, С5 — МБМ. Вместо указанной серии микросхем на схеме можно использовать микросхемы серии К133. Все детали генератора монтируют на печатной плате. Конструктивно генератор выполняется исходя из вкусов радиолюбителя.

Настройка

Настройку генератора при отсутствии ГСС производят по радиовещательному радиоприемнику, имеющему диапазоны волн: КВ, СВ и ДВ. С этой целью устанавливают приемник на обзорный КВ диапазон.

Установив переключатель SA1 генератора в положение КВ, подают на антенный вход приемника сигнал. Вращая ручку настройки приемника пытаются найти сигнал генератора.

На шкале приемника будет прослушиваться несколько сигналов, выбирают наиболее громкий. Это будет первая гармоника. Подбирая конденсатор С1, добиваются приема сигнала генератора на волне 30 м, что соответствует частоте 10 МГц.

Затем устанавливают переключатель SA1 генератора в положение СВ, а приемник переключают на средневолновый диапазон. Подбирая конденсатор С2, добиваются прослушивания сигнала генератора на метке шкалы приемника соответствующей волне 180 м.

Аналогично производят настройку генератора в диапазоне ДВ. Изменяют емкость конденсатора СЗ таким образом, чтобы сигнал генератора прослушивался на конце средневолнового диапазона приемника, отметка 600 м.

Аналогичным способом производится градуировка шкалы переменного резистора R2. Для градуировки генератора, а также его проверки, должны быть включены оба выключатели SA2 и SA3.

Литература: В.М. Пестриков. - Энциклопедия радиолюбителя.

Данный жучок не требует кропотливой настройки.Данное устройство собрано на многим известной микросхеме к155ла3

Дальность жучка на открытой местности при которой хорошо слышно и различимо 120 метров.Данное устройство подойдет начинающему радиолюбителю своими руками. И не требует больших затрат.


В схеме использован цифровой генератор несущей частоты. В целом жук состоит из трех частей : микрофона, усилителя и модулятора. В этой схеме используется простейший усилитель на одном транзисторе КТ315 .

Принцип работы. Благодаря твоему разговору микрофон начинает пропускать через себя ток, который поступает на базу транзистора. Транзистор, благодаря поступившему напряжению, начинает открываться- пропускать ток от эмиттора к коллектору пропорционально току на базе. Чем громче орешь - тем больше проходит ток на модулятор. Подлючая микрофон к осцилогрофу и видим, выходное напряжение не превышает 0,5в и иногда ухлдит в минус (т.е. существует отрицательная волна, где U<0). Подключив усилитель к оцилографу,амплитута стала 5в (но теперь начали обрезаться и приводить к этой амплитуде громкие звуки) и напряжение всегда выше 0. Именно такой сигнал и поступает на модулятор, который состоит из генератора несущей частоты, собранного из четырех 2И-НЕ элементов.

Для порстояной генерации частоты инвертор замкнут сам на себя через переменный резистор. В генераторе нет ни одного конденсатора. Где же тогда задержка для частоты? Дело в том, что у микросхем есть так называемая задержка срабатывания. Именно благодаря ее получаем частоту 100Мгц и столь малые размеры схемы.

Собирать жука следует по частям . Т.е собрал блок - проверил; собрал следующий- проверил и так далее. Также не советуем делать то все дело на картонки или монтажные платы.

После сборки настраивают FM-приемник на 100МГц. Скажи что нибудь. Если это что-нибуть слышно, то все нормально, жук работает. Если слышны лишь слабые помехи или вообще тишина, то попробуй погонять приемник по другим частотам. Так же жуче ловится на китайские приемнички с автосканом.

Главная особенность этой схемы радиожука так это то что в ней в качестве генератора несущей частоты применена цифровая микросхема К155ЛА3 .

Схема состоит из простого микрофонного усилителя на транзисторе КТ135 (можно в принципе любой импортный с похожими параметрами. Да, кстати, у нас на сайте программа справочник имеется по транзисторам! Причем совершенно бесплатная! Если кому интересно, то подробности ), далее идет модулятор-генератор собранный по схеме логического мультивибратора , ну, и сама антенна- кусок провода скрученный в спираль для компактности.

Интересная особенность данной схемы: в модуляторе (мультивибраторе на логической микросхеме) отсутствует частотозадающий конденсатор. Вся особенность в том что элементы микросхемы имеют свою собственную задержку срабатывания которая и является частотозадающей. При введении конденсатора мы потеряем максимальную частоту генерации (а при напряжении питания 5V она будет порядка 100 мГц).
Однако здесь есть интересный минус: по мере разряда батареи частота модулятора будет снижаться: расплата, так сказать, за простоту.
Но зато есть и существенный "плюс"- в схеме нет ни одной катушки!

Дальность работы передатчика может быть по-разному, но по отзывам до 50 метров он работает стабильно.
Рабочая частота в районе 88...100 мГц, так что подойдет любое радиоприемное устройство работающее в FM диапазоне- китайский радиоприемник, автомагнитола, мобильный телефон и даже китайский радиосканер.

Напоследок: рассуждая логически, для компактности вместо микросхемы К155ЛА3 можно было-бы установить микросхему К133ЛА3 в SMD корпусе, но какой будет результат сказать сложно пока не попробуешь... Так что если есть желающие по-экспериментировать- можете сообщить об этом у нас на ФОРУМЕ , будет интересно узнать что из этого вышло...

Микросхема К155ЛА3, как и ее импортный аналог SN7400(или просто -7400, без SN), содержат в себе четыре логических элемента (вентиля) 2И - НЕ. Микросхемы К155ЛА3 и 7400 являются аналогами с полным совпадением распиновки и очень близкими рабочими параметрами. Питание осуществляется через выводы 7(минус) и 14(плюс), стабилизированным напряжением от 4,75 до 5,25 вольт.

Микросхемы К155ЛА3 и 7400 созданы на базе ТТЛ, поэтому - напряжение 7 вольт является для них абсолютно максимальным . При превышении этого значения прибор очень быстро сгорает.
Схема расположения выходов и входов логических элементов (распиновка) К155ЛА3 выглядит вот, таким образом.

На рисунке ниже - электронная схема отдельного элемента 2И-НЕ микросхемы К155ЛА3.

Параметры К155ЛА3.

1 Номинальное напряжение питания 5 В
2 Выходное напряжение низкого уровня не более 0,4 В
3 Выходное напряжение высокого уровня не менее 2,4 В
4 Входной ток низкого уровня не более -1,6 мА
5 Входной ток высокого уровня не более 0,04 мА
6 Входной пробивной ток не более 1 мА
7 Ток короткого замыкания -18...-55 мА
8 Ток потребления при низком уровне выходного напряжения не более 22 мА
9 Ток потребления при высоком уровне выходного напряжения не более 8 мА
10 Потребляемая статическая мощность на один логический элемент не более 19,7 мВт
11 Время задержки распространения при включении не более 15 нс
12 Время задержки распространения при выключении не более 22 нс

Схема гератора прямоугольных импульсов на К155ЛА3.

Очень легко собирается на К155ЛА3 генератор прямоугольных импульсов. Для этого можно использовать любые два ее элемента. Схема может выглядеть вот так.

Импульсы снимаются между 6 и 7(минус питания) выводами микросхемы.
Для этого генератора частоту(f) в герцах можно расчитать по формуле f= 1/2(R1 *C1). Значения подставляются в Омах и Фарадах.

Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

У каждого радиолюбителя где-то «завалялась» микросхема к155ла3. Но зачастую они не могут найти им серьезного применения, так как во многих книгах и журналах присутствуют только схемы мигалок, игрушек и др. с этой деталью. В этой статье будут рассмотрены схемы с применением микросхемы к155ла3.
Для начала рассмотрим характеристики радиодетали.
1. Самое главное - это питание. Оно подается на 7(-) и 14(+) ножки и состовляет 4.5 - 5 В. Более 5.5В подавать на микросхему не следует(начинает перегреваться и сгорает).
2. Далее надо определить назначение детали. Она состоит из 4 элементов по 2и-не(два входа). То есть, если подавать на один вход 1, а на другой - 0, то на выходе будет 1.
3. Рассмотрим цоколевку микросхемы:

Для упрощения схемы на ней изображают раздельные элементы детали:

4. Рассмотрим расположение ножек относительно ключа:

Паять микросхему надо очень аккуратно, не нагревая ее(можно спалить).
Вот схемы с применением микросхемы к155ла3:
1. Стабилизатор напряжения(можно использовать как зарядку телефона от прикуривателя автомобиля).
Вот схема:


На вход можно подавать до 23Вольт. Вместо транзистора П213 можно поставить КТ814, но тогда придется ставить радиатор, так как при большой нагрузке может перегреваться.
Печатная плата:

Еще один вариант стабилизатора напряжения(мощный):


2. Индикатор заряда автомобильного аккумулятора.
Вот схема:

3. Испытатель любых транзисторов.
Вот схема:

Вместо диодов Д9 можно поставить д18, д10.
Кнопки SA1 и SA2 есть переключатели для проверки прямых и обратных транзисторов.

4. Два варианта отпугивателя грызунов.
Вот первая схема:


С1 – 2200 мкФ, С2 – 4,7 мкФ, С3 – 47 - 100 мкФ, R1-R2 – 430 Ом, R3 – 1 ком, V1 – КТ315, V2 - КТ361. Также можно поставить транзисторы серии МП. Динамическая головка - 8...10 ом. Питание 5В.

Второй вариант:

С1 – 2200 мкФ, С2 – 4,7 мкФ, С3 – 47 - 200 мкФ, R1-R2 – 430 Ом, R3 – 1 ком, R4 - 4,7 ком, R5 – 220 Ом, V1 – КТ361 (МП 26, МП 42, кт 203 и т.п.), V2 – ГТ404 (КТ815, КТ817), V3 – ГТ402 (КТ814, КТ816, П213). Динамическая головка 8...10 ом.
Питание 5В.

Похожие статьи