Искусственные нейронные сети простыми словами. Нейронные сети

05.08.2019

В последние годы технологический прогресс настолько ускорился, что перестал нас особенно удивлять. Мы практически свыклись с мыслью, что в ближайшие годы дороги заполонят автомобили с автопилотом, а персональный компьютер как собеседник будет поинтереснее большинства людей. Такой скачок в технологиях обеспечен прорывом в новой области знания - нейронные сети. Что это такое, стоит знать даже тем, кто никогда не интересовался миром IT.

Краткое описание феномена

Нейросетевыми называются такие вычислительные системы, которые обладают способностью к самообучению и постепенному повышению производительности. Они используются при решении таких задач, которые не поддаются логическому программированию:

  • Машинное обучение - разновидность искусственного интеллекта. Особенность его заключается в постепенном обучении на примере миллионов однотипных задач;
  • В робототехнике система используется в выработке многочисленных алгоритмов для железных «мозгов» автоматических систем;
  • Архитекторы компьютерных систем находят в нейросетях одно из решений проблемы параллельных вычислений;
  • Также имеются многие другие варианты имплементации: разрешение сугубо математических проблем, моделирование естественного интеллекта на основе ЭВМ и др.

Основными элементами такой сети являются:

  1. Искусственные нейроны - элементарные, связанные между собой единицы;
  2. Синапс - соединение, которое служит для отправки-получения данных между нейронами;
  3. Сигнал - информация, подлежащая передаче.

Сверточные нейронные сети

Одной из самых популярных разновидностей нейросетей является так называемая сверточная , которая доказала свою эффективность в распознавании визуальных образов (изображения и видео), рекомендательных системах и обработке естественного языка:

  • Они прекрасно масштабируются и могут применяться для распознавания образов сколь угодно большого разрешения;
  • В них применяются объемные (трехмерные) нейроны. Нейроны внутри слоя связаны только небольшими областями, которые называются рецептивным полем;
  • Нейроны соседних слоев подключаются по механизму пространственной локализации. Укладка множества таких слоев обеспечивает появление нелинейных фильтров, которые начинают реагировать на все большее число пикселей;
  • Каждый фильтр расширяется на все поле зрения. Данные единицы тиражируются, делятся имеющимися параметрами и формируют карту. Тем самым все нейроны определенного сверточного слоя начинают реагировать на один и тот же объект (в пределах конкретной области ответа).

Экскурс в историю

Практическая реализация теории машинного обучения стала возможна только сегодня, благодаря появлению относительно дешевого и в то же время мощного «железа». Однако теоретические изыскания на эту тему насчитывают не один десяток лет:

  • Первая вычислительная модель пороговой логики на основе математики и алгоритмов была построена Уорреном Маккалоком и Уолтером Питттсом в 1943 году;
  • В конце 1940-х годов Дональд Хебб разработал механизм нейронной пластичности и тем самым заложил правила обучения автоматов;
  • 1954 годом датируется первое применение теоретических открытий в работе ЭВМ. Элисон Кларк использовал для этих целей обычный калькулятор;
  • Фрэнк Розенблатт в 1958 году разработал алгоритм распознавания образов и математическую нотацию к нему;
  • В конце 1960-х научный интерес к проблематике заметно угас ввиду невозможности его применения на аппаратных мощностях того времени;
  • Кибернетики вернулись к нейронным сетям лишь в начале 1980-х: появилась система с механизмом обратной связи, разработаны алгоритмы самообучения и заложены основы дисциплины data mining;
  • К 2000-м вычислительная мощность ЭВМ выросла настолько, что позволила реализовать самые смелые чаяния кабинетных ученых. Широкое распространение получили программы распознавания голоса, компьютерного зрения и т. д.

Нейронная сеть Хопфилда

В 1982 году американский ученый Джон Хопфилд описал новый вид вычислительной системы, которая теперь носит его имя. Среди ее характерных особенностей:

  1. Блоки в сети могут принимать только два значения для описания их состояния: 1 и -1. Каждая пара единиц значения говорит о возможности или невозможности подключения узлов графа;
  2. Обновление одного узла в графе моделирования искусственных нейронов выполняется асинхронно или синхронно. В первом случае обновляется только один блок, который может быть выбран случайным образом. Во втором случае все блоки обновляются одновременно;
  3. Сеть характеризуется состоянием, которое называется «энергией». Обновления сетей всегда происходят при максимальных значениях энергии;
  4. Правила обучения сети аналогичны механизмам человеческого интеллекта. Возможно подключение новых данных как с использованием старых данных (локальное правило), так и без обращения к старым образцам (добавочное правило).

Данная модель ввиду большой близости к биологическим образцам часто используется для понимания функционирования человеческой памяти.

Основные ограничения и проблемы

Список основных претензий к современным методам интеллектуального анализа данных сводятся к следующему:

  1. Требуются значительные затраты времени на сбор подходящей информации и последующее обучение машины. В первую очередь касается робототехники;
  2. Ни одна из существующих ныне систем не способна решить фундаментальные математические проблемы (задача коммивояжера и факторизация больших чисел);
  3. Высокая сложность создания, настройки и обслуживания систем. Для этого требуются специалисты с очень высокой квалификацией, оплачивать услуги которых могут позволить себе только очень крупные корпорации;
  4. Для эффективной работы необходимо наличие высокопроизводительных ферм ЭВМ и программного обеспечения. Проблема постепенно решается благодаря увеличению аппаратной мощности графических процессоров: с 1991 по 2015 годы она возросла в миллион раз.

Несмотря на многочисленные проблемы, нейронные сети являются лучшим, что имеет ныне человечество на пути к искусственному интеллекту. Они применяются практически повсеместно: автопилоты в самолетах и автомобилях, программы для обнаружения мошенничества с кредитным картами, освоение игры в го (логическая настольная игра) и т. д.

Рекуррентные нейронные сети

Если соединения между блоками образуют ориентированный цикл (начинаются и заканчиваются на одной и той же вершине графа), то речь идет о рекуррентной нейронной сети :

  • Каждое соединение имеет определенный вес (приоритет);
  • Узлы делятся на два типа: вводные, узлы вывода и скрытые;
  • Информация может передаваться не только по прямой (слой за слоем), но и между нейронами. Так отдельные элементы могут получать данные о предыдущем положении системы;
  • Отличительной чертой является так называемая концепция внимания: машине можно указать на определенные фрагменты данных, требующих углубленной обработки.

Благодаря особенностям конструкции сеть используется для решения широкого круга задач:

  • Распознавание вербальных и текстовых данных;
  • В то же время, понимание смысла текста затруднено: машина «видит» лишь визуальную картинку без привязки к качественным характеристикам;
  • РНН в настоящее время используется в системах автоматизированного перевода текста (например, Яндекс.Переводчик).

Если в XX веке умнейшие люди планеты занимались проектированием ракет, то ныне объектом приложения их интеллектуального потенциала являются нейронные сети. Что это, сложно сегодня не знать, ведь о достижении в этой области трубят ведущие СМИ на каждом шагу. Самые известные примеры: голосовой помощник Apple Siri, онлайн-переводчик Google Translate, поисковый движок Яндекса «Палех». И это только начало на пути к полноценному искусственному интеллекту.

Видео про устройство нейронных сетей

В данном ролике Олег Волошин расскажет простым языком, как работают современные нейронные сети, на чем основан их функционал:

Соответственно, нейронная сеть берет на вход два числа и должна на выходе дать другое число - ответ. Теперь о самих нейронных сетях.

Что такое нейронная сеть?

Нейронная сеть - это последовательность нейронов, соединенных между собой синапсами. Структура нейронной сети пришла в мир программирования прямиком из биологии. Благодаря такой структуре, машина обретает способность анализировать и даже запоминать различную информацию. Нейронные сети также способны не только анализировать входящую информацию, но и воспроизводить ее из своей памяти. Заинтересовавшимся обязательно к просмотру 2 видео из TED Talks: Видео 1 , Видео 2). Другими словами, нейросеть это машинная интерпретация мозга человека, в котором находятся миллионы нейронов передающих информацию в виде электрических импульсов.

Какие бывают нейронные сети?

Пока что мы будем рассматривать примеры на самом базовом типе нейронных сетей - это сеть прямого распространения (далее СПР). Также в последующих статьях я введу больше понятий и расскажу вам о рекуррентных нейронных сетях. СПР как вытекает из названия это сеть с последовательным соединением нейронных слоев, в ней информация всегда идет только в одном направлении.

Для чего нужны нейронные сети?

Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений подобных тем, что делает человеческий мозг. Самыми распространенными применениями нейронных сетей является:

Классификация - распределение данных по параметрам. Например, на вход дается набор людей и нужно решить, кому из них давать кредит, а кому нет. Эту работу может сделать нейронная сеть, анализируя такую информацию как: возраст, платежеспособность, кредитная история и тд.

Предсказание - возможность предсказывать следующий шаг. Например, рост или падение акций, основываясь на ситуации на фондовом рынке.

Распознавание - в настоящее время, самое широкое применение нейронных сетей. Используется в Google, когда вы ищете фото или в камерах телефонов, когда оно определяет положение вашего лица и выделяет его и многое другое.

Теперь, чтобы понять, как же работают нейронные сети, давайте взглянем на ее составляющие и их параметры.

Что такое нейрон?

Нейрон - это вычислительная единица, которая получает информацию, производит над ней простые вычисления и передает ее дальше. Они делятся на три основных типа: входной (синий), скрытый (красный) и выходной (зеленый). Также есть нейрон смещения и контекстный нейрон о которых мы поговорим в следующей статье. В том случае, когда нейросеть состоит из большого количества нейронов, вводят термин слоя. Соответственно, есть входной слой, который получает информацию, n скрытых слоев (обычно их не больше 3), которые ее обрабатывают и выходной слой, который выводит результат. У каждого из нейронов есть 2 основных параметра: входные данные (input data) и выходные данные (output data). В случае входного нейрона: input=output. В остальных, в поле input попадает суммарная информация всех нейронов с предыдущего слоя, после чего, она нормализуется, с помощью функции активации (пока что просто представим ее f(x)) и попадает в поле output.

Важно помнить , что нейроны оперируют числами в диапазоне или [-1,1]. А как же, вы спросите, тогда обрабатывать числа, которые выходят из данного диапазона? На данном этапе, самый простой ответ - это разделить 1 на это число. Этот процесс называется нормализацией, и он очень часто используется в нейронных сетях. Подробнее об этом чуть позже.

Что такое синапс?

Синапс это связь между двумя нейронами. У синапсов есть 1 параметр - вес. Благодаря ему, входная информация изменяется, когда передается от одного нейрона к другому. Допустим, есть 3 нейрона, которые передают информацию следующему. Тогда у нас есть 3 веса, соответствующие каждому из этих нейронов. У того нейрона, у которого вес будет больше, та информация и будет доминирующей в следующем нейроне (пример - смешение цветов). На самом деле, совокупность весов нейронной сети или матрица весов - это своеобразный мозг всей системы. Именно благодаря этим весам, входная информация обрабатывается и превращается в результат.

Важно помнить , что во время инициализации нейронной сети, веса расставляются в случайном порядке.

Как работает нейронная сеть?

В данном примере изображена часть нейронной сети, где буквами I обозначены входные нейроны, буквой H - скрытый нейрон, а буквой w - веса. Из формулы видно, что входная информация - это сумма всех входных данных, умноженных на соответствующие им веса. Тогда дадим на вход 1 и 0. Пусть w1=0.4 и w2 = 0.7 Входные данные нейрона Н1 будут следующими: 1*0.4+0*0.7=0.4. Теперь когда у нас есть входные данные, мы можем получить выходные данные, подставив входное значение в функцию активации (подробнее о ней далее). Теперь, когда у нас есть выходные данные, мы передаем их дальше. И так, мы повторяем для всех слоев, пока не дойдем до выходного нейрона. Запустив такую сеть в первый раз мы увидим, что ответ далек от правильно, потому что сеть не натренирована. Чтобы улучшить результаты мы будем ее тренировать. Но прежде чем узнать как это делать, давайте введем несколько терминов и свойств нейронной сети.

Функция активации

Функция активации - это способ нормализации входных данных (мы уже говорили об этом ранее). То есть, если на входе у вас будет большое число, пропустив его через функцию активации, вы получите выход в нужном вам диапазоне. Функций активации достаточно много поэтому мы рассмотрим самые основные: Линейная, Сигмоид (Логистическая) и Гиперболический тангенс. Главные их отличия - это диапазон значений.

Линейная функция

Эта функция почти никогда не используется, за исключением случаев, когда нужно протестировать нейронную сеть или передать значение без преобразований.

Сигмоид

Это самая распространенная функция активации, ее диапазон значений . Именно на ней показано большинство примеров в сети, также ее иногда называют логистической функцией. Соответственно, если в вашем случае присутствуют отрицательные значения (например, акции могут идти не только вверх, но и вниз), то вам понадобиться функция которая захватывает и отрицательные значения.

Гиперболический тангенс

Имеет смысл использовать гиперболический тангенс, только тогда, когда ваши значения могут быть и отрицательными, и положительными, так как диапазон функции [-1,1]. Использовать эту функцию только с положительными значениями нецелесообразно так как это значительно ухудшит результаты вашей нейросети.

Тренировочный сет

Тренировочный сет - это последовательность данных, которыми оперирует нейронная сеть. В нашем случае исключающего или (xor) у нас всего 4 разных исхода то есть у нас будет 4 тренировочных сета: 0xor0=0, 0xor1=1, 1xor0=1,1xor1=0.

Итерация

Это своеобразный счетчик, который увеличивается каждый раз, когда нейронная сеть проходит один тренировочный сет. Другими словами, это общее количество тренировочных сетов пройденных нейронной сетью.

Эпоха

При инициализации нейронной сети эта величина устанавливается в 0 и имеет потолок, задаваемый вручную. Чем больше эпоха, тем лучше натренирована сеть и соответственно, ее результат. Эпоха увеличивается каждый раз, когда мы проходим весь набор тренировочных сетов, в нашем случае, 4 сетов или 4 итераций.

Важно не путать итерацию с эпохой и понимать последовательность их инкремента. Сначала n
раз увеличивается итерация, а потом уже эпоха и никак не наоборот. Другими словами, нельзя сначала тренировать нейросеть только на одном сете, потом на другом и тд. Нужно тренировать каждый сет один раз за эпоху. Так, вы сможете избежать ошибок в вычислениях.

Ошибка

Ошибка - это процентная величина, отражающая расхождение между ожидаемым и полученным ответами. Ошибка формируется каждую эпоху и должна идти на спад. Если этого не происходит, значит, вы что-то делаете не так. Ошибку можно вычислить разными путями, но мы рассмотрим лишь три основных способа: Mean Squared Error (далее MSE), Root MSE и Arctan. Здесь нет какого-либо ограничения на использование, как в функции активации, и вы вольны выбрать любой метод, который будет приносить вам наилучший результат. Стоит лишь учитывать, что каждый метод считает ошибки по разному. У Arctan, ошибка, почти всегда, будет больше, так как он работает по принципу: чем больше разница, тем больше ошибка. У Root MSE будет наименьшая ошибка, поэтому, чаще всего, используют MSE, которая сохраняет баланс в вычислении ошибки.

Root MSE

Принцип подсчета ошибки во всех случаях одинаков. За каждый сет, мы считаем ошибку, отняв от идеального ответа, полученный. Далее, либо возводим в квадрат, либо вычисляем квадратный тангенс из этой разности, после чего полученное число делим на количество сетов.

Задача

Теперь, чтобы проверить себя, подсчитайте результат, данной нейронной сети, используя сигмоид, и ее ошибку, используя MSE.

Решение

H1input = 1*0.45+0*-0.12=0.45
H1output = sigmoid(0.45)=0.61H2input = 1*0.78+0*0.13=0.78
H2output = sigmoid(0.78)=0.69

O1ideal = 1 (0xor1=1)

Error = ((1-0.33)^2)/1=0.45

Большое спасибо за внимание! Надеюсь, что данная статья смогла помочь вам в изучении нейронных сетей. В следующей статье, я расскажу о нейронах смещения и о том, как тренировать нейронную сеть, используя метод обратного распространения и градиентного спуска.

Что такое нейрон смещения?

Перед тем как начать нашу основную тему, мы должны ввести понятие еще одного вида нейронов - нейрон смещения. Нейрон смещения или bias нейрон - это третий вид нейронов, используемый в большинстве нейросетей. Особенность этого типа нейронов заключается в том, что его вход и выход всегда равняются 1 и они никогда не имеют входных синапсов. Нейроны смещения могут, либо присутствовать в нейронной сети по одному на слое, либо полностью отсутствовать, 50/50 быть не может (красным на схеме обозначены веса и нейроны которые размещать нельзя). Соединения у нейронов смещения такие же, как у обычных нейронов - со всеми нейронами следующего уровня, за исключением того, что синапсов между двумя bias нейронами быть не может. Следовательно, их можно размещать на входном слое и всех скрытых слоях, но никак не на выходном слое, так как им попросту не с чем будет формировать связь.

Для чего нужен нейрон смещения?


Нейрон смещения нужен для того, чтобы иметь возможность получать выходной результат, путем сдвига графика функции активации вправо или влево. Если это звучит запутанно, давайте рассмотрим простой пример, где есть один входной нейрон и один выходной нейрон. Тогда можно установить, что выход O2 будет равен входу H1, умноженному на его вес, и пропущенному через функцию активации (формула на фото слева). В нашем конкретном случае, будем использовать сигмоид.

Из школьного курса математики, мы знаем, что если взять функцию y = ax+b и менять у нее значения “а”, то будет изменяться наклон функции (цвета линий на графике слева), а если менять “b”, то мы будем смещать функцию вправо или влево (цвета линий на графике справа). Так вот “а” - это вес H1, а “b” - это вес нейрона смещения B1. Это грубый пример, но примерно так все и работает (если вы посмотрите на функцию активации справа на изображении, то заметите очень сильное сходство между формулами). То есть, когда в ходе обучения, мы регулируем веса скрытых и выходных нейронов, мы меняем наклон функции активации. Однако, регулирование веса нейронов смещения может дать нам возможность сдвинуть функцию активации по оси X и захватить новые участки. Иными словами, если точка, отвечающая за ваше решение, будет находиться, как показано на графике слева, то ваша НС никогда не сможет решить задачу без использования нейронов смещения. Поэтому, вы редко встретите нейронные сети без нейронов смещения.

Также нейроны смещения помогают в том случае, когда все входные нейроны получают на вход 0 и независимо от того какие у них веса, они все передадут на следующий слой 0, но не в случае присутствия нейрона смещения. Наличие или отсутствие нейронов смещения - это гиперпараметр (об этом чуть позже). Одним словом, вы сами должны решить, нужно ли вам использовать нейроны смещения или нет, прогнав НС с нейронами смешения и без них и сравнив результаты.

ВАЖНО знать, что иногда на схемах не обозначают нейроны смещения, а просто учитывают их веса при вычислении входного значения например:

input = H1*w1+H2*w2+b3
b3 = bias*w3

Так как его выход всегда равен 1, то можно просто представить что у нас есть дополнительный синапс с весом и прибавить к сумме этот вес без упоминания самого нейрона.

Как сделать чтобы НС давала правильные ответы?

Ответ прост - нужно ее обучать. Однако, насколько бы прост не был ответ, его реализация в плане простоты, оставляет желать лучшего. Существует несколько методов обучения НС и я выделю 3, на мой взгляд, самых интересных:

  • Метод обратного распространения (Backpropagation)
  • Метод упругого распространения (Resilient propagation или Rprop)
  • Генетический Алгоритм (Genetic Algorithm)

Об Rprop и ГА речь пойдет в других статьях, а сейчас мы с вами посмотрим на основу основ - метод обратного распространения, который использует алгоритм градиентного спуска.

Что такое градиентный спуск?

Это способ нахождения локального минимума или максимума функции с помощью движения вдоль градиента. Если вы поймете суть градиентного спуска, то у вас не должно возникнуть никаких вопросов во время использования метода обратного распространения. Для начала, давайте разберемся, что такое градиент и где он присутствует в нашей НС. Давайте построим график, где по оси х будут значения веса нейрона(w) а по оси у - ошибка соответствующая этому весу(e).

Посмотрев на этот график, мы поймем, что график функция f(w) является зависимостью ошибки от выбранного веса. На этом графике нас интересует глобальный минимум - точка (w2,e2) или, иными словами, то место где график подходит ближе всего к оси х. Эта точка будет означать, что выбрав вес w2 мы получим самую маленькую ошибку - e2 и как следствие, самый лучший результат из всех возможных. Найти же эту точку нам поможет метод градиентного спуска (желтым на графике обозначен градиент). Соответственно у каждого веса в нейросети будет свой график и градиент и у каждого надо найти глобальный минимум.

Так что же такое, этот градиент? Градиент - это вектор который определяет крутизну склона и указывает его направление относительно какой либо из точек на поверхности или графике. Чтобы найти градиент нужно взять производную от графика по данной точке (как это и показано на графике). Двигаясь по направлению этого градиента мы будем плавно скатываться в низину. Теперь представим что ошибка - это лыжник, а график функции - гора. Соответственно, если ошибка равна 100%, то лыжник находиться на самой вершине горы и если ошибка 0% то в низине. Как все лыжники, ошибка стремится как можно быстрее спуститься вниз и уменьшить свое значение. В конечном случае у нас должен получиться следующий результат:

Представьте что лыжника забрасывают, с помощью вертолета, на гору. На сколько высоко или низко зависит от случая (аналогично тому, как в нейронной сети при инициализации веса расставляются в случайном порядке). Допустим ошибка равна 90% и это наша точка отсчета. Теперь лыжнику нужно спуститься вниз, с помощью градиента. На пути вниз, в каждой точке мы будем вычислять градиент, что будет показывать нам направление спуска и при изменении наклона, корректировать его. Если склон будет прямым, то после n-ого количества таких действий мы доберемся до низины. Но в большинстве случаев склон (график функции) будет волнистый и наш лыжник столкнется с очень серьезной проблемой - локальный минимум. Я думаю все знают, что такое локальный и глобальный минимум функции, для освежения памяти вот пример. Попадание в локальный минимум чревато тем, что наш лыжник навсегда останется в этой низине и никогда не скатиться с горы, следовательно мы никогда не сможем получить правильный ответ. Но мы можем избежать этого, снарядив нашего лыжника реактивным ранцем под названием момент (momentum). Вот краткая иллюстрация момента:

Как вы уже наверное догадались, этот ранец придаст лыжнику необходимое ускорение чтобы преодолеть холм, удерживающий нас в локальном минимуме, однако здесь есть одно НО. Представим что мы установили определенное значение параметру момент и без труда смогли преодолеть все локальные минимумы, и добраться до глобального минимума. Так как мы не можем просто отключить реактивный ранец, то мы можем проскочить глобальный минимум, если рядом с ним есть еще низины. В конечном случае это не так важно, так как рано или поздно мы все равно вернемся обратно в глобальный минимум, но стоит помнить, что чем больше момент, тем больше будет размах с которым лыжник будет кататься по низинам. Вместе с моментом в методе обратного распространения также используется такой параметр как скорость обучения (learning rate). Как наверняка многие подумают, чем больше скорость обучения, тем быстрее мы обучим нейросеть. Нет. Скорость обучения, также как и момент, является гиперпараметром - величина которая подбирается путем проб и ошибок. Скорость обучения можно напрямую связать со скоростью лыжника и можно с уверенностью сказать - тише едешь дальше будешь. Однако здесь тоже есть определенные аспекты, так как если мы совсем не дадим лыжнику скорости то он вообще никуда не поедет, а если дадим маленькую скорость то время пути может растянуться на очень и очень большой период времени. Что же тогда произойдет если мы дадим слишком большую скорость?

Как видите, ничего хорошего. Лыжник начнет скатываться по неправильному пути и возможно даже в другом направлении, что как вы понимаете только отдалит нас от нахождения правильного ответа. Поэтому во всех этих параметрах нужно находить золотую середину чтобы избежать не сходимости НС (об этом чуть позже).

Что такое Метод Обратного Распространения (МОР)?

Вот мы и дошли до того момента, когда мы можем обсудить, как же все таки сделать так, чтобы ваша НС могла правильно обучаться и давать верные решения. Очень хорошо МОР визуализирован на этой гифке:

А теперь давайте подробно разберем каждый этап. Если вы помните то в предыдущей статье мы считали выход НС. По другому это называется передача вперед (Forward pass), то есть мы последовательно передаем информацию от входных нейронов к выходным. После чего мы вычисляем ошибку и основываясь на ней делаем обратную передачу, которая заключается в том, чтобы последовательно менять веса нейронной сети, начиная с весов выходного нейрона. Значение весов будут меняться в ту сторону, которая даст нам наилучший результат. В моих вычисления я буду пользоваться методом нахождения дельты, так как это наиболее простой и понятный способ. Также я буду использовать стохастический метод обновления весов (об этом чуть позже).

Теперь давайте продолжим с того места, где мы закончили вычисления в предыдущей статье.

Данные задачи из предыдущей статьи

Данные: I1=1, I2=0, w1=0.45, w2=0.78 ,w3=-0.12 ,w4=0.13 ,w5=1.5 ,w6=-2.3.

H1input = 1*0.45+0*-0.12=0.45
H1output = sigmoid(0.45)=0.61

H2input = 1*0.78+0*0.13=0.78
H2output = sigmoid(0.78)=0.69

O1input = 0.61*1.5+0.69*-2.3=-0.672
O1output = sigmoid(-0.672)=0.33

O1ideal = 1 (0xor1=1)

Error = ((1-0.33)^2)/1=0.45

Результат - 0.33, ошибка - 45%.

Так как мы уже подсчитали результат НС и ее ошибку, то мы можем сразу приступить к МОРу. Как я уже упоминал ранее, алгоритм всегда начинается с выходного нейрона. В таком случае давайте посчитаем для него значение δ (дельта) по формуле 1.

Так как у выходного нейрона нет исходящих синапсов, то мы будем пользоваться первой формулой (δ output), следственно для скрытых нейронов мы уже будем брать вторую формулу (δ hidden). Тут все достаточно просто: считаем разницу между желаемым и полученным результатом и умножаем на производную функции активации от входного значения данного нейрона. Прежде чем приступить к вычислениям я хочу обратить ваше внимание на производную. Во первых как это уже наверное стало понятно, с МОР нужно использовать только те функции активации, которые могут быть дифференцированы. Во вторых чтобы не делать лишних вычислений, формулу производной можно заменить на более дружелюбную и простую формула вида:


Таким образом наши вычисления для точки O1 будут выглядеть следующим образом.

Решение

На этом вычисления для нейрона O1 закончены. Запомните, что после подсчета дельты нейрона мы обязаны сразу обновить веса всех исходящих синапсов этого нейрона. Так как в случае с O1 их нет, мы переходим к нейронам скрытого уровня и делаем тоже самое за исключение того, что формула подсчета дельты у нас теперь вторая и ее суть заключается в том, чтобы умножить производную функции активации от входного значения на сумму произведений всех исходящих весов и дельты нейрона с которой этот синапс связан. Но почему формулы разные? Дело в том что вся суть МОР заключается в том чтобы распространить ошибку выходных нейронов на все веса НС. Ошибку можно вычислить только на выходном уровне, как мы это уже сделали, также мы вычислили дельту в которой уже есть эта ошибка. Следственно теперь мы будем вместо ошибки использовать дельту которая будет передаваться от нейрона к нейрону. В таком случае давайте найдем дельту для H1:

Решение

H1output = 0.61
w5 = 1.5
δO1 = 0.148δH1 = ((1 - 0.61) * 0.61) * (1.5 * 0.148) = 0.053

Теперь нам нужно найти градиент для каждого исходящего синапса. Здесь обычно вставляют 3 этажную дробь с кучей производных и прочим математическим адом, но в этом и вся прелесть использования метода подсчета дельт, потому что в конечном счете ваша формула нахождения градиента будет выглядеть вот так:

Здесь точка A это точка в начале синапса, а точка B на конце синапса. Таким образом мы можем подсчитать градиент w5 следующим образом:

Решение

Сейчас у нас есть все необходимые данные чтобы обновить вес w5 и мы сделаем это благодаря функции МОР которая рассчитывает величину на которую нужно изменить тот или иной вес и выглядит она следующим образом:


Настоятельно рекомендую вам не игнорировать вторую часть выражения и использовать момент так как это вам позволит избежать проблем с локальным минимумом.

Здесь мы видим 2 константы о которых мы уже говорили, когда рассматривали алгоритм градиентного спуска: E (эпсилон) - скорость обучения, α (альфа) - момент. Переводя формулу в слова получим: изменение веса синапса равно коэффициенту скорости обучения, умноженному на градиент этого веса, прибавить момент умноженный на предыдущее изменение этого веса (на 1-ой итерации равно 0). В таком случае давайте посчитаем изменение веса w5 и обновим его значение прибавив к нему Δw5.

Решение

Таким образом после применения алгоритма наш вес увеличился на 0.063. Теперь предлагаю сделать вам тоже самое для H2.

Решение

И конечно не забываем про I1 и I2, ведь у них тоже есть синапсы веса которых нам тоже нужно обновить. Однако помним, что нам не нужно находить дельты для входных нейронов так как у них нет входных синапсов.

Решение

Теперь давайте убедимся в том, что мы все сделали правильно и снова посчитаем выход НС только уже с обновленными весами.

Решение

Как мы видим после одной итерации МОР, нам удалось уменьшить ошибку на 0.04 (6%). Теперь нужно повторять это снова и снова, пока ваша ошибка не станет достаточно мала.

Что еще нужно знать о процессе обучения?

Нейросеть можно обучать с учителем и без (supervised, unsupervised learning).

Обучение с учителем - это тип тренировок присущий таким проблемам как регрессия и классификация (им мы и воспользовались в примере приведенном выше). Иными словами здесь вы выступаете в роли учителя а НС в роли ученика. Вы предоставляете входные данные и желаемый результат, то есть ученик посмотрев на входные данные поймет, что нужно стремиться к тому результату который вы ему предоставили.

Обучение без учителя - этот тип обучения встречается не так часто. Здесь нет учителя, поэтому сеть не получает желаемый результат или же их количество очень мало. В основном такой вид тренировок присущ НС у которых задача состоит в группировке данных по определенным параметрам. Допустим вы подаете на вход 10000 статей на хабре и после анализа всех этих статей НС сможет распределить их по категориям основываясь, например, на часто встречающихся словах. Статьи в которых упоминаются языки программирования, к программированию, а где такие слова как Photoshop, к дизайну.

Существует еще такой интересный метод, как обучение с подкреплением (reinforcement learning). Этот метод заслуживает отдельной статьи, но я попытаюсь вкратце описать его суть. Такой способ применим тогда, когда мы можем основываясь на результатах полученных от НС, дать ей оценку. Например мы хотим научить НС играть в PAC-MAN, тогда каждый раз когда НС будет набирать много очков мы будем ее поощрять. Иными словами мы предоставляем НС право найти любой способ достижения цели, до тех пор пока он будет давать хороший результат. Таким способом, сеть начнет понимать чего от нее хотят добиться и пытается найти наилучший способ достижения этой цели без постоянного предоставления данных “учителем”.

Также обучение можно производить тремя методами: стохастический метод (stochastic), пакетный метод (batch) и мини-пакетный метод (mini-batch). Существует очень много статей и исследований на тему того, какой из методов лучше и никто не может прийти к общему ответу. Я же сторонник стохастического метода, однако я не отрицаю тот факт, что каждый метод имеет свои плюсы и минусы.

Вкратце о каждом методе:

Стохастический (его еще иногда называют онлайн) метод работает по следующему принципу - нашел Δw, сразу обнови соответствующий вес.

Пакетный метод же работает по другому. Мы суммируем Δw всех весов на текущей итерации и только потом обновляем все веса используя эту сумму. Один из самых важных плюсов такого подхода - это значительная экономия времени на вычисление, точность же в таком случае может сильно пострадать.

Мини-пакетный метод является золотой серединой и пытается совместить в себе плюсы обоих методов. Здесь принцип таков: мы в свободном порядке распределяем веса по группам и меняем их веса на сумму Δw всех весов в той или иной группе.

Что такое гиперпараметры?

Гиперпараметры - это значения, которые нужно подбирать вручную и зачастую методом проб и ошибок. Среди таких значений можно выделить:

  • Момент и скорость обучения
  • Количество скрытых слоев
  • Количество нейронов в каждом слое
  • Наличие или отсутствие нейронов смещения

В других типах НС присутствуют дополнительные гиперпараметры, но о них мы говорить не будем. Подбор верных гиперпараметров очень важен и будет напрямую влиять на сходимость вашей НС. Понять стоит ли использовать нейроны смещения или нет достаточно просто. Количество скрытых слоев и нейронов в них можно вычислить перебором основываясь на одном простом правиле - чем больше нейронов, тем точнее результат и тем экспоненциально больше время, которое вы потратите на ее обучение. Однако стоит помнить, что не стоит делать НС с 1000 нейронов для решения простых задач. А вот с выбором момента и скорости обучения все чуточку сложнее. Эти гиперпараметры будут варьироваться, в зависимости от поставленной задачи и архитектуры НС. Например, для решения XOR скорость обучения может быть в пределах 0.3 - 0.7, но в НС которая анализирует и предсказывает цену акций, скорость обучения выше 0.00001 приводит к плохой сходимости НС. Не стоит сейчас заострять свое внимание на гиперпараметрах и пытаться досконально понять, как же их выбирать. Это придет с опытом, а пока что советую просто экспериментировать и искать примеры решения той или иной задачи в сети.

Что такое сходимость?


Сходимость говорит о том, правильная ли архитектура НС и правильно ли были подобраны гиперпараметры в соответствии с поставленной задачей. Допустим наша программа выводит ошибку НС на каждой итерации в лог. Если с каждой итерацией ошибка будет уменьшаться, то мы на верном пути и наша НС сходится. Если же ошибка будет прыгать вверх - вниз или застынет на определенном уровне, то НС не сходится. В 99% случаев это решается изменением гиперпараметров. Оставшийся 1% будет означать, что у вас ошибка в архитектуре НС. Также бывает, что на сходимость влияет переобучение НС.

Что такое переобучение?

Переобучение, как следует из названия, это состояние нейросети, когда она перенасыщена данными. Это проблема возникает, если слишком долго обучать сеть на одних и тех же данных. Иными словами, сеть начнет не учиться на данных, а запоминать и “зубрить” их. Соответственно, когда вы уже будете подавать на вход этой НС новые данные, то в полученных данных может появиться шум, который будет влиять на точность результата. Например, если мы будем показывать НС разные фотографии яблок (только красные) и говорить что это яблоко. Тогда, когда НС увидит желтое или зеленое яблоко, оно не сможет определить, что это яблоко, так как она запомнила, что все яблоки должны быть красными. И наоборот, когда НС увидит что-то красное и по форме совпадающее с яблоком, например персик, она скажет, что это яблоко. Это и есть шум. На графике шум будет выглядеть следующим образом.

Видно, что график функции сильно колеблется от точки к точке, которые являются выходными данными (результатом) нашей НС. В идеале, этот график должен быть менее волнистый и прямой. Чтобы избежать переобучения, не стоит долго тренировать НС на одних и тех же или очень похожих данных. Также, переобучение может быть вызвано большим количеством параметров, которые вы подаете на вход НС или слишком сложной архитектурой. Таким образом, когда вы замечаете ошибки (шум) в выходных данных после этапа обучения, то вам стоит использовать один из методов регуляризации, но в большинстве случаев это не понадобиться.

Искусственный интеллект, нейронные сети, машинное обучение — что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим и являюсь я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляют собой эта технология, как она работают, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Искусственный интеллект, нейронные сети, машинное обучение - что на самом деле означают все эти нынче популярные понятия? Для большинства непосвященных людей, коим являюсь и я сам, они всегда казались чем-то фантастическим, но на самом деле суть их лежит на поверхности. У меня давно созревала идея написать простым языком об искусственных нейронных сетях. Узнать самому и рассказать другим, что представляет собой эта технология, как она работает, рассмотреть ее историю и перспективы. В этой статье я постарался не залезать в дебри, а просто и популярно рассказать об этом перспективном направление в мире высоких технологий.

Немного истории

Впервые понятие искусственных нейронных сетей (ИНС) возникло при попытке смоделировать процессы головного мозга. Первым серьезным прорывом в этой сфере можно считать создание модели нейронных сетей МакКаллока-Питтса в 1943 году. Учеными впервые была разработана модель искусственного нейрона. Ими также была предложена конструкция сети из этих элементов для выполнения логических операций. Но самое главное, учеными было доказано, что подобная сеть способна обучаться.

Следующим важным шагом стала разработка Дональдом Хеббом первого алгоритма вычисления ИНС в 1949 году, который стал основополагающем на несколько последующих десятилетий. В 1958 году Фрэнком Розенблаттом был разработан парцептрон - система, имитирующая процессы головного мозга. В свое время технология не имела аналогов и до сих пор является основополагающей в нейронных сетях. В 1986 году практически одновременно, независимо друг от друга американскими и советскими учеными был существенно доработан основополагающий метод обучения многослойного перцептрона . В 2007 году нейронные сети перенесли второе рождение. Британский информатик Джеффри Хинтоном впервые разработал алгоритм глубокого обучения многослойных нейронных сетей, который сейчас, например, используется для работы беспилотных автомобилей.

Коротко о главном

В общем смысле слова, нейронные сети - это математические модели, работающие по принципу сетей нервных клеток животного организма. ИНС могут быть реализованы как в программируемые, так и в аппаратные решения. Для простоты восприятия нейрон можно представить, как некую ячейку, у которой имеется множество входных отверстий и одно выходное. Каким образом многочисленные входящие сигналы формируются в выходящий, как раз и определяет алгоритм вычисления. На каждый вход нейрона подаются действенные значения, которые затем распространяются по межнейронным связям (синопсисам). У синапсов есть один параметр - вес, благодаря которому входная информация изменяется при переходе от одного нейрона к другому. Легче всего принцип работы нейросетей можно представить на примере смешения цветов. Синий, зеленый и красный нейрон имеют разные веса. Информация того нейрона, вес которого больше будет доминирующей в следующем нейроне.

Сама нейросеть представляет собой систему из множества таких нейронов (процессоров). По отдельности эти процессоры достаточно просты (намного проще, чем процессор персонального компьютера), но будучи соединенными в большую систему нейроны способны выполнять очень сложные задачи.

В зависимости от области применения нейросеть можно трактовать по-разному, Например, с точки зрения машинного обучения ИНС представляет собой метод распознавания образов. С математической точки зрения - это многопараметрическая задача. С точки зрения кибернетики - модель адаптивного управления робототехникой. Для искусственного интеллекта ИНС - это основополагающее составляющее для моделирования естественного интеллекта с помощью вычислительных алгоритмов.

Основным преимуществом нейросетей над обычными алгоритмами вычисления является их возможность обучения. В общем смысле слова обучение заключается в нахождении верных коэффициентов связи между нейронами, а также в обобщении данных и выявлении сложных зависимостей между входными и выходными сигналами. Фактически, удачное обучение нейросети означает, что система будет способна выявить верный результат на основании данных, отсутствующих в обучающей выборке.

Сегодняшнее положение

И какой бы многообещающей не была бы эта технология, пока что ИНС еще очень далеки от возможностей человеческого мозга и мышления. Тем не менее, уже сейчас нейросети применяются во многих сферах деятельности человека. Пока что они не способны принимать высокоинтеллектуальные решения, но в состоянии заменить человека там, где раньше он был необходим. Среди многочисленных областей применения ИНС можно отметить: создание самообучающихся систем производственных процессов, беспилотные транспортные средства, системы распознавания изображений, интеллектуальные охранные системы, робототехника, системы мониторинга качества, голосовые интерфейсы взаимодействия, системы аналитики и многое другое. Такое широкое распространение нейросетей помимо прочего обусловлено появлением различных способов ускорения обучения ИНС.

На сегодняшний день рынок нейронных сетей огромен - это миллиарды и миллиарды долларов. Как показывает практика, большинство технологий нейросетей по всему миру мало отличаются друг от друга. Однако применение нейросетей - это очень затратное занятие, которое в большинстве случаев могут позволить себе только крупные компании. Для разработки, обучения и тестирования нейронных сетей требуются большие вычислительные мощности, очевидно, что этого в достатке имеется у крупных игроков на рынке ИТ. Среди основных компаний, ведущих разработки в этой области можно отметить подразделение Google DeepMind, подразделение Microsoft Research, компании IBM, Facebook и Baidu.

Конечно, все это хорошо: нейросети развиваются, рынок растет, но пока что главная задача так и не решена. Человечеству не удалось создать технологию, хотя бы приближенную по возможностям к человеческому мозгу. Давайте рассмотрим основные различия между человеческим мозгом и искусственными нейросетями.

Почему нейросети еще далеки до человеческого мозга?

Самым главным отличием, которое в корне меняет принцип и эффективность работы системы - это разная передача сигналов в искусственных нейронных сетях и в биологической сети нейронов. Дело в том, что в ИНС нейроны передают значения, которые являются действительными значениями, то есть числами. В человеческом мозге осуществляется передача импульсов с фиксированной амплитудой, причем эти импульсы практически мгновенные. Отсюда вытекает целый ряд преимуществ человеческой сети нейронов.

Во-первых, линии связи в мозге намного эффективнее и экономичнее, чем в ИНС. Во-вторых, импульсная схема обеспечивает простоту реализации технологии: достаточно использование аналоговых схем вместо сложных вычислительных механизмов. В конечном счете, импульсные сети защищены от звуковых помех. Действенные числа подвержены влиянию шумов, в результате чего повышается вероятность возникновения ошибки.

Итог

Безусловно, в последнее десятилетие произошел настоящий бум развития нейронных сетей. В первую очередь это связано с тем, что процесс обучения ИНС стал намного быстрее и проще. Также стали активно разрабатываться так называемые «предобученные» нейросети, которые позволяют существенно ускорить процесс внедрения технологии. И если пока что рано говорить о том, смогут ли когда-то нейросети полностью воспроизвести возможности человеческого мозга, вероятность того, что в ближайшее десятилетие ИНС смогут заменить человека на четверти существующих профессий все больше становится похожим на правду.

Для тех, кто хочет знать больше

  • Большая нейронная война: что на самом деле затевает Google
  • Как когнитивные компьютеры могут изменить наше будущее
Соответственно, нейронная сеть берет на вход два числа и должна на выходе дать другое число - ответ. Теперь о самих нейронных сетях.

Что такое нейронная сеть?


Нейронная сеть - это последовательность нейронов, соединенных между собой синапсами. Структура нейронной сети пришла в мир программирования прямиком из биологии. Благодаря такой структуре, машина обретает способность анализировать и даже запоминать различную информацию. Нейронные сети также способны не только анализировать входящую информацию, но и воспроизводить ее из своей памяти. Заинтересовавшимся обязательно к просмотру 2 видео из TED Talks: Видео 1 , Видео 2). Другими словами, нейросеть это машинная интерпретация мозга человека, в котором находятся миллионы нейронов передающих информацию в виде электрических импульсов.

Какие бывают нейронные сети?

Пока что мы будем рассматривать примеры на самом базовом типе нейронных сетей - это сеть прямого распространения (далее СПР). Также в последующих статьях я введу больше понятий и расскажу вам о рекуррентных нейронных сетях. СПР как вытекает из названия это сеть с последовательным соединением нейронных слоев, в ней информация всегда идет только в одном направлении.

Для чего нужны нейронные сети?

Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений подобных тем, что делает человеческий мозг. Самыми распространенными применениями нейронных сетей является:

Классификация - распределение данных по параметрам. Например, на вход дается набор людей и нужно решить, кому из них давать кредит, а кому нет. Эту работу может сделать нейронная сеть, анализируя такую информацию как: возраст, платежеспособность, кредитная история и тд.

Предсказание - возможность предсказывать следующий шаг. Например, рост или падение акций, основываясь на ситуации на фондовом рынке.

Распознавание - в настоящее время, самое широкое применение нейронных сетей. Используется в Google, когда вы ищете фото или в камерах телефонов, когда оно определяет положение вашего лица и выделяет его и многое другое.

Теперь, чтобы понять, как же работают нейронные сети, давайте взглянем на ее составляющие и их параметры.

Что такое нейрон?


Нейрон - это вычислительная единица, которая получает информацию, производит над ней простые вычисления и передает ее дальше. Они делятся на три основных типа: входной (синий), скрытый (красный) и выходной (зеленый). Также есть нейрон смещения и контекстный нейрон о которых мы поговорим в следующей статье. В том случае, когда нейросеть состоит из большого количества нейронов, вводят термин слоя. Соответственно, есть входной слой, который получает информацию, n скрытых слоев (обычно их не больше 3), которые ее обрабатывают и выходной слой, который выводит результат. У каждого из нейронов есть 2 основных параметра: входные данные (input data) и выходные данные (output data). В случае входного нейрона: input=output. В остальных, в поле input попадает суммарная информация всех нейронов с предыдущего слоя, после чего, она нормализуется, с помощью функции активации (пока что просто представим ее f(x)) и попадает в поле output.


Важно помнить , что нейроны оперируют числами в диапазоне или [-1,1]. А как же, вы спросите, тогда обрабатывать числа, которые выходят из данного диапазона? На данном этапе, самый простой ответ - это разделить 1 на это число. Этот процесс называется нормализацией, и он очень часто используется в нейронных сетях. Подробнее об этом чуть позже.

Что такое синапс?


Синапс это связь между двумя нейронами. У синапсов есть 1 параметр - вес. Благодаря ему, входная информация изменяется, когда передается от одного нейрона к другому. Допустим, есть 3 нейрона, которые передают информацию следующему. Тогда у нас есть 3 веса, соответствующие каждому из этих нейронов. У того нейрона, у которого вес будет больше, та информация и будет доминирующей в следующем нейроне (пример - смешение цветов). На самом деле, совокупность весов нейронной сети или матрица весов - это своеобразный мозг всей системы. Именно благодаря этим весам, входная информация обрабатывается и превращается в результат.

Важно помнить , что во время инициализации нейронной сети, веса расставляются в случайном порядке.

Как работает нейронная сеть?


В данном примере изображена часть нейронной сети, где буквами I обозначены входные нейроны, буквой H - скрытый нейрон, а буквой w - веса. Из формулы видно, что входная информация - это сумма всех входных данных, умноженных на соответствующие им веса. Тогда дадим на вход 1 и 0. Пусть w1=0.4 и w2 = 0.7 Входные данные нейрона Н1 будут следующими: 1*0.4+0*0.7=0.4. Теперь когда у нас есть входные данные, мы можем получить выходные данные, подставив входное значение в функцию активации (подробнее о ней далее). Теперь, когда у нас есть выходные данные, мы передаем их дальше. И так, мы повторяем для всех слоев, пока не дойдем до выходного нейрона. Запустив такую сеть в первый раз мы увидим, что ответ далек от правильно, потому что сеть не натренирована. Чтобы улучшить результаты мы будем ее тренировать. Но прежде чем узнать как это делать, давайте введем несколько терминов и свойств нейронной сети.

Функция активации

Функция активации - это способ нормализации входных данных (мы уже говорили об этом ранее). То есть, если на входе у вас будет большое число, пропустив его через функцию активации, вы получите выход в нужном вам диапазоне. Функций активации достаточно много поэтому мы рассмотрим самые основные: Линейная, Сигмоид (Логистическая) и Гиперболический тангенс. Главные их отличия - это диапазон значений.

Линейная функция


Эта функция почти никогда не используется, за исключением случаев, когда нужно протестировать нейронную сеть или передать значение без преобразований.

Сигмоид


Это самая распространенная функция активации, ее диапазон значений . Именно на ней показано большинство примеров в сети, также ее иногда называют логистической функцией. Соответственно, если в вашем случае присутствуют отрицательные значения (например, акции могут идти не только вверх, но и вниз), то вам понадобиться функция которая захватывает и отрицательные значения.

Гиперболический тангенс


Имеет смысл использовать гиперболический тангенс, только тогда, когда ваши значения могут быть и отрицательными, и положительными, так как диапазон функции [-1,1]. Использовать эту функцию только с положительными значениями нецелесообразно так как это значительно ухудшит результаты вашей нейросети.

Тренировочный сет

Тренировочный сет - это последовательность данных, которыми оперирует нейронная сеть. В нашем случае исключающего или (xor) у нас всего 4 разных исхода то есть у нас будет 4 тренировочных сета: 0xor0=0, 0xor1=1, 1xor0=1,1xor1=0.

Итерация

Это своеобразный счетчик, который увеличивается каждый раз, когда нейронная сеть проходит один тренировочный сет. Другими словами, это общее количество тренировочных сетов пройденных нейронной сетью.

Эпоха

При инициализации нейронной сети эта величина устанавливается в 0 и имеет потолок, задаваемый вручную. Чем больше эпоха, тем лучше натренирована сеть и соответственно, ее результат. Эпоха увеличивается каждый раз, когда мы проходим весь набор тренировочных сетов, в нашем случае, 4 сетов или 4 итераций.


Важно не путать итерацию с эпохой и понимать последовательность их инкремента. Сначала n
раз увеличивается итерация, а потом уже эпоха и никак не наоборот. Другими словами, нельзя сначала тренировать нейросеть только на одном сете, потом на другом и тд. Нужно тренировать каждый сет один раз за эпоху. Так, вы сможете избежать ошибок в вычислениях.

Ошибка

Ошибка - это процентная величина, отражающая расхождение между ожидаемым и полученным ответами. Ошибка формируется каждую эпоху и должна идти на спад. Если этого не происходит, значит, вы что-то делаете не так. Ошибку можно вычислить разными путями, но мы рассмотрим лишь три основных способа: Mean Squared Error (далее MSE), Root MSE и Arctan. Здесь нет какого-либо ограничения на использование, как в функции активации, и вы вольны выбрать любой метод, который будет приносить вам наилучший результат. Стоит лишь учитывать, что каждый метод считает ошибки по разному. У Arctan, ошибка, почти всегда, будет больше, так как он работает по принципу: чем больше разница, тем больше ошибка. У Root MSE будет наименьшая ошибка, поэтому, чаще всего, используют MSE, которая сохраняет баланс в вычислении ошибки.

Всем привет!

Буквально вчера нашел книгу Тарика Рашида «Создай свою нейросеть». Книга является бестселлером (топ 1 продаж) в разделе «Искусственный интеллект». Книга свежая, вышла в прошлом году.

Впечатления от первых разделов замечательные. Одно из лучших введений в сферу нейросетей из всех мною виденных. Книга мне так понравилась, что я решил перевести ее на русский язык и выкладывать сюда в виде статей. Часть материала из книги пойдет на улучшение уже существующих глав, часть на следующие.

Перевел уже два первых раздела 1 главы. Вы можете этих разделов.

Читайте - наслаждайтесь!

1 Глава. Как они работают.

1.1 Легко для меня, тяжело для тебя

Все компьютеры являются калькуляторами в душе. Они умеют очень быстро считать.

Не стоит их в этом упрекать. Они отлично выполняют свою работу: считают цену с учетом скидки, начисляют долговые проценты, рисуют графики по имеющимся данным и так далее.

Даже просмотр телевизора или прослушивание музыки с помощью компьютера представляют собой выполнение огромного количества арифметических операций снова и снова. Это может прозвучать удивительно, но отрисовка каждого кадра изображения из нулей и единиц, полученных через интернет задействует вычисления, которые не сильно сложнее тех задач, которые мы все решали в школе.

Однако, способность компьютера складывать тысячи и миллионы чисел в секунду вовсе не является искусственным интеллектом. Человеку сложно так быстро складывать числа, но согласитесь, что эта работа не требует серьезных интеллектуальных затрат. Надо придерживаться заранее известного алгоритма по складыванию чисел и ничего более. Именно этим и занимаются все компьютеры - придерживаются четкого алгоритма.

С компьютерами все ясно. Теперь давайте поговорим о том, в чем мы хороши по сравнению с ними.

Посмотрите на картинки ниже и определите, что на них изображено:

Вы видите лица людей на первой картинке, морду кошки на второй и дерево на третьей. Вы распознали объекты на этих картинках. Заметьте, что вам хватило лишь взгляда, чтобы безошибочно понять, что на них изображено. Мы редко ошибаемся в таких вещах.

Мы мгновенно и без особого труда воспринимаем огромное количество информации, которое содержат изображения и очень точно определяем объекты на них. А вот для любого компьютера такая задача встанет поперек горла.

У любого компьютера вне зависимости от его сложности и быстроты нет одного важного качества - интеллекта, которым обладает каждый человек.

Но мы хотим научить компьютеры решать подобные задачи, потому что они быстрые и не устают. Искусственный интеллект как раз занимается решением подобного рода задач.

Конечно компьютеры и дальше будут состоять из микросхем. Задача искусственного интеллекта - найти новые алгоритмы работы компьютера, которые позволят решать интеллектуальные задачи. Эти алгоритмы не всегда идеальны, но они решают поставленные задачи и создают впечатление, что компьютер ведет себя как человек.

Ключевые моменты

  • Есть задачи легкие для обычных компьютеров, но вызывающие трудности и людей. Например, умножение миллиона чисел друг на друга.
  • С другой стороны, существуют не менее важные задачи, которые невероятно сложны для компьютера и не вызывают проблем у людей. Например, распознавание лиц на фотографиях.

1.2 Простая предсказательная машина

Давайте начнем с чего-нибудь очень простого. Дальше мы будет отталкиваться от материала, изученного в этом разделе.

Представьте себе машину, которая получает вопрос, «обдумывает» его и затем выдает ответ. В примере выше вы получали картинку на вход, анализировали ее с помощью мозгов и делали вывод об объекте, который на ней изображен. Выглядит это как-то так:

Компьютеры на самом деле ничего не «обдумывают». Они просто применяют заранее известные арифметические операции. Поэтому давайте будем называть вещи своими именами:

Компьютер принимает какие-то данные на вход, производит необходимые вычисления и выдает готовый результат. Рассмотрим следующий пример. Если на вход компьютеру поступает выражение ​\(3 \times 4 \) ​, то оно преобразуется в более простую последовательность сложений. Как итог, получаем результат - 12.

Выглядит не слишком впечатляюще. Это нормально. С помощью этих тривиальных примеров вы увидите идею, которую реализуют нейросети.

Теперь представьте себе машину, которая преобразует километры в мили:

Теперь представьте, что мы не знаем формулу, с помощью которой километры переводятся в мили. Мы знаем только, что зависимость между двумя этими величинами линейная . Это означает, что если мы в два раза увеличим дистанцию в милях, то дистанция в километрах тоже увеличится в два раза. Это интуитивно понятно. Вселенная была бы очень странной, если бы это правило не выполнялось.

Линейная зависимость между километрами и милями дает нам подсказку, в какой форме надо преобразовывать одну величину в другую. Мы можем представить эту зависимость так:

\[ \text{мили} = \text{километры} \times C \]

В выражении выше ​\(C \) ​ выступает в роли некоторого постоянного числа - константы. Пока мы не знаем, чему равно ​\(C \) ​.

Единственное, что нам известно - несколько заранее верно отмеренных расстояний в километрах и милях.

И как же узнать значение ​\(C \) ​? А давайте просто придумаем случайное число и скажем, что ему-то и равна наша константа. Пусть ​\(C = 0.5 \) ​. Что же произойдет?

Принимая, что ​\(C = 0.5 \) ​ мы из 100 километров получаем 50 миль. Это отличный результат принимая во внимания тот факт, что ​\(C = 0.5 \) ​ мы выбрали совершенно случайно! Но мы знаем, что наш ответ не совсем верен, потому что согласно таблице верных замеров мы должны были получить 62.137 мили.

Мы промахнулись на 12.137 миль. Это наша погрешность - разница между полученным ответом и заранее известным правильным результатом, который в данном случае мы имеем в таблице.

\[ \begin{gather*} \text{погрешность} = \text{правильное значение} — \text{полученный ответ} \\ = 62.137 — 50 \\ = 12.137 \end{gather*} \]

Вновь смотрим на погрешность. Полученное расстояние короче на 12.137. Так как формула по переводу километров в мили линейная (​\(\text{мили} = \text{километры} \times C \) ​), то увеличение значения ​\(C \) ​ увеличит и выходной результат в милях.

Давайте теперь примем, что ​\(C = 0.6 \) ​ и посмотрим, что произойдет.

Так как ​\(C=0.6 \) ​, то для 100 километров имеем ​\(100 \times 0.6 = 60 \) ​ миль. Это гораздо лучше предыдущей попытки (в тот раз было 50 миль)! Теперь наша погрешность очень мала - всего 2.137 мили. Вполне себе точный результат.

Теперь обратите внимание на то, как мы использовали полученную погрешность для корректировки значения константы ​\(C \) ​. Нам нужно было увеличить выходное число миль и мы немного увеличили значение ​\(C \) ​. Заметьте, что мы не используем алгебру для получения точного значения ​\(C \) ​, а ведь мы могли бы. Почему? Потому что на свете полно задач, которые не имеют простой математической связи между полученным входом и выдаваемым результатом.

Именно для задач, которые практически не решаются простым подсчетом нам и нужны такие изощренные штуки, как нейронные сети.

Боже мой! Мы хватанули слишком много и превысили правильный результат. Наша предыдущая погрешность равнялась 2.137, а теперь она равна -7.863. Минус означает, что наш результат оказался больше правильного ответа, так как погрешность вычисляется как правильный ответ — (минус) полученный ответ.

Получается, что при ​\(C=0.6 \) ​ мы имеем гораздо более точный выход. На этом можно было бы и закончить. Но давайте все же увеличим ​\(C \) ​, но не сильно! Пусть ​\(C=0.61 \) ​.

Так-то лучше! Наша машина выдает 61 милю, что всего на 1.137 милю меньше, чем правильный ответ (62.137).

Из этой ситуации с превышением правильного ответа надо вынести важный урок. По мере приближения к правильному ответу параметры машины стоит менять все слабее и слабее. Это поможет избежать неприятных ситуаций, которые приводят к превышению правильного ответа.

Величина нашей корректировки ​\(C \) ​ зависит от погрешности. Чем больше наша погрешность, тем более сильно мы меняем значение ​\(C \) ​. Но когда погрешность становиться маленькой, необходимо менять ​\(C \) ​ по чуть-чуть. Логично, не так ли?

Верьте или нет, но только что вы поняли самую суть работы нейронных сетей. Мы тренируем «машины» постепенно выдавать все более и более точный результат.

Важно понимать и то, как мы решали эту задачу. Мы не решали ее в один заход, хотя в данном случае так можно было бы поступить. Вместо этого, мы приходили к правильному ответу по шагам так, что с каждым шагом наши результаты становились лучше.

Не правда ли объяснения очень простые и понятные? Лично я не встречал более лаконичного способа объяснить, что такое нейросети.

Если вам что-то непонятно, задавайте вопросы на форуме.

Мне важно ваше мнение - оставляйте комментарии 🙂

Похожие статьи