Интегральная схема

07.09.2019

В ранних электрических компьютерах компонентами схемы, выполнявшими операции, были вакуумные трубки. Эти трубки, напоминавшие электрические лампочки, потребляли много электроэнергии и вьщеляли много тепла. Все изменилось в 1947 году с изобретением транзистора. В этом маленьком устройстве использовался полупроводниковый материал, названный так за способность как проводить, так и задерживать электрический ток, в зависимости от того, есть ли электрический ток в самом полупроводнике. Эта новая технология позволила строить все виды электрических переключателей на кремниевых микросхемах. Схемы на транзисторах занимали меньше места и потребляли меньше энергии. Для более мощных компьютеров были созданы интегральные схемы, или ИС.

В наше время транзисторы стали микроскопически малы, и вся цепь ИС помещается на кусочке полупроводника площадью 1 дюйм квадратный. Маленькие блоки, рядами смонтированные на печатной плате компьютера, и есть интегральные схемы, заключенные в пластиковые корпуса. Каждая микросхема содержит набор простейших элементов схемы, или устройств. Большую их часть занимают транзисторы. ИС может также включать диоды, которые позволяют электрическому току идти только в одном направлении, и резисторы, которые блокируют ток.
Неподвижные части. Во внутренних отделах компьютера ряды интегральных схем в защитных корпусах, как показано внизу, смонтированы на печатной плате компьютера (зеленый цвет). Каждая бледно-зеленая линия обозначает дорожку, по которой идет электрический ток; все вместе они образуют «магистрали», по которым от схемы к схеме проводится электрический ток.

Крошечные связные. По краю микросхемы сильно намагниченные проводки, напоминающие человеческие волоски, посылают электрические сигналы от электрической цепи (им. сверху). Эти золотые или алюминиевые проводки практически не подвержены коррозии и хорошо проводят электричество.

Анатомия транзистора
Транзисторы - основные микроскопические элементы электронной схемы - это переключатели, которые включают и выключают электрический ток. Маленькие металлические дорожки (серый цвет) проводят ток (красный и зеленый цвета) из этих устройств. Организованные в комбинацию, называемую логическими «воротами» (логической схемой), транзисторы реагируют на электрические импульсы разнообразными предустановленными способами, позволяя компьютеру выполнять широкий спектр задач.

Логическая схема. В случае если поступающий электрический ток (красные стрелки) активизирует базу каждого транзистора, питающий ток (зеленые стрелки) устремится к проводку вывода.

Содержание статьи

ИНТЕГРАЛЬНАЯ СХЕМА (ИС), микроэлектронная схема, сформированная на крошечной пластинке (кристаллике, или «чипе») полупроводникового материала, обычно кремния, которая используется для управления электрическим током и его усиления. Типичная ИС состоит из множества соединенных между собой микроэлектронных компонентов, таких, как транзисторы, резисторы, конденсаторы и диоды, изготовленные в поверхностном слое кристалла. Размеры кремниевых кристаллов лежат в пределах от примерно 1,3ґ1,3 мм до 13ґ13 мм. Прогресс в области интегральных схем привел к разработке технологий больших и сверхбольших интегральных схем (БИС и СБИС). Эти технологии позволяют получать ИС, каждая из которых содержит многие тысячи схем: в одном чипе может насчитываться более 1 млн. компонентов.

Интегральные схемы обладают целым рядом преимуществ перед своими предшественниками – схемами, которые собирались из отдельных компонентов, монтируемых на шасси. ИС имеют меньшие размеры, более высокие быстродействие и надежность; они, кроме того, дешевле и в меньшей степени подвержены отказам, вызываемым воздействиями вибраций, влаги и старения.

Миниатюризация электронных схем оказалась возможной благодаря особым свойствам полупроводников. Полупроводник – это материал, обладающий гораздо большей электропроводностью (проводимостью), чем такой диэлектрик, как стекло, но существенно меньшей, чем проводники, например, медь. В кристаллической решетке такого полупроводникового материала, как кремний, при комнатной температуре имеется слишком мало свободных электронов, чтобы обеспечить значительную проводимость. Поэтому чистые полупроводники обладают низкой проводимостью. Однако введение в кремний соответствующей примеси увеличивает его электрическую проводимость.

Легирующие примеси вводят в кремний двумя методами. Для сильного легирования или в тех случаях, когда точное регулирование количества вводимой примеси необязательно, обычно пользуются методом диффузии. Диффузию фосфора или бора выполняют, как правило, в атмосфере легирующей примеси при температурах между 1000 и 1150° С в течение от получаса до нескольких часов. При ионной имплантации кремний бомбардируют высокоскоростными ионами легирующей примеси. Количество имплантируемой примеси можно регулировать с точностью до нескольких процентов; точность в ряде случаев важна, поскольку коэффициент усиления транзистора зависит от числа примесных атомов, имплантированных на 1 см 2 базы (см. ниже ).

Производство.

Изготовление интегральной схемы может занимать до двух месяцев, поскольку некоторые области полупроводника нужно легировать с высокой точностью. В ходе процесса, называемого выращиванием, или вытягиванием, кристалла, сначала получают цилиндрическую заготовку кремния высокой чистоты. Из этого цилиндра нарезают пластины толщиной, например, 0,5 мм. Пластину в конечном счете режут на сотни маленьких кусочков, называемых чипами, каждый из которых в результате проведения описываемого ниже технологического процесса превращается в интегральную схему.

Процесс обработки чипов начинается с изготовления масок каждого слоя ИС. Выполняется крупномасштабный трафарет, имеющий форму квадрата площадью ок. 0,1 м 2 . На комплекте таких масок содержатся все составляющие части ИС: уровни диффузии, уровни межсоединений и т.п. Вся полученная структура фотографически уменьшается до размера кристаллика и воспроизводится послойно на стеклянной пластине. На поверхности кремниевой пластины выращивается тонкий слой двуокиси кремния. Каждая пластина покрывается светочувствительным материалом (фоторезистом) и экспонируется светом, пропускаемым через маски. Неэкспонированные участки светочувствительного покрытия удаляют растворителем, а с помощью другого химического реагента, растворяющего двуокись кремния, последний вытравливается с тех участков, где он теперь не защищен светочувствительным покрытием. Варианты этого базового технологического процесса используются в изготовлении двух основных типов транзисторных структур: биполярных и полевых (МОП).

Биполярный транзистор.

Такой транзистор имеет структуру типа n-p-n или, намного реже, типа p-n-p . Обычно технологический процесс начинается с пластины (подложки) сильно легированного материала p -типа. На поверхности этой пластины эпитаксиально выращивается тонкий слой слабо легированного кремния n -типа; таким образом, выращенный слой имеет ту же самую кристаллическую структуру, что и подложка. Этот слой должен содержать активную часть транзистора – в нем будут сформированы индивидуальные коллекторы. Пластина сначала помещается в печь с парами бора. Диффузия бора в кремниевую пластину происходит только там, где ее поверхность подверглась обработке травлением. В результате формируются области и окна из материала n -типа. Второй высокотемпературный процесс, в котором используются пары фосфора и другая маска, служит для формирования контакта с коллекторным слоем. Проведением последовательных диффузий бора и фосфора формируются соответственно база и эмиттер. Толщина базы обычно составляет несколько микрон. Эти крошечные островки проводимостей n - и p -типа соединяются в общую схему посредством межсоединений, выполненных из алюминия, осаждаемого из паровой фазы или наносимого напылением в вакууме. Иногда для этих целей используются такие благородные металлы, как платина и золото. Транзисторы и другие схемные элементы, например резисторы, конденсаторы и индуктивности, вместе с соответствующими межсоединениями могут формироваться в пластине методами диффузии в ходе последовательности операций, создавая в итоге законченную электронную схему.

МОП-транзистор.

Наибольшее распространение получила МОП (металл-окисел-полупроводник) – структура, состоящая из двух близко расположенных областей кремния n -типа, реализованных на подложке p -типа. На поверхности кремния наращивается слой его двуокиси, а поверх этого слоя (между областями n -типа и слегка захватывая их) формируется локализованный слой металла, выполняющий роль затвора. Две упомянутые выше области n -типа, называемые истоком и стоком, служат соединительными элементами для входа и выхода соответственно. Через окна, предусмотренные в двуокиси кремния, выполняются металлические соединения с истоком и стоком. Узкий поверхностный канал из материала n -типа соединяет исток и сток; в других случаях канал может быть индуцированным – создаваемым под действием напряжения, приложенного к затвору. Когда на затвор транзистора с индуцированным каналом подается положительное напряжение, расположенный под затвором слой p -типа превращается в слой n -типа, и ток, управляемый и модулируемый сигналом, поступающим на затвор, течет от истока к стоку. МОП-транзистор потребляет очень небольшую мощность; он имеет высокое входное сопротивление, отличается низким током цепи стока и очень низким уровнем шумов. Поскольку затвор, оксид и кремний образуют конденсатор, такое устройство широко используется в системах компьютерной памяти (см. ниже ). В комплементарных, или КМОП-схемах, МОП-структуры применяются в качестве нагрузок и не потребляют мощности, когда основной МОП-транзистор находится в неактивном состоянии.

После завершения обработки пластины разрезают на части. Операция резки выполняется дисковой пилой с алмазными кромками. Каждый кристаллик (чип, или ИС) заключается затем в корпус одного из нескольких типов. Для подсоединения компонентов ИС к рамке выводов корпуса используется золотая проволока толщиной 25 мкм. Более толстые выводы рамки позволяют подсоединить ИС к электронному устройству, в котором она будет работать.

Надежность.

Надежность интегральной схемы примерно такая же, как у отдельного кремниевого транзистора, эквивалентного по форме и размеру. Теоретически транзисторы могут безотказно служить тысячи лет – один из важнейших факторов для таких областей применения, как ракетная и космическая техника, где единственный отказ может означать полный провал осуществляемого проекта.

Микропроцессоры и миникомпьютеры.

Впервые представленные публично в 1971 микропроцессоры выполняли большинство основных функций компьютера на единственной кремниевой ИС, реализованной на кристалле размером 5ґ5 мм. Благодаря интегральным схемам стало возможным создание миникомпьютеров – малых ЭВМ, где все функции выполняются на одной или нескольких больших интегральных схемах. Такая впечатляющая миниатюризация привела к резкому снижению стоимости вычислений. Выпускаемые в настоящее время мини-ЭВМ ценой менее 1000 долл. по своей производительности не уступают первым очень большим вычислительным машинам, стоимость которых в начале 1960-х годов доходила до 20 млн. долл. Микропроцессоры находят применение в оборудовании для связи, карманных калькуляторах, наручных часах, селекторах телевизионных каналов, электронных играх, автоматизированном кухонном и банковском оборудовании, средствах автоматического регулирования подачи топлива и нейтрализации отработавших газов в легковых автомобилях, а также во многих других устройствах. Большая часть мировой электронной индустрии, оборот которой превышает 15 млрд. долл., так или иначе зависит от интегральных схем. В масштабах всего мира интегральные схемы находят применение в оборудовании, суммарная стоимость которого составляет многие десятки миллиардов долларов.

Компьютерные запоминающие устройства.

В электронике термин «память» обычно относится к какому-либо устройству, предназначенному для хранения информации в цифровой форме. Среди множества типов запоминающих устройств (ЗУ) рассмотрим ЗУ с произвольной выборкой (ЗУПВ), приборы с зарядовой связью (ПЗС) и постоянные ЗУ (ПЗУ).

У ЗУПВ время доступа к любой ячейке памяти, находящейся на кристалле, одинаково. Такие устройства могут запоминать 65 536 бит (двоичных единиц, обычно 0 и 1), по одному биту на ячейку, и представляют собой широко используемый тип электронной памяти; на каждом чипе у них насчитывается ок. 150 тыс. компонентов. Выпускаются ЗУПВ емкостью 256 Кбит (К = 2 10 = 1024; 256 К = 262 144). В устройствах памяти с последовательной выборкой циркуляция запомненных битов происходит как бы по замкнутому конвейеру (в ПЗС используется именно такой тип выборки). В ПЗС, представляющем собой ИС специальной конфигурации, пакеты электрических зарядов могут размещаться под расположенными на малых расстояниях друг от друга крошечными металлическими пластинками, электрически изолированными от чипа. Заряд (или его отсутствие) может, таким образом, перемещаться по полупроводниковому устройству от одной ячейки к другой. В результате появляется возможность запоминания информации в виде последовательности единиц и нулей (двоичного кода), а также доступа к ней, когда это требуется. Хотя ПЗС не могут конкурировать с ЗУПВ по быстродействию, они способны обрабатывать большие объемы информации при меньших затратах, и их используют там, где память с произвольной выборкой не требуется. ЗУПВ, выполненное на такой ИС, является энергозависимым, и записанная в нем информация теряется при отключении питания. В ПЗУ информация заносится в ходе производственного процесса и хранится постоянно.

Разработки и выпуск ИС новых типов не прекращаются. В стираемых программируемых ПЗУ (СППЗУ) имеются два затвора, расположенные один над другим. При подаче напряжения на верхний затвор нижний может приобрести заряд, что соответствует 1 двоичного кода, а при переключении (реверсе) напряжения затвор может потерять свой заряд, что соответствует 0 двоичного кода.

ИНТЕГРАЛЬНАЯ CXEMA (ИС, интегральная микросхема, микросхема), функционально законченное микроэлектронное изделие, представляющее собой совокупность электрически связанных между собой элементов (транзисторов и др.), сформированных в полупроводниковой монокристаллической пластине. ИС являются элементной базой всех современных радиоэлектронных устройств, устройств вычислительной техники, информационных и телекоммуникационных систем.

Историческая справка. ИС изобретена в 1958 Дж. Килби (Нобелевская премия, 2000), который, не разделяя германиевую монокристаллическую пластину на отдельные сформированные в ней транзисторы, соединил их между собой тончайшими проволоками, так что полученное устройство стало законченной радиоэлектронной схемой. Спустя полгода американский физик Р. Нойс реализовал так называемую планарную кремниевую ИС, в которой при каждой области биполярных транзисторов (эмиттере, базе и коллекторе) на поверхности кремниевой пластины создавались металлизированные участки (так называемые контактные площадки), а соединения между ними осуществлялись тонкоплёночными проводниками. В 1959 году в США начался промышленный выпуск кремниевых ИС; массовое производство ИС в СССР организовано в середине 1960-х годов в г. Зеленоград под руководством К. А. Валиева.

Технология ИС. Структура полупроводниковой ИС показана на рисунке. Транзисторы и другие элементы формируются в очень тонком (до нескольких мкм) приповерхностном слое кремниевой пластины; сверху создаётся многоуровневая система межэлементных соединений. С увеличением числа элементов ИС количество уровней растёт и может достигать 10 и более. Межэлементные соединения должны обладать низким электрическим сопротивлением. Этому требованию удовлетворяет, например, медь. Между слоями проводников размещаются изолирующие (диэлектрические) слои (SiO 2 и др.). На одной ПП пластине одновременно формируется до нескольких сотен ИС, после чего пластину разделяют на отдельные кристаллы (чипы).

Технологический цикл изготовления ИС включает несколько сотен операций, важнейшей из которых является фотолитография (ФЛ). Транзистор содержит десятки деталей, контуры которых формируются в результате ФЛ, определяющей также конфигурацию межсоединений в каждом слое и положение проводящих областей (контактов) между слоями. В технологическом цикле ФЛ повторяется несколько десятков раз. За каждой операцией ФЛ следуют операции изготовления деталей транзисторов, например осаждение диэлектрической, ПП и металлической тонких плёнок, травление, легирование методом имплантации ионов в кремний и др. Фотолитография определяет минимальный размер (МР) отдельных деталей. Главным инструментом ФЛ являются оптические проекционные степперы-сканеры, с помощью которых выполняется пошаговое (от чипа к чипу) экспонирование изображения (освещение чипа, на поверхность которого нанесён фоточувствительный слой - фоторезист, через маску, называемую фотошаблоном) с уменьшением (4:1) размеров изображения по отношению к размерам маски и со сканированием светового пятна в пределах одного чипа. МР прямо пропорционален длине волны источника излучения. Первоначально в установках ФЛ использовались g- и i-линии (436 и 365 нм соответственно) спектра излучения ртутной лампы. На смену ртутной лампе пришли эксимерные лазеры на молекулах KrF (248 нм) и ArF (193 нм). Совершенствование оптической системы, применение фоторезистов с высокими контрастом и чувствительностью, а также специальной техники высокого разрешения при проектировании фотошаблонов и степперов-сканеров с источником света длиной волны 193 нм позволяют достичь МР, равных 30 нм и менее, на больших чипах (площадью 1-4 см 2) с производительностью до 100 пластин (диаметром 300 мм) в час. Продвижение в область меньших (30-10 нм) МР возможно при использовании мягкого рентгеновского излучения или экстремального ультрафиолета (ЭУФ) с длиной волны 13,5 нм. Из-за интенсивного поглощения излучения материалами на этой длине волны не может быть применена преломляющая оптика. Поэтому в ЭУФ-степперах используют отражающую оптику на рентгеновских зеркалах. Шаблоны также должны быть отражающими. ЭУФ-литография является аналогом проекционной оптической, не требует создания новой инфраструктуры и обеспечивает высокую производительность. Таким образом, технология ИС к 2000 преодолела рубеж 100 нм (МР) и стала нанотехнологией.

Структура интегральной схемы: 1- пассивирующий (защитный) слой; 2 - верхний слой проводника; 3 - слой диэлектрика; 4 - межуровневые соединения; 5 - контактная площадка; 6 - МОП-транзисторы; 7 - кремниевая пластина (подложка).

Направления развития. ИС разделяют на цифровые и аналоговые. Основную долю цифровых (логических) микросхем составляют ИС процессоров и ИС памяти, которые могут объединяться на одном кристалле (чипе), образуя «систему-на-кристалле». Сложность ИС характеризуется степенью интеграции, определяемой числом транзисторов на чипе. До 1970 степень интеграции цифровых ИС увеличивалась вдвое каждые 12 месяцев. Эта закономерность (на неё впервые обратил внимание американский учёный Г. Мур в 1965) получила название закона Мура. Позднее Мур уточнил свой закон: удвоение сложности схем памяти происходит через каждые 18 месяцев, а процессорных схем - через 24 месяца. По мере увеличения степени интеграции ИС вводились новые термины: большая ИС (БИС, с числом транзисторов до 10 тысяч), сверх-большая (СБИС - до 1 миллиона), ультрабольшая ИС (УБИС - до 1 миллиарда) и гигантская БИС (ГБИС - более 1 миллиарда).

Различают цифровые ИС на биполярных (Би) и на МОП (металл - оксид - полупроводник) транзисторах, в том числе в конфигурации КМОП (комплементарные МОП, т. е. взаимодополняющие р-МОП и w-МОП транзисторы, включённые последовательно в цепи «источник питания - точка с нулевым потенциалом»), а также БиКМОП (на биполярных транзисторах и КМОП-транзисторах в одном чипе).

Увеличение степени интеграции достигается уменьшением размеров транзисторов и увеличением размеров чипа; при этом уменьшается время переключения логического элемента. По мере уменьшения размеров уменьшались потребляемая мощность и энергия (произведение мощности на время переключения), затраченная на каждую операцию переключения. К 2005 году быстродействие ИС улучшилось на 4 порядка и достигло долей наносекунды; число транзисторов на одном чипе составило до 100 миллионов штук.

Основную долю (до 90%) в мировом производстве с 1980 составляют цифровые КМОП ИС. Преимущество таких схем заключается в том, что в любом из двух статических состояний («0» или «1») один из транзисторов закрыт, и ток в цепи определяется током транзистора в выключенном состоянии I BЫKЛ. Это означает, что, если I BЫKЛ пренебрежимо мал, ток от источника питания потребляется только в режиме переключения, а потребляемая мощность пропорциональна частоте переключения и может быть оценена соотношением Ρ Σ ≈C Σ ·Ν·f·U 2 , где C Σ - суммарная ёмкость нагрузки на выходе логического элемента, N - число логических элементов на чипе, f - частота переключения, U - напряжение питания. Практически вся потребляемая мощность выделяется в виде джоулева тепла, которое должно быть отведено от кристалла. При этом к мощности, потребляемой в режиме переключения, добавляется мощность, потребляемая в статическом режиме (определяется токами I BЫKЛ и токами утечки). С уменьшением размеров транзисторов статическая мощность может стать сравнимой с динамической и достигать по порядку величины 1 кВт на 1 см 2 кристалла. Проблема большого энерговыделения вынуждает ограничивать максимальную частоту переключений высокопроизводительных КМОП ИС диапазоном 1-10 ГГц. Поэтому для увеличения производительности «систем-на-кристалле» используют дополнительно архитектурные (так называемые многоядерные процессоры) и алгоритмические методы.

При длинах канала МОП-транзисторов порядка 10 нм на характеристики транзистора начинают влиять квантовые эффекты, такие как продольное квантование (электрон распространяется в канале как волна де Бройля) и поперечное квантование (в силу узости канала), прямое туннелирование электронов через канал. Последний эффект ограничивает возможности применения КМОП-элементов в ИС, так как вносит большой вклад в суммарный ток утечки. Это становится существенным при длине канала 5 нм. На смену КМОП ИС придут квантовые приборы, молекулярные электронные приборы и др.

Аналоговые ИС составляют широкий класс схем, выполняющих функции усилителей, генераторов, аттенюаторов, цифроаналоговых и аналого-цифровых преобразователей, компараторов, фазовращателей и т.д., в том числе низкочастотные (НЧ), высокочастотные (ВЧ) и сверхвысокочастотные (СВЧ) ИС. СВЧ ИС - схемы относительно небольшой степени интеграции, которые могут включать не только транзисторы, но и плёночные катушки индуктивности, конденсаторы, резисторы. Для создания СВЧ ИС используется не только ставшая традиционной кремниевая технология, но и технология гетеропереходных ИС на твёрдых растворах Si - Ge, соединениях A III B V (например, арсениде и нитриде галлия, фосфиде индия) и др. Это позволяет достичь рабочих частот 10-20 ГГц для Si - Ge и 10-50 ГГц и выше для СВЧ ИС на соединениях A III B V . Аналоговые ИС часто используют вместе с сенсорными и микромеханическими устройствами, биочипами и др., которые обеспечивают взаимодействие микроэлектронных устройств с человеком и окружающей средой, и могут быть заключены с ними в один корпус. Такие конструкции называются многокристальными или «системами-в-корпусе».

В будущем развитие ИС приведёт к слиянию двух направлений и созданию микроэлектронных устройств большой сложности, содержащих мощные вычислительные устройства, системы контроля окружающей среды и средства общения с человеком.

Лит. смотри при ст. Микроэлектроника.

А. А. Орликовский.

Чтобы работала любая мало-мальски сложная электроника, обычно необходимо много деталей. Когда их много, то они могут «объединяться», скажем, в интегральные схемы. Что они собой являют? Как классифицируются? Каким образом изготавливаются, и какие сигналы передают?

Чем являются логические интегральные схемы (ИС)

По сути, это микроэлектронное устройство, которое базируется на кристалле произвольной сложности, что изготовлено на полупроводниковой плёнке или пластине. Оно помещается в неразборный корпус (хотя может обойтись и без него, но только когда он является частью микросборки). Первая интегральная схема была запатентована в 1968 году. Это стало своеобразным прорывом в промышленности, хотя предоставленное устройство и не очень сильно соответствовало современным представлениям по своим параметрам. Интегральные схемы в массе своей изготавливаются для поверхностного монтажа. Часто под ИС понимают один только кристалл или плёнку. Наибольшее распространение получила интегральная схема на пластине кремния. Так вышло, что его применение в промышленности имеет ряд преимуществ, например, эффективность передачи сигналов.

Уровни проектирования

Данные устройства являются сложными, что прекрасно отображается. Сейчас они создаются при помощи специальных САПР, которые автоматизируют и значительно ускоряют производственные процессы. Итак, при проектировании прорабатывается:

  1. Логический уровень (инверторы, И-НЕ, ИЛИ-НЕ и им подобные).
  2. Системо- и схемотехнический (прорабатываются триггеры, шифраторы, АЛУ, компараторы и прочее);.
  3. Электрический (конденсаторы, транзисторы, резисторы и им подобные устройства).
  4. Топологический уровень - фотошаблоны для производства.
  5. Физический - как реализовывается один транзистор (или небольшая группа) на кристалле.
  6. Программный - создаются инструкции для микроконтроллеров, микропроцессоров и ПЛИС. Разрабатывается модель поведения с помощью вертикальной схемы.

Классификация

Говоря о том, как различают интегральные схемы, нельзя избрать только один параметр вида сложности техники, о которой ведётся речь. Поэтому в рамках статьи было отобрано целых три.

Степень интеграции

  1. Малая интегральная схема. Содержит меньше ста элементов.
  2. Средняя интегральная схема. Количество элементов колеблется в диапазоне сотня/тысяча.
  3. Большая интегральная схема. Содержит от тысячи до 10 000 элементов.
  4. В них есть свыше десяти тысяч элементов.

Как правило, для бытовых устройств часто используется большая интегральная схема. Ранее использовались и другие категории:

  1. Ультрабольшая интегральная схема. В неё зачисляли те образцы, которые могли похвастаться количеством элементов в диапазоне от 1 млн. до 1 млрд.
  2. Гигабольшая интегральная схема. Сюда относили образцы, количество элементов которых превышало 1 млрд. элементов.

Но в данный момент времени они не применяются. А все образцы, которые раньше относили к УБИС и ГБИС, сейчас проходят как СБИС. В целом, это позволило значительным образом сэкономить на количестве групп, поскольку две последних типа обычно используются специфически в больших научно-исследовательских центрах, где работают компьютерные системы, мощность которых измеряется в десятках и сотнях терабайт.

Технология изготовления

Ввиду различных возможностей производства интегральные схемы также классифицируются по тому, как они изготавливаются и из чего:

1. Полупроводниковые. В них все элементы и соединения выполняются на одном и том же полупроводниковом кристалле. Полупроводниковые интегральные схемы используют такие материалы, как кремний, германий, арсенид галлия и оксид гафния.

2. Пленочные. Все элементы и соединения сделаны как плёнки:

Толстоплёночные.

Тонкоплёночные.

3. Гибридная. Имеет бескорпусные диоды, транзисторы или иные электронные активные компоненты. Пассивные (как то резисторы, катушки индуктивности, конденсаторы) размещены на общей керамической подложке. Все они помещаются в один герметизированный корпус.

4. Смешанная. Здесь есть не только полупроводниковый кристалл, но и тонкоплёночные (или толстоплёночные) пассивные элементы, которые размещаются на его поверхности.

Вид обрабатываемого сигнала

И третий, самый последний вид, основывается на том, какие сигналы обрабатывает интегральная схема. Они бывают:

  1. Аналоговые. Здесь входные и выходные сигналы меняются согласно закону Они могут принимать значение в диапазоне от отрицательного до положительного напряжения питания.
  2. Цифровые. Здесь любой входной или выходной сигнал может иметь два значения: логической единицы или нуля. Каждому из них соответствует свой заранее определённый уровень напряжения. Так, микросхемы типа ТТЛ диапазон 0-0,4В оценивают в ноль, а 2,4-5В в единицу. Могут быть и другие разделения, всё зависит от конкретного образца.
  3. Аналогово-цифровые. Совмещают в себе преимущества и особенности предыдущих образцов. К примеру, в них могут быть усилители сигналов и аналого-цифровые преобразователи.

Правовые особенности

Что говорится про интегральные схемы в законодательстве? У нас в стране предоставлена правовая охрана топологий интегральных микросхем. Под ней подразумевают зафиксированное на определённом материальном носителе геометрически-пространственного расположения определённой совокупности конкретных элементов и связей меж ними (согласно статье 1448 Гражданского кодекса Российской Федерации). Автор топологии имеет такие интеллектуальные права на своё изобретение:

  1. Авторские.
  2. Исключительное право.

Кроме этого автору топологии могут принадлежать и другие преференции, в том числе - возможность получения вознаграждения за её использование. действует на протяжении десяти лет. За это время изобретатель, или человек, которому этот статус был уступлен, может зарегистрировать топологию в соответствующей службе интеллектуальной собственности и патентов.

Заключение

Вот и всё! Если у вас возникло желание собрать свою схему - можно только пожелать успеха. Но одновременно хочется обратить ваше внимание на одну особенность. Если есть желание собрать микросхему, то необходимо основательно подготовиться к этому процессу. Дело в том, что для её создания требуется исключительная чистота на уровне хирургической операционной, к тому же, из-за мелкости деталей поработать паяльником в обычном режиме не получится - все действия осуществляются машинами. Поэтому в домашних условиях можно создавать только схемы. При желании можно приобрести промышленные разработки, которые будут предлагаться на рынке, но идею с их изготовлением дома без значительных финансов лучше оставить.

Интегральная схема (микросхема) – миниатюрное электронное устройство, состоящее из большого количества радиоэлектронных элементов, конструктивно и электрически связанных между собой. Обычно интегральная схема создается для выполнения конкретной функции. По сути, микросхема объединяет в себе какую-то электронную схему, где все элементы (транзисторы , диоды , резисторы, конденсаторы) и электрические связи между ними конструктивно выполнены на одном кристалле. Поскольку размеры отдельных компонентов очень малы (микро- и нанометры), то на одном кристалле при современном развитии технологий, можно поместить более миллиона электронных компонентов.

У понятия интегральная схема есть несколько синонимов: микросхема, микрочип, чип. Несмотря на некоторую особенность определения этих терминов и разницу между ними, в обиходе все они применяются для обозначения интегральной схемы. В современных электронных устройствах самых различных сфер применения, начиная от бытовых приборов и заканчивая сложными медицинскими и научными электроприборами, сложно найти прибор, в котором бы не применялись интегральные схемы. Иногда одна микросхема выполняет практически все функции в электронном приборе.

Интегральные схемы делятся на группы по нескольким критериям. По степени интеграции – количеству элементов, размещенных на кристалле. По типу обрабатываемого сигнала: цифровые, аналоговые и аналого-цифровые. По технологии их производства и используемых материалов – полупроводниковые, пленочные и т.д.

На сегодняшний день уровень развития технологий при производстве интегральных схем находится на очень высоком уровне. Повышения степени интеграции, улучшение параметров интегральных схем тормозится не технологическими ограничениями, а процессами, происходящими на молекулярном уровне в используемых для производства материалах (обычно полупроводниках). Поэтому исследования производителей и разработчиков микрочипов ведутся в направлении поиска новых материалов, которые смогли бы заменить

Похожие статьи