Эра трансформеров: «цифровые близнецы» уже рядом. Цифровой двойник Новые подходы к работе

21.06.2020

Есть способ лучше. Выявление путей повышения эффективности процессов конструкторско-технологического проектирования

Аарон Френкель, Ян Ларссен

Производство изделия — несомненно, наиболее важная часть из всех процессов жизненного цикла. На этом этапе идеи превращаются в реальность. Более того, без скоординированных процессов проектирования и изготовления, гарантирующих успешную сборку изделия в цехе, идеи так и останутся всего лишь красивыми чертежами либо не будут реализованы в полной мере. Многие годы способы конструирования и разработки технологических процессов оставались неизменными, сохраняя все традиционные недостатки, приводящие к росту себестоимости и сроков. Учитывая, что сегодня инновации стали жизненно необходимыми для выживания машиностроительных предприятий, компания Siemens PLM Software про-анализировала процессы подготовки производства c целью выявления путей их дальнейшей оптимизации. В настоящей статье Аарон Френкель (Aaron Frankel), старший директор по маркетингу решений для машиностроения, и Ян Ларссен (Jan Larsson), старший директор по маркетингу в Европе, на Ближнем Востоке и в Африке компании Siemens PLM Software, обсуждают, какие источники неэффективности необходимо устранить, чтобы внедрить концепцию «цифрового двойника изделия», и как это повлияет на способы выпуска изделий.

Прекрасная симфония

Если вы окажетесь на современном предприятии, то увидите потрясающую симфонию труда людей, роботов и станков, движения материалов и деталей — и все это делается с точностью до секунды, чтобы не отстать от графика. Картина получается просто фантастическая.

Но за кулисами мы увидим устаревшие процессы конструкторско-техноло-гичес-кой подготовки производства. Мы не собираемся кого-либо критиковать. Разработка конструкции изделия — само по себе немалое достижение. Проектирование может оказаться очень сложной задачей. В некоторых случаях изделие состоит из миллионов деталей, а над его созданием трудятся тысячи сотрудников и партнеров, причем нередко по всему миру. Более того, в таких важнейших отраслях, как электронная промышленность (более быстрые процессоры, миниатюризация), автомобилестроение (вопросы экологичности и снижения выбросов) и авиационно-космическая отрасль (экологичность и внедрение композитных материалов), наблюдается постоянное стремление к оптимизации и ускорению процессов создания новых изделий. С учетом высокой сложности решаемых задач вполне понятно нежелание отходить от проверенных на практике процессов подготовки производства. Однако при этом наши заказчики сообщают об общих для всех проблемах при проектировании и изготовлении продукции, которые в ряде случаев приводят к дорогостоящим задержкам.

Общие проблемы

Одна из наиболее серьезных трудностей, которую мы наблюдаем, заключается в том, что конструкторы и технологи применяют различные системы. На практике это приводит к тому, что конструкторы передают свои разработки технологам, которые пытаются создавать технологические процессы в компьютерных системах, к которым они привыкли. При таком сценарии — а он встречается очень часто — происходит рассинхронизация информации, что затрудняет контроль над ситуацией. Кроме того, возрастает вероятность возникновения ошибок.

Проблемы регулярно возникают и в ходе разработки цеховых планировок. Их причина состоит в том, что планировки обычно создаются в виде двумерных поэтажных планов и бумажных чертежей. Это длительный и трудоемкий процесс. Двумерные чертежи — важная составляющая процесса, но у них нет нужной гибкости. Нередко случается, что перестановка оборудования в цехе не фиксируется на чертеже. Проблема особенно обостряется при работе на быстро изменяющихся рынках (например, бытовой электроники), когда требуется постоянное расширение и модернизация производственных систем. Почему? Потому, что у двумерных планировок отсутствуют интеллектуальность и ассоциативность. Они не позволяют технологам узнать, что именно происходит в цехах, и быстро принять умные решения.

После создания планировки разрабатывается технологический маршрут. Как правило, затем он проходит этап контроля. Здесь лежит еще одно существенное препятствие росту эффективности. Технологам, чтобы оценить характеристики оборудования, обычно приходится ждать, пока оно не будет установлено. При этом если характеристики оказываются ниже ожидаемых, то разрабатывать альтернативную технологию бывает уже поздно. Наш опыт показывает, что такая ситуация приводит к значительным задержкам.

Наконец, заказчики сообщают о еще двух проблемах, возникающих в конце цикла подготовки производства. Это оценка производительности отдельных операций и всего технологического процесса в целом.

Из-за высокой сложности современного производства и нередкого отсутствия координации между различными системами технологического проектирования выявить, какие именно операции или производственные участки вызывают задержки работы всей линии, оказывается непросто. А когда дело доходит до собственно изготовления изделия, заказчики сообщают, что оценить производительность и степень соответствия реальных процессов запланированным, как правило, крайне сложно. И снова проблема заключается в высокой сложности, а также в отсутствии обратной связи между производством, конструкторами и технологами.

Цифровой двойник

Цифровой двойник представляет собой виртуальную копию реального объекта, которая ведет себя так же, как реальный объект. Не углубляясь здесь в технические подробности наших продуктов, достаточно сказать, что наши средства управления жизненным циклом изделия (PLM) обеспечивают создание полноценной цифровой платформы. Она поддерживает применение цифровых двойников, точно моделирующих сквозные процессы проектирования и изготовления изделий.

Что же все это означает на практике? Давайте еще раз посмотрим на вышеперечисленные этапы и покажем основные возможности, предоставляемые новым подходом.

Конструирование

В системе NX (и других CAD-системах) создается модель изделия, передаваемая в Teamcenter в 3D-формате JT. За считаные секунды приложение создает тысячи различных виртуальных исполнений изделия, точно соответствующих реальной продукции. При этом для выявления потенциальных проблем применяются технологии обработки больших данных, конструкторско-технологическая информация (PMI), содержащаяся в моделях (допуски, посадки, связи между деталями и узлами), а также базовое описание технологического процесса. Этот подход уже был проверен на практике при создании выпускаемых нашей компанией электронных изделий. Например, мы смогли сразу установить, что резьбовые отверстия на разъеме видеовыхода неточно совпадают с отверстиями под винты на печатной плате. Если бы ошибка осталась незамеченной, это привело бы к гарантийным претензиям от заказчиков: разъем мог бы отделиться от печатной платы. Выявление ошибок в конструкции на ранних этапах существенно экономит время и деньги — как при разработке технологии, так и в ходе производства.

Проектирование технологических процессов

Цифровой двойник позволяет улучшить совместную работу конструкторов и технологов, оптимизировать выбор места и технологии изготовления, а также выделение необходимых ресурсов. Рассмотрим пример внесения изменений в процесс сборки. Используя наши программные средства, инженеры-технологи на основе новой конструкторской спецификации добавляют новые операции в рабочую 3D-модель технологического процесса. Можно моделировать любую производственную систему, находясь при этом в любой точке земного шара: скажем, технологи в Париже подготавливают производство на заводе в Рио. Обладая информацией времени на каждую добавленную операцию, технологи проверяют, соответствует ли новый технологический маршрут заданным показателям производительности. Если это не так, то технологические операции заменяются или переставляются. Затем снова выполняется численное моделирование, пока выбранный технологический маршрут не будет удовлетворять требованиям. К новому технологическому процессу немедленно получают доступ все разработчики, чтобы его утвердить. Если выявляются какие-либо проблемы, то конструкторы и технологи вместе работают над их устранением.

Цеховые планировки

При работе над планировками мы рекомендуем создавать цифровой двойник, содержащий механическое оборудование, системы автоматизации и ресурсы, причем четко связанные со всей «экосистемой» конструкторско-технологической подготовки производства. При помощи набора PLM-инструментов технологические операции можно менять местами путем перетаскивания. Столь же легко выполняется размещение оборудования и персонала на производственной линии и моделирование ее работы. Это очень простой, но в то же время исключительно эффективный способ создания и редактирования технологичес-ких процессов. При внесении изменений в конструкцию, требующих применения нового промышленного робота, специалис-ты по численному моделированию проверяют, например, возможно ли установить робот таких габаритов, не задев конвейер. Разработчик цеховых планировок вносит необходимые поправки и подготавливает извещение об изменениях, на основании которого отдел закупок закупает новое оборудование. Такой анализ последствий вносимых изменений позволяет избежать ошибок и, при необходимости, сразу уведомлять поставщиков.

Контроль технологических проектных решений

На этапе контроля цифровой двойник применяется для виртуальной проверки процесса сборки. Виртуальное моделирование и количественный анализ позволяют оценить все факторы, связанные с ручным трудом на сборке, и выявить такие проблемы, как неудобная поза рабочего. Это дает возможность избежать утомления и получения производственных травм. На основе результатов моделирования создаются учебные видеоролики и инструкции.

Оптимизация производительности

Цифровой двойник применяется для статистического моделирования и оценки проектируемой технологической системы. С его помощью легко установить, что следует применять — ручной труд, роботов или комбинацию роботов и рабочих. Можно выполнить численное моделирование всех процессов — вплоть до энергопотребления отдельного станка, чтобы максимально оптимизировать технологию. Анализ показывает, сколько деталей изготавливается на каждой операции. Это гарантирует, что производительность реальной производственной линии будет соответствовать заданной.


и реальным мирами. Это позволяет сравнить конструкторский проект с реально изготовленным
изделием. На рисунке показано, как технологии работы с большими данными применяются
для сбора текущей информации по качеству продукции, которая передается для анализа
в хранящийся в системе Teamcenter цифровой двойник

Изготовление изделия

Цифровой двойник обеспечивает обратную связь между реальным и виртуальным миром, что позволяет оптимизировать процессы изготовления изделий. Технологические инструкции передаются прямо в цех, где операторы оборудования получают их вместе с видеороликами. Операторы передают конструкторам производственные данные (например, сведения о наличии зазора между двумя крепящими панель винтами), а другие автоматизированные системы собирают сведения о производительности. Затем происходит сравнение конструкторского проекта и реально изготовленного изделия, при этом отклонения выявляются и устраняются.

Новые подходы к работе

Применение цифрового двойника, являющегося точной копией реального изделия, помогает быстро выявить потенциальные проблемы, ускоряет подготовку производства и сокращает себестоимость. Кроме того, наличие цифрового двойника гарантирует возможность изготовления, спроектированного конструкторами изделия; все технологические процессы поддерживаются в актуальном и синхронизированном состоянии; разработанные технологии оказываются работоспособными, а производство функционирует точно по плану. Цифровой двойник позволяет проверить, как можно встроить новые технологии в существующие производственные линии. Это устраняет риски, возникающие при закупке и монтаже оборудования.

Машиностроение — одна из самых передовых отраслей мировой промышленности, где уже давно применяются проверенные на практике, но устаревшие подходы к технологической подготовке производства. Пришло время привнести дух инноваций, открывающий путь к успеху при разработке и изготовлении изделий. Пора попробовать что-то новое!

23 июня 2017 г. Создание трехмерного Цифрового двойника (Digital Twin) включено в перечень стандартного функционала Winnum® - платформы для промышленного Интернета вещей. Теперь в Winnum® создание трехмерных Цифровых двойников также просто, как и подключение датчиков.

«Цифровой двойник» — компьютерное представление конкретного физического изделия, группы изделий, механического или технологического процесса, которое полностью повторяет все то, что делает его физический прообраз, начиная от движений и кинематики, и заканчивая представлением его физической среды и текущих условий эксплуатации, включая движение жидкости и газа. Цифровой двойник выступает посредником между физическим изделием и важной информацией о нем, например, данными по эксплуатации или обслуживанию. Теперь с помощью Winnum для любых производственных систем реализуются полноценная обратная связь на основе сбора данных из реального мира и передачи этих данных в цифровой мир.

Что такое трехмерный Цифровой двойник?

Трехмерный Цифровой двойник — это компьютерное 3D представление конкретного физического изделия, группы изделий, механического или технологического процесса, который включает не только трехмерную геометрию, технические характеристики и текущие параметры работы, но и другую важную информацию - окружающую среду и условия эксплуатации, техническое состояние и наработку, взаимодействие с другими объектами, данные предиктивной аналитики, в том числе, по прогнозированию отказов и сбоев. Цифровой двойник может быть, как упрощенным, так и очень детальным и отражать широкий спектр самых разных характеристик как самого изделия, так и технологических и производственных процессов.

Наличие трехмерного Цифрового двойника помогает организовать связь изделия с подключенными к нему объектами, программным обеспечением, отвечающим за управление изделием, контроль рабочего состояния и процесса эксплуатации и т.д. Трехмерный Цифровой двойник представляет особую ценность, когда он наиболее точно отображает реальное состояние и рабочие характеристики своего физического прообраза. Какими бы точными, детальными и проработанными не были действия на этапах проектирования, моделирования и подготовки производства, в реальной жизни, как правило, процессы протекают немного иначе и именно Цифровой двойник способен выступить тем самым мостиком к необходимой информации о реальной эксплуатации изделий. Данную информацию можно использовать по-разному, например, на оценки узких мест, возможностей для улучшений и изменений, подтверждения целесообразности изменений и т.д. Кроме того, поскольку Цифровой двойник — это трехмерный объект, его работа с ним для человека гораздо понятнее, чем работа с любыми таблицами или графиками. Трехмерный Цифровой двойник позволяет заглянуть внутрь реального физического объекта непосредственно во время работы без необходимости остановки оборудования и открытия панелей, которые закрывают доступ к узлам, требующим проверки.

Уникальный функционал Winnum позволяет нашим заказчикам создавать трехмерные цифровые двойники и управлять ими, соединяя информацию, которая поступает от физических объектов и реальных процессов, с информацией, которая создается в различных системах автоматизированного проектирования (САПР). Winnum поддерживает загрузку трехмерных моделей САПР в нейтральных форматах, таких как STL, VRML и OBJ, для Blender и Collada доступна прямая загрузка. Наличие уже готовых трехмерных библиотек роботов, оборудования, датчиков и других геометрических объектов еще больше ускоряет и упрощает процесс создания Цифровых двойников даже для тех компаний, которые не могут похвастаться наличием полностью оцифрованных изделий в трехмерном виде.

Трехмерные сцены и умные Цифровые двойники (Smart Digital Twin)

Каждый Цифровой двойник соответствует одному конкретному экземпляру изделия. То есть, если компании использует 100 единиц оборудования или выпускает сотни тысяч изделий, то для каждого экземпляра оборудования/изделия существует свой Цифровой двойник. Уникальные возможности Winnum по работе с большими данными (Big Data) помогают работать с таким количеством цифровых двойников для решения повседневных задач и обеспечивают высокую производительность системы независимо от их количества.

Трехмерные сцены используются для объединения Цифровых двойников и получения представления об их общих эксплуатационных характеристиках и показателях, общих отклонениях с учетом среды эксплуатации и т.д. Трехмерные сцены в Winnum - это не просто трехмерная обстановка, как это принято в системах автоматизированного проектирования. Трехмерные сцены в Winnum - это возможность создания полноценного трехмерного мира с широким инструментарием по работе с источниками света (включая Raytracing, зеркальные виды, туман, интенсивность, прозрачность), текстурами (включая динамические текстуры с видео потоком), пользовательскими камерами и механизмами взаимодействия с трехмерными объектами (выбор объекта, нажатие на объект, передача управляющего действия).

Все действия трехмерной сцены и весь инструментарий по работе с трехмерным Цифровым двойником доступен исключительно в Веб браузере.

О компании Signum

Signum (СИГНУМ) - глобальный поставщик решений для промышленного Интернета вещей (IIoT). Решения компании помогают трансформировать процессы создания, эксплуатации и обслуживания изделий при помощи технологий промышленного Интернета вещей (IIоT). Платформа нового поколения Winnum™ предоставляет компаниям инструменты, необходимые для сбора, анализа и получения дополнительной прибыли за счет больших объемов данных, создаваемых подключенными к вычислительной сети контроллеров, датчиков, сенсоров, изделий и систем.

Благодарим редакцию корпоративного журнала "Сибирская нефть" ПАО «Газпром нефть» за предоставление данного материала.

Что такое «Цифровой двойник»?

Цифровой двойник — это новое слово в моделировании и планировании производства — единая модель, достоверно описывающая все процессы и взаимосвязи как на отдельном объекте, так и в рамках целого производственного актива в виде виртуальных установок и имитационных моделей. Таким образом, создается виртуальная копия физического мира.

Применение цифрового двойника, являющегося точной копией реального актива, помогает быстро смоделировать развитие событий в зависимости от тех или иных условий и факторов, найти наиболее эффективные режимы работы, выявить потенциальные риски, встроить новые технологии в существующие производственные линии, сократить сроки и стоимость реализации проектов. Кроме того, цифровой двойник помогает определить шаги по обеспечению безопасности.

Современные технологии дают возможность построить цифровые двойники абсолютно любых производственных активов, будь то нефтеперерабатывающий завод или логистическая компания. В будущем эти технологии позволят удаленно управлять всем производственным процессом в режиме реального времени. На базе цифрового двойника можно объединить все системы и модели, используемые для планирования и управления производственной деятельностью, что повысит прозрачность процессов, точность и скорость принятия решений.

Цифрового двойника можно рассматривать и как электронный паспорт изделия, в котором фиксируются все данные о сырье, материалах, произведенных операциях, испытаниях и лабораторных исследованиях. Это значит, что вся информация, начиная с чертежей и технологии производства и заканчивая правилами техобслуживания и утилизации, будет оцифрована и доступна для считывания устройствами и людьми. Такой принцип позволяет отслеживать и гарантировать качество продукции, обеспечивать ее эффективный сервис.

От рисунков до 3D-моделей

Немного истории. Чертежи и схемы нужны были людям всегда, с момента первых изобретений — колеса и рычага, чтобы передавать друг другу информацию об устройстве этих приспособлений и правилах их использования. Сначала это были примитивные рисунки, содержащие лишь самые простые сведения. Однако конструкции становились сложнее, а изображения и инструкции — детальнее. С тех пор технологии визуализации, документирования и хранения знаний о сооружениях и механизмах прошли большой путь. Тем не менее долгое время основным носителем для фиксации инженерной мысли оставалась бумага, а рабочим пространством — плоскость.

Во второй половине ХХ века стало ясно, что привычная армия чертежников, вооруженных кульманами, уже не способна успеть за стремительным ростом развития промышленного производства и сложностью инженерных разработок. Ускорение обработки объемной и сложной информации (например, технологическая установка атмосферной перегонки нефти содержит более 30 тысяч единиц оборудования) потребовало изменения технологии работы проектировщиков, конструкторов, строителей, технологов, специалистов по эксплуатации и техническому обслуживанию. Эволюция технических средств проектирования совершила очередной виток, и в начале 90-х годов прошлого века в нефтяную отрасль пришли системы автоматизированного проектирования — САПР. Сначала они использовали двухмерные чертежи, а затем, к концу 2000-х, пришли и в 3D.

Современные системы проектирования позволяют инженерам выполнить компоновку и проектирование промышленных объектов в объемном виде с учетом всех ограничений и требований производственного процесса, а также требований промышленной безопасности



Современные системы проектирования позволяют инженерам выполнить компоновку и проектирование промышленных объектов в объемном виде с учетом всех ограничений и требований производственного процесса, а также требований промышленной безопасности. С их помощью можно создавать проектную модель той или иной установки и правильно размещать на ней технологические и технические компоненты без противоречий и коллизий. Опыт показывает, что за счет использования подобных систем удается в 2-3 раза сократить количество ошибок и несостыковок при проектировании и эксплуатации различных установок. Цифра впечатляет, если учесть, что для крупномасштабного промышленного оборудования число ошибок, которые приходится исправлять в процессе проверки проекта, исчисляется тысячами.

С точки зрения проектировщиков и строителей, использование 3D-моделей дает возможность кардинально улучшить качество проектной документации и сократить время проектирования. Построенная информационная модель объекта оказывается полезной и на этапе эксплуатации. Это новый уровень владения промышленным объектом, на котором персонал может получить любую информацию, требующуюся для принятия решения или выполнения задачи в кратчайший срок, опираясь на имеющуюся модель. Более того: когда через какое-то время потребуется модернизация оборудования, будущим проектировщикам будет доступна вся актуальная информация, с историей ремонтов и обслуживаний.

Омский пилот

Сергей Овчинников, руководитель департамента систем управления «Газпром нефти»:

Разработка и внедрение системы управления инженерными данными, без сомнения, важная часть инновационного развития блока логистики, переработки и сбыта. Функционал, заложенный в «СУпрИД», потенциал системы позволят блоку в частности и компании в целом стать лидерами в цифровом управлении инженерными данными в нефтепереработке. Более того, этот программный продукт является важной составляющей всей линейки связанных IT систем, представляющих собой фундамент создающегося сейчас Центра управления эффективностью БЛПС.

В 2014 году в «Газпром нефти» стартовал проект по созданию системы управления инженерными данными объектов нефтепереработки — «СУпрИД». В основе проекта лежит применение технологий 3D-моделирования для проектирования, строительства и обслуживания промышленных объектов. Благодаря их использованию сокращаются сроки создания и реконструкции нефтеперерабатывающих установок, повышается эффективность и безопасность их эксплуатации, снижается время простоя технологического оборудования завода. Внедрением современной системы управления инженерными данными на новейшей платформе Smart Plant for Owners/Operators (SPO) занимаются специалисты департамента систем управления блока логистики, переработки и сбыта, а также дочерней компании «ИТСК» и «Автоматика сервис».

В конце прошлого года успешно выполнен пилотный проект по разворачиванию функционала платформы и настройки бизнес-процессов для только что реконструированной установки первичной переработки нефти Омского НПЗ — АТ-9. В системе реализован функционал по хранению, управлению и актуализации информации об установке на всем ее жизненном цикле: от строительства до эксплуатации. Наряду с системой были разработаны нормативно-методическая документация, требования к проектировщику и стандарты по управлению инженерными данными. «СУпрИД» является хорошим помощником в работе, — отметил начальник установки АТ-9 Омского НПЗ Сергей Шмидт. — Система позволяет быстро получить доступ к инженерной информации о любом оборудовании, посмотреть его чертеж, уточнить технические параметры, локализовать местоположение и выполнить замеры на трехмерной модели, которая в точности воспроизводит реальную установку. Использование «СУпрИД» помогает, в том числе, обучать новых специалистов и стажеров».

Как это работает?

Задача системы «СУпрИД» — охватить все этапы жизненного цикла технологического объекта. Начать со сбора инженерной информации на фазе проектирования и затем актуализировать сведения на последующих стадиях — строительства, эксплуатации, реконструкции, отображая текущее состояние объекта.

Все начинается с информации от проектировщика, которая последовательно передается и загружается в систему. Исходные данные составляют: проектная документация, информация о функционально-технологической и строительно-монтажной структуре объекта, интеллектуальные технологические схемы. Именно эти сведения становятся базой информационной модели, позволяя мгновенно получать адресную информацию о строительных объектах и технологической схеме установки, давая возможность за несколько секунд найти нужную позицию технологического оборудования, оборудования КИПиА на технологической схеме, определить ее участие в технологическом процессе.

В свою очередь, с помощью загруженной в систему проектной 3D-модели объекта можно визуализировать его, увидеть конфигурацию блоков, пространственное расположение оборудования, окружение соседним оснащением, выполнить замеры расстояний между различными элементами установки. Завершается формирование эксплуатационной информационной модели привязкой исполнительной документации и 2D-, 3D-моделей «как построено», предоставляющих возможность получить детализированную информацию о свойствах и технических характеристиках любого оборудования или его элементов на стадии эксплуатации. Таким образом, система представляет собой структурированную и взаимосвязанную совокупность всех инженерных данных объекта и его оборудования.

Роман Комаров, заместитель начальника управления инженерных систем «ИТСК», руководитель разработки «СУпрИД»:

После многолетней оценки преимуществ реализации проекта и предварительной проработки пилот системы был реализован в сжатые сроки. Внедрение «СУпрИД» позволило компании получить инструмент управления инженерными данными объектов нефтепереработки. Следующий глобальный шаг, к которому мы будем постепенно приближаться, — формирование цифровой информационной модели нефтеперерабатывающего завода.

На сегодня в электронный архив «СУпрИД» загружено уже более 80 000 документов. Система позволяет осуществлять попозиционный поиск актуальной информации о любом типе оборудования, предоставлять пользователю исчерпывающую информацию по каждой позиции, включая технические характеристики, габаритные размеры, материальное исполнение, расчетные и рабочие параметры и т.д. «СУпрИД» дает возможность просмотреть любую часть установки в трехмерной модели или на технологической схеме, открыть скан-копии документов, относящихся к этой позиции: рабочую, исполнительную или эксплуатационную документацию (паспорта, акты, чертежи и т.д.).

Такая вариативность существенно сокращает временные затраты на доступ к актуальной информации и ее интерпретацию, позволяет избежать ошибок при реконструкции и техническом перевооружении объекта, замене морально устаревшего оборудования. «СУпрИД» помогает анализировать работу установки и ее оборудования при оценке эффективности эксплуатации, способствует подготовке изменений в технологическом регламенте, расследованию отказов, неполадок, аварий на объекте, обучению и подготовке обслуживающего персонала.

«СУпрИД» интегрирован с другими информационными системами БЛПС и образует единую информационную среду инженерных данных, которая, в том числе, станет базой для инновационного Центра управления эффективностью блока. Взаимосвязь с такими программами, как КСУ НСИ (корпоративная система управления нормативно-справочной информацией), SAP ТОРО (техническое обслуживание и ремонт оборудования), СУ ПСД (система управления проектно-сметной документацией) «ТрекДок», Meridium APM, формирует уникальную интегрированную систему автоматизации процессов управления производственными активами нефтеперерабатывающего завода, позволяя увеличить экономический эффект от их совместного использования для компании.

Эффективность проекта

За относительно короткий период времени IT-специалистам «Газпром нефти» удалось не только освоить тонкости платформы SPO, на которой построена система управления инженерными данными, но и создать абсолютно новую для компании инфраструктуру, разработать комплект нормативных документов, а в итоге выработать качественно новый подход к строительству объектов нефтепереработки.

Еще на раннем этапе реализации проекта стало очевидно, что система будет востребована эксплуатационными службами завода и службами капитального строительства. Достаточно сказать, что ее использование экономит до 30% рабочего времени на поиск и обработку технической информации по любому объекту. При интеграции «СУпрИД» с системами нормативно-справочной информации, технического обслуживания и ремонта оборудования, проектно-сметной документации и другими актуальные инженерные данные становятся доступны для оперативного и качественного обслуживания технологического оборудования. Возможности системы также позволяют создать тренажер для служб эксплуатации, что, несомненно, повысит уровень подготовки их специалистов. Для отделов капитального строительства НПЗ система станет инструментом проектирования на стадии мелкого и среднего ремонта. Такой подход значительно упрощает контроль за ходом реконструкции промышленных объектов и повышает качество ремонтов.

Предполагается, что вложенные в реализацию «СУпрИД» инвестиции окупятся примерно за 3-4 года. Это станет возможным благодаря сокращению сроков проектирования, более раннему переводу установок из стадии пуско-наладки в промышленную эксплуатацию и, как следствие, увеличению объема выпускаемой готовой продукции. Еще один существенный плюс — ускорение подготовки и проведения работ по техническому обслуживанию и выполнения реконструкций и модернизаций установок за счет сокращения сроков проверки эксплуатационными службами НПЗ новой проектной документации и своевременного обнаружения недостатков и ошибок в работе проектных и строительных подрядчиков.

Программа внедрения «СУпрИД» рассчитана на период до 2020 года. Она будет использована для «оцифровки» как существующих установок, так и при возведении новых объектов. В настоящее время специалисты готовятся к тиражированию системы на Московском НПЗ.

Текст: Александр Никоноров, Алексей Шишмарев, Фото: Юрий Молодковец, Николай Кривич

Одна из перспективных идей завтрашнего дня, касающаяся любого производства, - цифровое моделирование активов: создание виртуальных копий реальных объектов, которые выглядят и функционируют точно так же, как и их прототипы. В «Газпром нефти» «цифровыми двойниками» вплотную занимаются на перерабатывающих производствах компании, и многое из этой инновационной технологии уже удалось воплотить в жизнь

От рисунков до 3D-моделей

Немного истории. Чертежи и схемы нужны были людям всегда, с момента первых изобретений - колеса и рычага, чтобы передавать друг другу информацию об устройстве этих приспособлений и правилах их использования. Сначала это были примитивные рисунки, содержащие лишь самые простые сведения. Однако конструкции становились сложнее, а изображения и инструкции - детальнее. С тех пор технологии визуализации, документирования и хранения знаний о сооружениях и механизмах прошли большой путь. Тем не менее долгое время основным носителем для фиксации инженерной мысли оставалась бумага, а рабочим пространством - плоскость.

Во второй половине ХХ века стало ясно, что привычная армия чертежников, вооруженных кульманами, уже не способна успеть за стремительным ростом развития промышленного производства и сложностью инженерных разработок. Ускорение обработки объемной и сложной информации (например, технологическая установка атмосферной перегонки нефти содержит более 30 тысяч единиц оборудования) потребовало изменения технологии работы проектировщиков, конструкторов, строителей, технологов, специалистов по эксплуатации и техническому обслуживанию. Эволюция технических средств проектирования совершила очередной виток, и в начале 90-х годов прошлого века в нефтяную отрасль пришли системы автоматизированного проектирования - САПР. Сначала они использовали двухмерные чертежи, а затем, к концу 2000-х , пришли и в 3D.

Современные системы проектирования позволяют инженерам выполнить компоновку и проектирование промышленных объектов в объемном виде с учетом всех ограничений и требований производственного процесса, а также требований промышленной безопасности

Современные системы проектирования позволяют инженерам выполнить компоновку и проектирование промышленных объектов в объемном виде с учетом всех ограничений и требований производственного процесса, а также требований промышленной безопасности. С их помощью можно создавать проектную модель той или иной установки и правильно размещать на ней технологические и технические компоненты без противоречий и коллизий. Опыт показывает, что за счет использования подобных систем удается в 2–3 раза сократить количество ошибок и несостыковок при проектировании и эксплуатации различных установок. Цифра впечатляет, если учесть, что для крупномасштабного промышленного оборудования число ошибок, которые приходится исправлять в процессе проверки проекта, исчисляется тысячами.

С точки зрения проектировщиков и строителей, использование 3D-моделей дает возможность кардинально улучшить качество проектной документации и сократить время проектирования. Построенная информационная модель объекта оказывается полезной и на этапе эксплуатации. Это новый уровень владения промышленным объектом, на котором персонал может получить любую информацию, требующуюся для принятия решения или выполнения задачи в кратчайший срок, опираясь на имеющуюся модель. Более того: когда через какое-то время потребуется модернизация оборудования, будущим проектировщикам будет доступна вся актуальная информация, с историей ремонтов и обслуживаний.

Омский пилот

Сергей Овчинников,
руководитель департамента систем управления «Газпром нефти»

Разработка и внедрение системы управления инженерными данными, без сомнения, важная часть инновационного развития блока логистики, переработки и сбыта. Функционал, заложенный в «СУпрИД», потенциал системы позволят блоку в частности и компании в целом стать лидерами в цифровом управлении инженерными данными в нефтепереработке. Более того, этот программный продукт является важной составляющей всей линейки связанных IT систем, представляющих собой фундамент создающегося сейчас Центра управления эффективностью БЛПС.

В 2014 году в «Газпром нефти» стартовал проект по созданию системы управления инженерными данными объектов нефтепереработки - «СУпрИД». В основе проекта лежит применение технологий 3D-моделирования для проектирования, строительства и обслуживания промышленных объектов. Благодаря их использованию сокращаются сроки создания и реконструкции нефтеперерабатывающих установок, повышается эффективность и безопасность их эксплуатации, снижается время простоя технологического оборудования завода. Внедрением современной системы управления инженерными данными на новейшей платформе Smart Plant for Owners/Operators (SPO) занимаются специалисты департамента систем управления блока логистики, переработки и сбыта, а также дочерней компании «ИТСК» и «Автоматика сервис».

За счет использования автоматизированных систем проектирования, создающих 3D-модели объектов, удается в 2–3 раза сократить количество ошибок и несостыковок при проектировании и эксплуатации различных установок.

В конце прошлого года успешно выполнен пилотный проект по разворачиванию функционала платформы и настройки бизнес-процессов для только что реконструированной установки первичной переработки нефти Омского НПЗ - АТ-9. В системе реализован функционал по хранению, управлению и актуализации информации об установке на всем ее жизненном цикле: от строительства до эксплуатации. Наряду с системой были разработаны нормативно-методическая документация, требования к проектировщику и стандарты по управлению инженерными данными. «СУпрИД» является хорошим помощником в работе, - отметил начальник установки АТ-9 Омского НПЗ Сергей Шмидт. - Система позволяет быстро получить доступ к инженерной информации о любом оборудовании, посмотреть его чертеж, уточнить технические параметры, локализовать местоположение и выполнить замеры на трехмерной модели, которая в точности воспроизводит реальную установку. Использование «СУпрИД» помогает, в том числе, обучать новых специалистов и стажеров».

Как это работает?

Задача системы «СУпрИД» - охватить все этапы жизненного цикла технологического объекта. Начать со сбора инженерной информации на фазе проектирования и затем актуализировать сведения на последующих стадиях - строительства, эксплуатации, реконструкции, отображая текущее состояние объекта.

Все начинается с информации от проектировщика, которая последовательно передается и загружается в систему. Исходные данные составляют: проектная документация, информация о функционально-технологической и строительно-монтажной структуре объекта, интеллектуальные технологические схемы. Именно эти сведения становятся базой информационной модели, позволяя мгновенно получать адресную информацию о строительных объектах и технологической схеме установки, давая возможность за несколько секунд найти нужную позицию технологического оборудования, оборудования КИПиА на технологической схеме, определить ее участие в технологическом процессе.

В свою очередь, с помощью загруженной в систему проектной 3D-модели объекта можно визуализировать его, увидеть конфигурацию блоков, пространственное расположение оборудования, окружение соседним оснащением, выполнить замеры расстояний между различными элементами установки. Завершается формирование эксплуатационной информационной модели привязкой исполнительной документации и 2D-, 3D-моделей «как построено», предоставляющих возможность получить детализированную информацию о свойствах и технических характеристиках любого оборудования или его элементов на стадии эксплуатации. Таким образом, система представляет собой структурированную и взаимосвязанную совокупность всех инженерных данных объекта и его оборудования.

Роман Комаров,
заместитель начальника управления инженерных систем «ИТСК», руководитель разработки «СУпрИД»

После многолетней оценки преимуществ реализации проекта и предварительной проработки пилот системы был реализован в сжатые сроки. Внедрение «СУпрИД» позволило компании получить инструмент управления инженерными данными объектов нефтепереработки. Следующий глобальный шаг, к которому мы будем постепенно приближаться, - формирование цифровой информационной модели нефтеперерабатывающего завода.

На сегодня в электронный архив «СУпрИД» загружено уже более 80 000 документов. Система позволяет осуществлять попозиционный поиск актуальной информации о любом типе оборудования, предоставлять пользователю исчерпывающую информацию по каждой позиции, включая технические характеристики, габаритные размеры, материальное исполнение, расчетные и рабочие параметры и т.д. «СУпрИД» дает возможность просмотреть любую часть установки в трехмерной модели или на технологической схеме, открыть скан-копии документов, относящихся к этой позиции: рабочую, исполнительную или эксплуатационную документацию (паспорта, акты, чертежи и т.д.).

В электронный архив «СУпрИД» загружено уже более 80 000 документов. Система позволяет осуществлять попозиционный поиск актуальной информации о любом типе оборудования, предоставлять пользователю исчерпывающую информацию по каждой позиции.

Такая вариативность существенно сокращает временные затраты на доступ к актуальной информации и ее интерпретацию, позволяет избежать ошибок при реконструкции и техническом перевооружении объекта, замене морально устаревшего оборудования. «СУпрИД» помогает анализировать работу установки и ее оборудования при оценке эффективности эксплуатации, способствует подготовке изменений в технологическом регламенте, расследованию отказов, неполадок, аварий на объекте, обучению и подготовке обслуживающего персонала.

«СУпрИД» интегрирован с другими информационными системами БЛПС и образует единую информационную среду инженерных данных, которая, в том числе, станет базой для инновационного Центра управления эффективностью блока. Взаимосвязь с такими программами, как КСУ НСИ (корпоративная система управления нормативно-справочной информацией), SAP ТОРО (техническое обслуживание и ремонт оборудования), СУ ПСД (система управления проектно-сметной документацией) «ТрекДок», Meridium APM, формирует уникальную интегрированную систему автоматизации процессов управления производственными активами нефтеперерабатывающего завода, позволяя увеличить экономический эффект от их совместного использования для компании.

Эффективность проекта

За относительно короткий период времени IT-специалистам «Газпром нефти» удалось не только освоить тонкости платформы SPO, на которой построена система управления инженерными данными, но и создать абсолютно новую для компании инфраструктуру, разработать комплект нормативных документов, а в итоге выработать качественно новый подход к строительству объектов нефтепереработки.

Еще на раннем этапе реализации проекта стало очевидно, что система будет востребована эксплуатационными службами завода и службами капитального строительства. Достаточно сказать, что ее использование экономит до 30% рабочего времени на поиск и обработку технической информации по любому объекту. При интеграции «СУпрИД» с системами нормативно-справочной информации, технического обслуживания и ремонта оборудования, проектно-сметной документации и другими актуальные инженерные данные становятся доступны для оперативного и качественного обслуживания технологического оборудования. Возможности системы также позволяют создать тренажер для служб эксплуатации, что, несомненно, повысит уровень подготовки их специалистов. Для отделов капитального строительства НПЗ система станет инструментом проектирования на стадии мелкого и среднего ремонта. Такой подход значительно упрощает контроль за ходом реконструкции промышленных объектов и повышает качество ремонтов.

Предполагается, что вложенные в реализацию «СУпрИД» инвестиции окупятся примерно за 3–4 года. Это станет возможным благодаря сокращению сроков проектирования, более раннему переводу установок из стадии пуско-наладки в промышленную эксплуатацию и, как следствие, увеличению объема выпускаемой готовой продукции. Еще один существенный плюс - ускорение подготовки и проведения работ по техническому обслуживанию и выполнения реконструкций и модернизаций установок за счет сокращения сроков проверки эксплуатационными службами НПЗ новой проектной документации и своевременного обнаружения недостатков и ошибок в работе проектных и строительных подрядчиков.

Программа внедрения «СУпрИД» рассчитана на период до 2020 года. Она будет использована для «оцифровки» как существующих установок, так и при возведении новых объектов. В настоящее время специалисты готовятся к тиражированию системы на Московском НПЗ.

Что такое «Цифровой двойник»?

Цифровой двойник - это новое слово в моделировании и планировании производства - единая модель, достоверно описывающая все процессы и взаимосвязи как на отдельном объекте, так и в рамках целого производственного актива в виде виртуальных установок и имитационных моделей. Таким образом, создается виртуальная копия физического мира.

Применение цифрового двойника, являющегося точной копией реального актива, помогает быстро смоделировать развитие событий в зависимости от тех или иных условий и факторов, найти наиболее эффективные режимы работы, выявить потенциальные риски, встроить новые технологии в существующие производственные линии, сократить сроки и стоимость реализации проектов. Кроме того, цифровой двойник помогает определить шаги по обеспечению безопасности.

Современные технологии дают возможность построить цифровые двойники абсолютно любых производственных активов, будь то нефтеперерабатывающий завод или логистическая компания. В будущем эти технологии позволят удаленно управлять всем производственным процессом в режиме реального времени. На базе цифрового двойника можно объединить все системы и модели, используемые для планирования и управления производственной деятельностью, что повысит прозрачность процессов, точность и скорость принятия решений.

Цифрового двойника можно рассматривать и как электронный паспорт изделия, в котором фиксируются все данные о сырье, материалах, произведенных операциях, испытаниях и лабораторных исследованиях. Это значит, что вся информация, начиная с чертежей и технологии производства и заканчивая правилами техобслуживания и утилизации, будет оцифрована и доступна для считывания устройствами и людьми. Такой принцип позволяет отслеживать и гарантировать качество продукции, обеспечивать ее эффективный сервис.

Нейронные сети, цифровые двойники, искусственный интеллект. Технологии« Индустрии 4.0» изменят нефтяную отрасль до неузнаваемости

Архитекторы цифровой эпохи

Обычно самыми технологичными принято считать сферы информационных технологий и биомедицины. К компаниям традиционных отраслей, занимающимся, например, металлопрокатом или добычей и переработкой нефти, отношение совсем другое. На первый взгляд они кажутся консервативными, но именно их многие эксперты называют главными архитекторами новой цифровой эпохи.

Автоматизировать производственные процессы индустриальные гиганты начали еще в середине 30-х годов прошлого века. На протяжении многих десятилетий комплексы аппаратных и программных средств непрерывно совершенствовались и усложнялись. Автоматизация производственных процессов — например, в нефтепереработке — продвинулась далеко вперед. Работу современного нефтеперерабатывающего завода контролируют сотни тысяч датчиков и приборов, а поставки топлива в режиме реального времени отслеживаются системами спутниковой навигации. Каждый день средний российский НПЗ производит более 50 000 терабайт информации. Для сравнения, 3 миллиона книг, которые хранятся в цифровом хранилище Российской государственной библиотеки, занимают в сотни раз меньше — «всего» 162 терабайта.


Это и есть те самые «большие данные», или Big Data, — поток, сравнимый с информационной загрузкой самых крупных сайтов и социальных сетей. Скопившийся массив данных представляет собой уникальный ресурс, который может быть использован в управлении бизнесом. Но традиционные методы анализа информации для этого уже не подходят. По‑настоящему эффективно работать с таким объемом данных возможно лишь с помощью технологий Индустрии 4.0. В условиях меняющейся экономической парадигмы богатый производственный «исторический опыт» — серьезное преимущество. Большие данные лежат в основе искусственного интеллекта. Его способность обучаться, понимать реальность и прогнозировать процессы напрямую зависит от объема загруженных знаний. При этом промышленные компании обладают мощной инженерной школой, активно занимаются внедрением и совершенствованием новых технологии. Это еще одно обстоятельство, которое делает их ключевыми игроками «новой экономики».

Лучшее за неделю

Наконец, отечественные промышленники знают цену эффективности бизнеса. Россия — страна больших расстояний. Нередко производственные активы находятся на большом удалении от потребителей. В этих условиях очень непросто быстро реагировать на колебания рынка. Традиционные технологии позволяют экономить не больше десятой доли процента. А между тем, цифровые решения уже сегодня позволяют сокращать издержки до 10−15% в месяц. Факт очевиден: в эпоху четвертой промышленной революции конкурентоспособным будет тот, кто научится наиболее эффективно применять новые технологии в разрезе накопленного опыта.

Петр Казначеев, директор Центра сырьевой экономики РАНХиГС : «В качестве первого шага в сторону «интегральной» системы искусственного интеллекта в нефтегазе можно было бы рассмотреть «умное» управление и корпоративное планирование. В данном случае речь могла бы идти о создании алгоритма оцифровки всей ключевой информации о деятельности компании — от месторождения до бензоколонки. Эта информация могла бы поступать в единый автоматизированный центр. На основе данной информации с помощью методов искусственного интеллекта могли бы делаться прогнозы и рекомендации по оптимизации работы компании».


Лидер цифровой трансформации

Осознавая эту тенденцию, индустриальные лидеры России и мира перестраивают бизнес-процессы, складывавшиеся десятилетиями, внедряют в производство технологии Индустрии 4.0 на основе промышленного интернета вещей, искусственного интеллекта и Big Data. Наиболее интенсивно трансформация происходит в нефтегазовой индустрии: отрасль динамично «цифровизируется», инвестируя в проекты, которые еще вчера казались фантастикой. Заводы, управляемые искусственным интеллектом и способные прогнозировать ситуации, установки, подсказывающие оператору оптимальный режим работы — все это уже сегодня становится реальностью.

При этом задача-максимум заключается в том, чтобы создать систему управления добычей, логистикой, производством и сбытом, которая объединила бы «умные» скважины, заводы и автозаправки в единую экосистему. В идеальной цифровой модели, в тот момент, когда потребитель нажимает на рычаг заправочного пистолета, аналитики компании в оперативном центре мгновенно получают информацию о том, какая марка бензина заправляется в бак, сколько нефти нужно добыть, поставить на завод и переработать, чтобы удовлетворить спрос в конкретном регионе. Пока что никому из российских и зарубежных компаний не удавалось построить такую модель. Однако дальше всех в решении этой задачи продвинулась «Газпром нефть». Ее специалисты сегодня реализуют ряд проектов, которые в итоге должны стать основой для создания единой платформы управления переработкой, логистикой и сбытом. Платформы, которой пока нет еще ни у кого в мире.


Цифровые двойники

На сегодняшний день НПЗ «Газпром нефти» являются одними из самых современных в отрасли. Однако четвертая промышленная революция открывает качественно новые возможности, одновременно предъявляя и новые требования к автоматизации. Точнее, речь идет не столько об автоматизации, сколько о практически полной оцифровке производства.

Основой нового этапа станут так называемые «цифровые двойники» — виртуальные копии установок НПЗ. В 3D-моделях достоверно описаны все процессы и взаимосвязи, происходящие в реальных прототипах. В их основе лежит работа искусственного интеллекта на базе нейронных сетей. «Цифровой двойник» может предлагать оптимальные режимы работы оборудования, прогнозировать его отказы, рекомендовать сроки ремонта. Среди других его плюсов — способность постоянно обучаться. Нейросеть сама находит ошибки, исправляет и запоминает их, улучшая тем самым свою работу и точность прогноза.

Базой для обучения «цифрового двойника» служит массив исторической информации. Современные установки нефтепереработки также сложны, как и организм человека. Сотни тысяч деталей, десятки тысяч датчиков. Техническая документация для каждой установки занимает помещение размером с актовый зал. Чтобы создать «цифрового двойника», всю эту информацию необходимо для начала загрузить в нейронную сеть. Затем начинается самый сложный этап — этап обучения искусственного интеллекта понимать установку. В него входят показания датчиков и контрольно-измерительных приборов, собранные за последние несколько лет работы установки. Оператор моделирует различные ситуации, заставляет нейронную сеть отвечать на вопрос «что будет, если поменять один из параметров работы?» — например, заменить один из компонентов сырья или увеличить энергоснабжение установки. Нейросеть анализирует опыт прошлых лет и методом вычисления исключает из алгоритма неоптимальные режимы, и учится прогнозировать будущую работу установки.

Лучшее за неделю

«Газпром нефть» уже полностью «оцифровала» два промышленных комплекса, задействованных в производстве автомобильного топлива — установку гидроочистки бензинов каталитического крекинга на Московском нефтеперерабатывающем заводе и установку, работающую на нефтеперерабатывающем заводе компании в Омске. Испытания показали, что искусственный интеллект способен одновременно учитывать огромное количество параметров их «цифровых двойников», принимать решения и оповещать о возможных отклонениях в работе еще до того момента, когда неприятность грозит перерасти в серьезную проблему.

Одновременно с этим «Газпром нефть» тестирует комплексные решения, которые позволят минимизировать влияние человеческого фактора в масштабах целого производства. Подобные проекты сейчас реализуются на битумных заводах компании в Рязани и Казахстане. Удачные решения, найденные опытным путем, впоследствии можно будет масштабировать до уровня больших НПЗ, что в итоге позволит создать эффективную цифровую платформу управления производством.

Николай Легкодимов, руководитель Группы консультирования по перспективным технологиям КПМГ в России и СНГ: «Решения, которые моделируют различные узлы, агрегаты и системы известны и применяются достаточно давно, в том числе и в нефтегазовой индустрии. О качественном скачке можно говорить лишь тогда, когда достигнута достаточная широта охвата этих моделей. Если удастся сочетать эти модели друг с другом, объединить их в целую сложную цепочку, то это, действительно, позволит решать задачи на совершенно новом уровне — в частности, моделировать поведение системы в критических, невыгодных и просто опасных условиях работы. Для тех сфер, где переоснащение и модернизация оборудования обходятся очень дорого, это позволит предварительно апробировать новые компоненты».


Управление эффективностью

В перспективе вся цепочка добавленной стоимости в блоке логистики, переработки и сбыта «Газпром нефти» будет объединена единой технологической платформой на базе искусственного интеллекта. «Мозгом» этого организма станет Центр управления эффективностью, созданный год назад в Санкт-Петербурге. Именно сюда будет стекаться информация от «цифровых двойников», здесь она будет анализироваться и здесь же, на основе полученных данных, будут приниматься управленческие решения.

Уже сегодня, в режиме реального времени более 250 тыс. датчиков и десятки систем транслируют информацию в Центр со всех активов компании, входящих в периметр блока логистики, переработки и сбыта «Газпром нефти». Каждую секунду сюда поступают 180 тыс. сигналов. Человеку только на просмотр этой информации потребовалось бы около недели. Цифровой мозг Центра делает это моментально: в режиме реального времени отслеживает качество продукции и количество нефтепродуктов по всей цепочке — от выхода с НПЗ до конечного потребителя.

Стратегическая же цель Центра в том, чтобы, используя технологии и возможности Индустрии 4.0, радикально повысить эффективность сегмента downstream. То есть не просто управлять процессами — это можно делать и в рамках традиционных систем, а сделать эти процессы наиболее эффективными: за счет прогнозной аналитики и искусственного интеллекта на каждом этапе бизнеса сокращать потери, оптимизировать процессы и предотвращать убытки.


В ближайшее время Центр должен научиться решать несколько ключевых задач, влияющих на эффективность управления бизнесом. В том числе прогнозировать будущее на 60 дней вперед: как поведет себя рынок через два месяца, сколько нефти нужно будет переработать, чтобы удовлетворить спрос на бензин в актуальный момент времени, в каком состоянии будет оборудование, смогут ли установки справиться с предстоящей нагрузкой и нужен ли им ремонт. При этом в ближайшие два года Центр должен выйти на 50%-ную мощность и начать отслеживать, анализировать и прогнозировать количество запасов нефтепродуктов на всех нефтебазах и ТЗК компании; в автоматическом режиме мониторить более 90% параметров производства; анализировать надежность более 40% технологического оборудования и разрабатывать мероприятия, предупреждающие потери нефтепродуктов и снижение их качества.

К 2020 году «Газпром нефть» ставит цель выйти на 100% возможностей Центра управления эффективностью. Среди заявленных показателей — анализ надежности всего оборудования, предупреждение потерь по качеству и количеству продукции, предиктивное управление технологическими отклонениями.

Дарья Козлова, старший консультант VYGON Consulting: «В целом интегрированные решения приносят существенный экономический эффект для отрасли. К примеру, по оценкам Accenture, экономический эффект от цифровизации может составить более 1 трлн $. Поэтому когда речь идёт о крупных вертикально-интегрированных компаниях, то внедрение интегрированных решений весьма оправдано. Но оно и оправдано для небольших компаний, так как повышение эффективности может высвободить им дополнительные средства за счёт снижения затрат, увеличить эффективность управления оборотным капиталом и т. д. ».

Обсудить 0

Похожие статьи