Экономическая модель. Понятия модели и моделирования

17.08.2019

По мере развития человечества происходит структуризация и оптимизация наличных у нас данных и возможностей их использования. При этом ключевой является информационная модель. На сегодняшний день она является существенно недооценённым инструментов планирования. Чтобы сломать эту тенденцию, необходимо рассказывать аудитории о её возможностях, чем и займётся автор этой статьи.

Что называют информационной моделью? Описание и структура

Так называют модель объекта. Она представлена в виде информации, что описывает существенные для конкретного случая параметры и переменные, связи между ними, а также входы и выходы для данных, при подаче на которые можно влиять на получаемый результат. Их нельзя увидеть или потрогать. В целом они не имеют материального воплощения, поскольку строятся на использовании одной информации. Сюда относятся данные, что характеризуют состояния объекта, существенные свойства, процессы и явления, а также связь с внешней средой. Это процесс называется описанием информационной модели. Это самый первый шаг проработки. Полноценной информационной моделью является обычно сложная разработка, которая может иметь много структур, что в рамках статьи сведены в три основных типа:

  1. Описательная. Сюда относятся модели, которые создаются на естественных языках. Они могут иметь любую произвольную структуру, которая удовлетворит составляющего их человека.
  2. Формальная. Сюда относят модели, которые создаются на формальных языках (научных, профессиональных или специализированных). В качестве примеров можно привести такое: все виды таблиц, формул, граф, карт, схемы и прочих подобных структурных формаций.
  3. Хроматические. Сюда относят модели, которые были созданы с применением естественного языка семантики цветовых концептов, а также их онтологических предикатов. Под последними понимают возможность распознавания значений цветовых канонов и смыслов. В качестве примера хроматических моделей можно навести те, что были построены с использованием соответствующей теоретической базы и методологии.

Как видим, основной составляющей являются данные, их структура и процедура обработки. Развивая мысль, можно дополнить, что информационная модель является схемой, в которой описана суть определённого объекта, а также все необходимые для его исследования процедуры. Для более полного описания характеристик используют переменные. Они замещают атрибут цели, которая прорабатывается. И здесь имеет значительную важность структура информационной модели.

Давайте приведём пример. Описание веника и инструкция по его использованию является информационной моделью для уборщика. Но это не всё. Описание и технологический процесс изготовления веника, изложений в соответствующей документации, является информационной моделью и алгоритмом, по которому его делает производитель. Как видите, отражаются наиболее важные свойства объекта. В действительности, конечно, информационная модель – это лишь приближенное описание. В результате можно сказать, что эти данные, с помощью которых осуществляется познание реальности, являются относительно истинными.

Общая классификация

Какие информационные модели существуют? Классификация сформирована на основе самого определения:

  1. Зависимо от количества значений переменных они делятся на динамические и статистические.
  2. По способу описания бывают знаковыми, натурными, формализованными.
  3. Зависимо от особенностей конструирования переменных делятся на графовые, графические, идеографические, текстовые, алгоритмические, табличные.

Виды информационных моделей

Исследованию поддаётся как физический, так и идеальный объект анализа. Это приводит к тому, что существование одинаковых информационных моделей, к которым можно подойти с тем же самых набором инструментариев, нет. Поэтому приходится использовать отдельные подходы и что-то особенное, что позволит изучить или исследовать предметную область. На основании таких суждений принято выделять три виды информационных моделей:

  1. Математические. Благодаря им изучают явления и процессы, что являются представленными в виде наиболее общих математических закономерностей или абстрактных объектов, которых достаточно, чтобы выразить законы природы или внутренние свойства наблюдаемого. Также применяются для подтверждения правила логических рассуждений.
  2. Компьютерные. Используется для описания совокупности переменных, что представлены абстрактными типами данных и поданы в соответствии с выдвигаемыми требованиями среды обработки ЭОМ.
  3. Материальные. Так называют предметное отражение объекта, сохраняющее геометрические и физические свойства (глобус, игрушки, манекены). Также к материальным моделям относят химические опыты.

Типы информационных моделей

Поскольку они являются совокупностью информации, то часто характеризуют состояние и свойства объекта, явления, процесса и их взаимодействие с окружающим их миром. Зависимо от того, как они представлены и выражены, выделяют два типы информационных моделей:

  1. Вербальные. Они создаются как результат умственной деятельности человека и представляются в словесной форме или при помощи жестикуляции.
  2. Знаковые. Для их выражения используются рисунки, схемы, графики, формулы.

Что необходимо для их создания?

Информация, причём как можно более точная. Чем больше предоставленные данные отвечают реальным показателем, тем эффективней применяется модель на практике. Чтобы разработать модель, сначала проводится сбор всей возможной информации. Она отсеивается и остаётся та, что предоставляет наибольшую ценность для исследователя. Проводится анализ предоставляющей интерес информации, на основании которого она структурируется. И зависимо от целей исследователь из отдельных блоков данных строит необходимую модель. Потом проводится поиск ошибок и ликвидация противоречий. Когда этот шаг закончен, то разработка информационной модели тоже считается завершённой.

Где применяются информационные модели?

Везде. Только такое обозначение не всегда применяется на практике из-за его излишней научности. Инструкции для компьютеров, телевизоров, телефонов, использованных бутылей воды, автомобильных аккумуляторов – вот лишь отдельные примеры. Информационной моделью является и технология производства комбайнов, тракторов, самолётов, грузовиков, прицепов, строений. Как видите, для неё есть применение и в быту, и в промышленности. Но сам термин «информационная модель» больше применяется в последней сфере из-за того, что здесь протекают более сложные процессы с участием большого количества людей.

Пример создания

Давайте попробуем детально проанализировать, что такое информационная модель. Это не так сложно, как может показаться. В качестве примера возьмём клавиатуру. Можно определить два направления относительно пользователя: описание и вопросы настройки. Во-первых, производительно пишет в аннотации, какой это хороший продукт, что он может, как с ним удобно работать. Анализирует передовые технологии, применённые при её создании, экологические преимущества и прочие подобные вещи. Главное – понравиться. Но лгать всё же не надо, поскольку это будет иметь нежелательные последствия.

Во-вторых, прорабатываются вопросы настройки. Можно ответить на них с помощью картинок на листке-вкладыше, где будет изображено, куда вставить разъём клавиатуры в компьютер. Также может прилагаться небольшой ремонтный комплект, инструкция по его использованию, особенности построение устройства, как его следует разбирать в случае возникновения определённых проблем – и ряд других вопросов, которые можно только продумать и дать ответ пользователям на них.

Особенности

Чем больше данных, тем описание информационной модели будет сложнее. Это две стороны медали: следует выбирать между точностью и функциональностью. Чтобы не перегибать палку или избежать слабой проработки вопроса следует заранее очертить задачи для проработки и глубину их разбора. Следует позаботиться обо всех имеющихся моментах, поскольку любая проблема, допущенная на этом этапе, в будущем только добавит работы и необходимость затраты денежных средств на устранение конфликта.

Изучение аспектов информационного моделирования

С научной точки зрения этим вопросом занимается кибернетика. Поэтому, если у вас есть желание углубить свои познания в этой области, запаситесь несколькими недавно вышедшими книгами и внимательно изучите их. Хотя можно и по-другому осведомиться, что такое простейшие информационные модели. Информатика может дать необходимый базис, но для получения всей полноты знаний нужна именно кибернетика. В её рамках можно будет ознакомиться не только с детализированными принципами моделирования, но и узнать про существующие разработки, а также возможности их применения.

Заключение

Информационная модель – это важный и полезный инструмент, если правильно его использоваться. При создании сложных систем (например, программного обеспечения) он позволяет проработать основные технические вопросы и устранить возможные не состыковки. В рамках статьи были размещены знания про то, какие информационные модели есть, как они создаются и другая полезная информация, что пригодится на практике.

Каждый современный человек ежедневно сталкивается с понятиями «объект» и «модель». Примерами объектов являются как предметы, доступные для осязания (книга, земля, стол, ручка, карандаш), так и недоступные (звезды, небо, метеориты), предметы художественного творчества и умственной деятельности (сочинение, стихотворение, решение задачи, картина, музыка и другие). Причем каждый объект человеком воспринимается только как единое целое.

Объект. Виды. Характеристики

Исходя из вышесказанного, можно сделать вывод, что объект является частью внешнего мира, которая может быть воспринята в качестве единого целого. Каждый предмет восприятия имеет свои индивидуальные характеристики, отличающие его от других (форма, сфера использования, цвет, запах, размер и так далее). Важнейшей характеристикой объекта является название, но для полного качественного его описания одного названия недостаточно. Чем более полно и подробно описан объект, тем легче процесс его распознавания.

Модели. Определение. Классификация

В своей деятельности (образовательной, научной, художественной, технологической) человек ежедневно использует уже существующие и создает новые модели внешнего мира. Они позволяют сформировать впечатление о процессах и объектах, недоступных для непосредственного восприятия (очень маленькие или, наоборот, очень большие, очень медленные или очень быстрые, очень далекие и так далее).

Итак, модель - это некоторый объект, отражающий важнейшие особенности изучаемого явления, объекта либо процесса. Может существовать несколько вариаций моделей одного и того же объекта, также как несколько объектов могут быть описаны одной единственной моделью. Например, подобная ситуация возникает в механике, когда различные тела с материальной оболочкой могут быть выражены то есть одинаковой моделью (человек, автомобиль, поезд, самолет).

Важно помнить, что ни одна модель не способна полноценно заменить изображаемый объект, так как она отображает только некоторые из его свойств. Но порой при решении определенных задач различных научных и промышленных течений описание внешнего вида модели может быть не просто полезным, но единственной возможностью представить и изучить особенности характеристик объекта.

Сфера применения предметов моделирования

Модели играют важную роль в различных сферах жизни человека: в науке, образовании, торговле, проектировании и других. Например, без их применения невозможны проектирование и сборка технических устройств, механизмов, электрических цепей, машин, зданий и так далее, так как без предварительных расчетов и создания чертежа выпуск даже простейшей детали невозможен.

Часто используются модели в образовательных целях. Они носят названия наглядных. Например, из географии представление о Земле как о планете человек получает, изучая глобус. Также актуальными наглядные модели являются и в других науках (химии, физике, математике, биологии и других).

В свою очередь, теоретические модели востребованы при изучении естественных и (биологии, химии, физики, геометрии). Они отражают свойства, поведение и строение объектов, подвергающихся изучению.

Моделирование как процесс

Моделирование - метод познавания, включающий в себя исследование существующих и создание новых моделей. Предметом познания данной науки является модель. ранжируются в зависимости от различных свойств. Как известно, любой объект имеет множество характеристик. При создании определенной модели выделяются лишь наиболее важные для решения поставленной задачи.

Процессом создания моделей является художественное творчество во всем своем разнообразии. В связи с этим фактически каждое художественное или литературное произведение можно рассматривать в качестве модели реального объекта. Например, картины являются моделями реальных пейзажей, натюрмортов, людей, литературные произведения - моделями человеческих жизней и так далее. Например, при создании модели самолета с целью изучения его аэродинамических качеств важно отразить в ней геометрические свойства оригинала, но абсолютно неважен его цвет.

Одни и те же объекты различными науками изучаются с разных точек зрения, а соответственно, их виды моделей для изучения будут также отличаться. Например, физика изучает процессы и результаты взаимодействия объектов, химия - химический состав, биология - поведение и строение организмов.

Модель относительно временного фактора

Относительно времени модели делятся на два вида: статические и динамические. Примером первого вида является единоразовое обследование человека в клинике. Оно отображает картину его состояния здоровья на данный момент, в то время как его медицинская карта будет моделью динамической, отражающей изменения, происходящие в организме на протяжении определенного периода времени.

Модель. Виды моделей относительно формы

Как уже понятно, модели могут различаться по разным характеристикам. Так, все ныне известные виды моделей данных можно условно разделить на два основных класса: материальные (предметные) и информационные.

Первый вид передает физические, геометрические и иные свойства объектов в материальной форме (анатомический муляж, глобус, макет здания и так далее).

Виды разнятся по форме реализации: знаковая и образная. Образные модели (фотографии, рисунки и другое) являются зрительными реализациями объектов, зафиксированными на определенном носителе (фото-, кинопленке, бумажном или цифровом).

Они широко применяются в образовательном процессе (плакаты), при изучении различных наук (ботаника, биология, палеонтология и других). Знаковые модели - это реализации объектов в виде символов одной из известных языковых систем. Они могут быть представлены в виде формул, текста, таблиц, схем и так далее. Существуют случаи, когда, создавая знаковую модель (виды моделей передают конкретно то содержание, которое требуется для изучения определенных характеристик объекта), используют сразу несколько известных языков. Примером в данном случае выступают различные графики, диаграммы, карты и подобное, где используются как графические символы, так и символы одной из языковых систем.

С целью отражения сведений из различных сфер жизни применяются три основных вида информационных моделей: сетевые, иерархические и табличные. Из них наиболее популярным является последний, применяемый для фиксации различных состояний объектов и характерных для них данных.

Табличная реализация модели

Данный вид информационной модели, как уже было сказано выше, является наиболее известным. Выглядит он следующим образом: это обычная, состоящая из строк и столбцов таблица прямоугольной формы, графы которой заполнены символами одного из известных знаковых языков мира. Применяются табличные модели с целью характеристики объектов, обладающих одинаковыми свойствами.

С их помощью в различных научных сферах могут быть созданы как динамические, так и статические модели. Например, таблицы, содержащие математические функции, различные статистические данные, расписания поездов и так далее.

Математическая модель. Виды моделей

Отдельной разновидностью информационных моделей являются математические. Все виды обычно состоят из уравнений, написанных на языке алгебры. Решение данных задач, как правило, основывается на процессе поиска равнозначных преобразований, которые способствуют выражению переменной величины в виде формулы. Существуют также для некоторых уравнений и точные решения (квадратные, линейные, тригонометрические и так далее). Как следствие, для их решения приходится применять методы решения с приближенной заданной точностью, иначе говоря, такие виды математических данных, как числовой (метод половинного деления), графический (построение графиков) и другие. Метод половинного деления целесообразно использовать лишь при условии, что известен отрезок, где функция при определенных значениях принимает полярные значения.

А метод построения графика является унифицированным. Его можно использовать как в вышеописанном случае, так и в ситуации, когда решение может быть только приближенным, а не точным, в случае так называемого "грубого" решения уравнений.

Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.

Одни и те же устройства, процессы, явления и т. д. (далее - «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи. Ниже приведена классификация и дана характеристика наиболее общих видов моделей.

Требования к моделям

Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

  • адекватность , то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадии проектирования , когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например, метод последовательных приближений;
  • точность , то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;
  • универсальность , то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения бо́льшего круга задач;
  • целесообразная экономичность , то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, - результат компромисса между отпущенными ресурсами и особенностями используемой модели;
  • и др.
  • аналитическим путем, то есть выводом из физических законов, математических аксиом или теорем;
  • экспериментальным путем, то есть посредством обработки результатов эксперимента и подбора аппроксимирующих (приближенно совпадающих) зависимостей.

Математические модели более универсальны и дешевы, позволяют поставить «чистый» эксперимент (то есть в пределах точности модели исследовать влияние какого-то отдельного параметра при постоянстве других), прогнозировать развитие явления или процесса, отыскать способы управления ими. Математические модели - основа построения компьютерных моделей и применения вычислительной техники.

Результаты математического моделирования нуждаются в обязательном сопоставлении с данными физического моделирования - с целью проверки получаемых данных и для уточнения самой модели. С другой стороны, любая формула - это разновидность модели и, следовательно, не является абсолютной истиной , а всего лишь этап на пути её познания.

Промежуточные виды моделей

К промежуточным видам моделей можно отнести:

Трёхмерная компьютерная модель

  • графические модели . Занимают промежуточное место между эвристическими и математическими моделями. Представляют собой различные изображения:
    • эскизы . Этому упрощенному изображению некоторого устройства в значительной степени присущи эвристические черты;
    • чертежи . Здесь уже конкретизированы внутренние и внешние связи моделируемого (проектируемого) устройства, его размеры;
    • полигональная модель в компьютерной графике как образ объекта, «сшитый» из множества многоугольников.
  • аналоговые модели . Позволяют исследовать одни физические явления или математические выражения посредством изучения других физических явлений, имеющих аналогичные математические модели;
  • и др.

Существует и другие виды «пограничных» моделей, например, экономико-математическая и т. д.

Модель принципа действия

Модель принципа действия (принципиальная модель , концептуальная модель ) характеризует самые существенные (принципиальные) связи и свойства реальной системы. Это - основополагающие физические, биологические, химические, социальные и т. п. явления, обеспечивающие функционирование системы, или любые другие принципиальные положения, на которых базируется планируемая деятельность или исследуемый процесс. Стремятся к тому, чтобы количество учитываемых свойств и характеризующих их параметров было небольшим (оставляют наиболее важные), а обозримость модели - максимальной, так чтобы трудоемкость работы с моделью не отвлекала внимание от сущности исследуемых явлений. Как правило, описывающие подобные модели параметры - функциональные, а также физические характеристики процессов и явлений. Принципиальные исходные положения (методы, способы, направления и т. д.) лежат в основе любой деятельности или работы.

Так, принцип действия технической системы - это последовательность выполнения определенных действий, базирующихся на определенных физических явлениях (эффектах), которые обеспечивают требуемое функционирование этой системы. Примеры моделей принципа действия: фундаментальные и прикладные науки (например, принцип построения модели, исходные принципы решения задачи), общественная жизнь (например, принципы отбора кандидатов, оказания помощи), экономика (например, принципы налогообложения, исчисления прибыли), культура (например, художественные принципы).

Работа с моделями принципа действия позволяет определить перспективные направления разработки (например, механика или электротехника) и требования к возможным материалам (твердые или жидкие, металлические или неметаллические, магнитные или немагнитные и т. д.).

Правильный выбор принципиальных основ функционирования предопределяет жизнеспособность и эффективность разрабатываемого решения. Так, сколько бы ни совершенствовали конструкцию самолета с винтомоторным двигателем, он никогда не разовьет сверхзвуковую скорость, не говоря уже о полетах на больших высотах. Только использование другого физического принципа, например, реактивного движения и созданного на его основе реактивного двигателя , позволит преодолеть звуковой барьер.

Графическим представлением моделей принципа действия служат блок-схема , функциональная схема , принципиальная схема .

Например, для технических моделей эти схемы отражают процесс преобразования вещества, как материальной основы устройства, посредством определенных энергетических воздействий с целью реализации потребных функций (функционально-физическая схема ). На схеме виды и направления воздействия, например, изображаются стрелками, а объекты воздействия - прямоугольниками.

Структурная модель

Четкого определения структурной модели не существует. Так, под структурной моделью устройства могут подразумевать:

  • структурную схему , которая представляет собой упрощенное графическое изображение устройства, дающее общее представление о форме, расположении и числе наиболее важных его частей и их взаимных связях;
  • топологическую модель , которая отражает взаимные связи между объектами, не зависящие от их геометрических свойств.

Под структурной моделью процесса обычно подразумевают характеризующую его последовательность и состав стадий и этапов работы, совокупность процедур и привлекаемых технических средств, взаимодействие участников процесса.

Например, - это могут быть упрощенное изображение звеньев механизма в виде стержней, плоских фигур (механика), прямоугольники с линиями со стрелками (теория автоматического управления , блок-схемы алгоритмов), план литературного произведения или законопроекта и т. д. Степень упрощения зависит от полноты исходных данных об исследуемом устройстве и потребной точности результатов. На практике виды структурных схем могут варьироваться от несложных небольших схем (минимальное число частей, простота форм их поверхностей) до близких к чертежу изображений (высокая степень подробности описания, сложность используемых форм поверхностей).

Возможно изображение структурной схемы в масштабе. Такую модель относят к структурно-параметрической . Её примером служит кинематическая схема механизма, на которой размеры упрощенно изображенных звеньев (длины линий-стержней, радиусы колес-окружностей и т. д.) нанесены в масштабе, что позволяет дать численную оценку некоторым исследуемым характеристикам.

Для повышения полноты восприятия на структурных схемах в символьном (буквенном, условными знаками) виде могут указывать параметры, характеризующие свойства отображаемых систем. Исследование таких схем позволяет установить соотношения (функциональные, геометрические и т. п.) между этими параметрами, то есть представить их взаимосвязь в виде равенств f (x 1 , х 2 , …) = 0, неравенств f (x 1 , х 2 , …) > 0 и в иных выражениях.

Параметрическая модель

Под параметрической моделью понимается математическая модель, позволяющая установить количественную связь между функциональными и вспомогательными параметрами системы. Графической интерпретацией такой модели в технике служит чертеж устройства или его частей с указанием численных значений параметров.

Классификация моделей

По целям исследований

В зависимости от целей исследования выделяют следующие модели:

  • функциональные . Предназначены для изучения особенностей работы (функционирования) системы, её назначения во взаимосвязи с внутренними и внешними элементами;
  • функционально-физические . Предназначены для изучения физических (реальных) явлений, используемых для реализации заложенных в систему функций;
  • модели процессов и явлений , такие как кинематические, прочностные, динамические и другие. Предназначены для исследования тех или иных свойств и характеристик системы, обеспечивающих её эффективное функционирование.

По особенностям представления

С целью подчеркнуть отличительную особенность модели их подразделяют на простые и сложные, однородные и неоднородные, открытые и закрытые, статические и динамические, вероятностные и детерминированные и т. д. Стоит отметить, что когда говорят, например, о техническом устройстве как простом или сложном, закрытом или открытом и т. п., в действительности подразумевают не само устройство, а возможный вид его модели, таким образом подчеркивая особенность состава или условий работы.

  • Четкого правила разделения моделей на сложные и простые не существует. Обычно признаком сложных моделей служит многообразие выполняемых функций, большое число составных частей, разветвленный характер связей, тесная взаимосвязь с внешней средой, наличие элементов случайности, изменчивость во времени и другие. Понятие сложности системы - субъективно и определяется необходимыми для его исследования затратами времени и средств, потребным уровнем квалификации, то есть зависит от конкретного случая и конкретного специалиста.
  • Разделение систем на однородные и неоднородные проводится в соответствии с заранее выбранным признаком: используемые физические явления, материалы, формы и т. д. При этом одна и та же модель при разных подходах может быть и однородной, и неоднородной. Так, велосипед - однородное механическое устройство, поскольку использует механические способы передачи движения, но неоднородное по типам материалов, из которых изготовлены отдельные части (резиновая шина, стальная рама, пластиковое седло).
  • Все устройства взаимодействуют с внешней средой, обмениваются с нею сигналами, энергией, веществом. Модели относят к открытым , если их влиянием на окружающую среду или воздействием внешних условий на их состояние и качество функционирования пренебречь нельзя. В противном случае системы рассматривают как закрытые , изолированные.
  • Динамические модели, в отличие от статических , находятся в постоянном развитии, их состояние и характеристики изменяются в процессе работы и с течением времени.
  • Характеристики вероятностных (иными словами, стохастических ) моделей случайным образом распределяются в пространстве или меняются во времени. Это является следствием как случайного распределения свойств материалов, геометрических размеров и форм объекта, так и случайного характера воздействия внешних нагрузок и условий. Характеристики детерминированных моделей заранее известны и точно предсказуемы.

Знание этих особенностей облегчает процесс моделирования, так как позволяет выбрать вид модели, наилучшим образом соответствующей заданным условиям. Этот выбор основывается на выделении в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или предшествующим опытом. Наиболее часто в процессе моделирования ориентируются на создание простой модели, что позволяет сэкономить время и средства на её разработку. Однако повышение точности модели, как правило, связано с ростом её сложности, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и потребной точности и указывает на предпочтительный вид модели.

Ссылки

Литература

  • Хорошев А.Н. Введение в управление проектированием механических систем: Учебное пособие. - Белгород, 1999. - 372 с. -

При использовании метода моделирования свойства и поведение объекта изучают путем применения вспомогательной системы – модели, находящейся в определенном объективном соответствии с исследуемым объектом.

Под объектом исследования понимается либо некоторая система, элементы которой в процессе достижения конечной цели реализуют один или несколько процессов, либо некоторый процесс, реализуемый элементами одной или нескольких систем. В связи с этим в дельнейшем тексте термины «модель объекта», «модель системы», «модель процесса» следует воспринимать как эквивалентные.

Представления о тех или иных свойствах объектов, их взаимосвязях формируются исследователем в виде описания этих объектов на обычном языке, в виде рисунков, графиков, формул или реализуются в виде макетов и других устройств. Подобные способы описания обобщаются в едином понятии – модель , а построение и изучение моделей называетсямоделированием .

Заслуживает предпочтения следующее определение: модель – объект любой природы, который создается исследователем с целью получения новых знаний об объекте-оригинале и отражает только существенные (с точки зрения разработчика) свойства оригинала.

Модель считается адекватной объекту-оригиналу, если она с достаточной степенью приближения на уровне понимания моделируемого процесса исследователем отражает закономерности процесса функционирования реальной системы во внешней среде.

Модели позволяют вынести упрощенное представление о системе и получить некоторые результаты намного проще, чем при изучении реального объекта. Более того, гипотетически модели объекта могут быть исследованы и изучены перед тем, как объект будет создан.

В практике исследования производственно-экономических объектов модели могут применяться для самых разных целей, что вызывает использование моделей различных классов. Построение одной-единственной математической модели для сложной производственной системы практически не представляется возможным без разработки вспомогательных моделей. Поэтому, как правило, при создании конечной математической модели исследуемого объекта строят частные вспомогательные модели, отражающие ту или иную информацию об объекте, имеющуюся у разработчика на данном этапе построения модели.

В основе моделирования лежит теория подобия , которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.

Классификационные признаки. В качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные. В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. В основе приближенного моделирования лежит приближенное подобие, при котором некоторые стороны функционирования реального объекта не моделируются совсем. Классификация видов моделирования системS приведена на рис.1.1.

В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные.Детерминированное моделирование отображает детерминированные процессы, т.е. процессы, в которых предполагается отсутствие всяких случайных воздействий;стохастическое моделирование отображает вероятностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характеристики, т.е. набор однородных реализаций.Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, адинамическое моделирование отражает поведение объекта во времени.Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, адискретно-непрерывное моделирование используется для тех случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S ) можно выделить мысленное и реальное моделирование.

Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне условий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому эксперименту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

Рис. 1.1. Классификация видов моделирования систем

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, отображающие явления и процессы, протекающие в объекте. В основугипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей.

Аналоговое моделирование основывается на применении аналогий различных уровней. Наивысшим уровнем является полная аналогия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уровней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование . Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, однако обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте. Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализоватьзнаковое моделирование и с помощью знаков отображать набор понятий – составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образует из наборов входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус – словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову могут соответствовать несколько понятий.

Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков и символов.

Математическое моделирование. Для исследования характеристик процесса функционирования любой системыS математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения к действительности. Математическое моделирование для исследования характеристик процесса функционирования систем можно разделить на аналитическое, имитационное и комбинированное.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродифференциальных, конечно-разностных и т.п.) или логических условий.Аналитическая модель может быть исследована следующими методами: а) аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; б) численным, когда, не умея решать уравнения в общем виде, стремятся получить числовые результаты при конкретных начальных данных; в) качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, оценить устойчивость решения).

Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы S . Однако такие зависимости удается получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности, которые часто бывают непреодолимыми. Поэтому, желая использовать аналитический метод, в этом случае идут на существенное упрощение первоначальной модели, чтобы иметь возможность изучить хотя бы общие свойства системы. Такое исследование на упрощенной модели аналитическим методом помогает получить ориентировочные результаты для определения более точных оценок другими методами. Численный метод позволяет исследовать по сравнению с аналитическим методом более широкий класс систем, но при этом полученные решения носят частный характер. Численный метод особенно эффективен при использовании ЭВМ.

В отдельных случаях исследования системы могут удовлетворить и те выводы, которые можно сделать при использовании качественного метода анализа математической модели. Такие качественные методы широко используются, например, в теории автоматического управления для оценки эффективности различных вариантов систем управления.

В настоящее время распространены методы машинной реализации исследования характеристик процесса функционирования больших систем. Для реализации математической модели на ЭВМ необходимо построить соответствующий моделирующий алгоритм.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системыS во времени, причем имитируются элементарные явления, составляющие процесс с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системыS .

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование – наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапах ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S , Являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом,методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, аметодом статистических испытаний (Монте-Карло) – численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S , включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска варианта системы. Бале в методологии машинного моделирования будем различать два основных раздела: статику и динамику, – основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.

Другие виды моделирования . Приреальном моделировании используется возможность исследования различных характеристик либо на реальном объекте целиком, либо на его части. Такие исследования могут проводиться как на объектах, работающих в нормальных режимах, так и при организации специальных режимов для оценки интересующих исследователя характеристик (при других значениях переменных и параметров, в другом масштабе времени и т.п.). Реальное моделирование является наиболее адекватным, но при этом его возможности с учетом особенностей реальных объектов ограничены. Например, проведение реального моделирования АСУ предприятием потребует, во-первых, создания такой АСУ, а во-вторых, проведения экспериментов с управляемым объектом, т.е. предприятием, что в большинстве случаев невозможно.

К основным разновидностям реального моделирования относятся:

    Натурное моделирование , под которым понимают проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удается выявить закономерности протекания реального процесса. Необходимо отметить, что такие разновидности натурного эксперимента, как производственный эксперимент и комплексные испытания, обладают высокой степенью достоверности.

    Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием.

С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Подцифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Поданалого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины.

Особое место в моделировании занимает кибернетическое моделирование , в котором отсутствует непосредственное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как «черный ящик», имеющий ряд входов и выходов, и моделируют некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отражение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построения имитационной модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту функцию в виде некоторых операторов связи между входом и выходом и воспроизвести на имитационной модели данную функцию, причем на базе совершенно иных математических соотношений и, естественно, иной физической реализации процесса.

Целевое назначение модели. По целевому назначению модели подразделяются на модели структуры, функционирования и стоимостные (модели расхода ресурсов).

Модели структуры отображают связи между компонентами объекта и внешней средой и подразделяются на:

    каноническую модель , характеризующую взаимодействие объекта с окружением через входы и выходы;

    модель внутренней структуры , характеризующую состав компонентов объекта и связи между ними;

    модель иерархической структуры (дерево системы), в которой объект (целое) расчленяется на элементы более низкого уровня, действия которых подчинены интересам целого.

Модель структуры обычно представляется в виде блок-схемы, реже графов и матриц связей.

Модели функционирования включают широкий спектр символических моделей, например:

модель жизненного цикла системы, описывающая процессы существования системы от зарождения замысла ее создания до прекращения функционирования;

модели операций, выполняемых объектом и представляющих описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных функций объекта. Так, в состав моделей операций могут входить модели надежности, характеризующие выход элементов системы из строя под влиянием эксплуатационных факторов, и модели живучести факторов, характеризующие выход элементов системы из строя под влиянием целенаправленного воздействия внешней среды;

информационные модели, отображающие во взаимосвязи источники и потребители информации, виды информации, характер ее преобразования, а также временные и количественные характеристики данных;

процедурные модели, описывающие порядок взаимодействия элементов исследуемого объекта при выполнении различных операций, например обработки материалов, деятельности персонала, использования информации, в том числе и реализации процедур принятия управленческих решений;

временные модели, описывающие процедуру функционирования объекта во времени и распределение ресурса «время» по отдельным компонентам объекта.

Стоимостные модели, как правило, сопровождают модели функционирования объекта и по отношению к ним вторичны, «питаются» от них информацией и совместно с ними позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

При анализе и оптимизации производственно-экономических объектов проводится объединение построенных математических функциональных моделей с математическими стоимостными моделями в единую экономико-математическую модель.

Насколько можно судить по литературным источникам общепринятой классификации моделей экономических систем пока не существует. Однако представляется достаточно полезной классификация математических моделей экономических систем, приведенная в книге Т. Нейлора «Машинные имитационные эксперименты с моделями экономических систем» (1971 г.) (рис. 1.2).

Рис.1.2. Классификация экономических моделей

Экономико-математической моделью (ЭММ) называется выражение, состоящее из совокупности связанных между собой математическими зависимостями (формулами, уравнениями, неравенствами, логическими условиями величин – факторов, все или часть которых имеют экономический смысл. По своей роли в ЭММ эти факторы целесообразно подразделить на параметры и характеристики (рис. 1.3).

Рис. 1.3. Классификация факторов по их роли в ЭВМ

При этом параметрами объекта называются факторы, характеризующие свойства объекта или составляющих его элементов. В процессе исследования объекта ряд параметров может изменяться, поэтому они называютсяпеременными, которые в свою очередь подразделяются на переменные состояния и переменные управления. Как правило, переменные состояния объекта являются функцией переменных управления и воздействий внешней среды.Характеристиками (выходными характеристиками) называются интересующие исследователя непосредст-венные конечные результаты функционирования объекта (естественно, что выходные характеристики являются переменными состояния). Соответственно характеристики внешней среды описывают свойства внешней среды, которые сказываются на процессе и результате функционирования объекта. Значения ряда факторов, определяющие начальное состояние объекта или внешней среды, называютсяначальными условиями.

При рассмотрении ЭММ оперируют следующими понятиями: критерий оптимальности, целевая функция, система ограничений, уравнения связи, решение модели.

Критерием оптимальности называется некоторый показатель, имеющий экономическое содержание, служащий формализацией конкретной цели управления и выражаемый при помощи целевой функции через факторы модели. Критерий оптимальности определяет смысловое содержание целевой функции. В ряде случаев в качестве критерия оптимальности может выступать одна из выходных характеристик объекта.

Целевая функция математически связывает между собой факторы модели, ее значение определяется значениями этих величин. Содержательный смысл целевой функции придает только критерий оптимальности.

Не следует смешивать критерий оптимальности и целевую функцию. Так, например, критерий прибыли и стоимости произведенной продукции могут описываться одной и той же целевой функцией:

, (1.1)

где
– номенклатура производимой продукции;– объем выпускаi -ой номенклатуры;– прибыль от выпуска единицыi -ой номенклатуры или стоимость единицыi -ой номенклатуры в зависимости от смысла критерия оптимальности.

Критерий прибыли может рассчитываться и по нелинейной целевой функции:

, (1.2)

Если прибыль от выпуска единицы i -ой номенклатуры является функцией от объема выпуска.

При наличии нескольких критериев оптимальности каждый из них будет формализован своей частной целевой функцией , где
– число критериев оптимальности. Для однозначного выбора оптимального решения исследователь может сформулировать новую целевую функцию

Однако целевая функция может уже не нести экономического смысла, в этом случае критерий оптимальности для нее отсутствует.

Система ограничений определяет пределы, сужающие область осуществимых, приемлемых или допустимых решений и фиксирующие основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта.

Уравнения связи являются математической формализацией системы ограничений. Между понятиями «система ограничений» и «Уравнения связи» существует точно такая же аналогия, как между понятиями «критерий оптимальности» и «целевая функция»: различные по смыслу ограничения могут описываться одинаковыми уравнениями связи, а одно и то же ограничение в разных моделях записываться различными уравнениями связи.

Таким образом, именно критерий оптимальности и система ограничений в первую очередь определяют концепцию построения будущей математической модели, т.е. концептуальную модель, а их формализация, т.е. целевая функция и уравнения связи, представляют собой математическую модель.

Решением математической модели называется такой набор (совокупность) значений переменных, который удовлетворяет ее уравнениям связи. Решения, имеющие экономический смысл, называют структурно допустимыми. Модели, имеющие много решений, называются вариантными в отличие от безвариантных, имеющих одно решение. Среди структурно допустимых решений вариантной модели, как правило, находится одно решение, при котором целевая функция в зависимости от смысла модели имеет наибольшее или наименьшее значение. Такое решение, как и соответствующее значение целевой функции, называетсяоптимальным (в частности, наименьшим или наибольшим).

Использование ЭММ, особенно оптимальных, предполагает не только построение модели, соответствующей поставленной задаче, но и ее решение при помощи подходящего метода. В связи с этим иногда под моделированием (в узком смысле) понимается этап нахождения решения модели, т.е. вычисления значений исследуемых характеристик и определение оптимальности различных вариантов изучаемого объекта с целью выбора наилучшего варианта его построения и функционирования. Данный этап представляет собой реализацию и исследование ЭММ на определенном наборе вычислительных средств. Выбор метода решения оптимизационных ЭММ зависит от математической формы, связывающей факторы модели, наличия тех или иных признаков (учет динамики, учет стохастичности и т.д.). С точки зрения корректного выбора метода решения модели наиболее существенными признаками являются характер цели исследования, формализованность связей между параметрами и характеристиками, учет вероятностной природы объекта, а также фактора времени.

По характеру цели исследования ЭММ делятся на оптимизационные (нормативные) иописательные (дескриптивные или ЭММ прямого счета).

Характерной чертой оптимизационных моделей является наличие одной или нескольких целевых функций. При этом в первом случае оптимизационные ЭММ называются монокритериальными , а во втором –многокритериальными . В общем виде монокритериальная ЭММ может быть представлена следующей системой отношений:

где Е – критерий оптимальности объекта;– управляемые переменные,
;– неуправляемые факторы модели;
;– уравнения связи, представляющие собой формализацию системы ограничений,
;– целевая функция – формализованное выражение критерия оптимальности.

Выражение
означает, что в ограничениях может стоять любое из приведенных в фигурных скобках логических условий.

Решение модели, заданной соотношениями (1.4) и (1.5), заключается в нахождении совокупности значений переменных

,

Обращающий в max (илиmin ) целевую функциюЕ при заданных уравнениях связи.

Специфика конкретных задач управления производством определила разнообразие типов оптимизационных ЭММ. Это вызвало для ряда наиболее часто повторяющихся типов ситуаций разработку «стандартных» экономико-математических методов их описания, например, распределительные задачи различных классов, задачи управления запасами, ремонта и замены оборудования, проектирования сетей и выбора маршрутов и т.д.

Существенным признаком описательных моделей является отсутствие в них критерия оптимальности. Решение, даваемое ЭММ прямого счета, обеспечивает либо вычисление набора выходных характеристик объекта для одного или нескольких вариантов начальных условий и входных характеристик объекта, либо нахождение какой-либо совокупности значений в структурно допустимой области решений. Примеры типовых задач управления машиностроительным производством, решаемых с помощью описательных моделей, приведены в табл. 1.1.

Таблица 1.1. Примеры описательных моделей

Тип задачи

Вид модели

Математический метод решения

Задачи планирования без оптимизации (расчет объемов производства по видам продукции, увязка планов производства с ресурсами и т.п.)

Балансовые модели

Аппарат линейной алгебры, матричное исчисление

Задачи сетевого планирования и управление (СПУ) без оптимизации

Расчет по формулам модели СПУ

Аппарат теории графов

Задача учета и статистики (оперативный учет, получение различных форм отчетности и т.п.)

Расчет по формулам

Задачи контроля и анализа (анализ влияния и факторов, выявление тенденций, отслеживание отклонений и установление их причин)

Факторный анализ, дисперсионный анализ, регрессионный анализ

Задача создания нормативной базы

Статистические модели обработки реализаций случайных величин

Расчет параметров функционирования сложных систем с неформализованными связями.

Расчет по формулам имитационных моделей

Задачи прогнозирования

Модели регрессионного анализа, оценка параметров и проверка статистических гипотез

Факторный анализ, дисперсионный анализ, регрессионный анализ, аппарат математической статистики

В зависимости от степени формализованности связей f иg i между факторами моделей в выражениях (1.4) и (1.5) различаютаналитические иалгоритмические модели.

Аналитической формой записи называется запись математической модели в виде алгебраических уравнений или неравенств, не имеющих разветвлений вычислительного процесса при определении значений любых переменных состояния модели, целевой функции и уравнений связи. Если в математических моделях единственная целевая функцияf и ограниченияg j заданы аналитически, то подобные модели относятся к классу моделей математического программирования. Характер функциональных зависимостей, выраженных в функцияхf иg j , может быть линейным и нелинейным. Соответственно этому ЭММ делятся налинейные инелинейные , а среди последних в специальные классы выделяютсядробно -линейные ,кусочно-линейные ,квадратичные ивыпуклые модели.

Если мы имеем дело со сложной системой, то зачастую гораздо легче построить ее модель в виде алгоритма, показывающего отношения между элементами системы в процессе ее функционирования, задаваемые обычно в виде логических условий – разветвлений хода течения процесса. Математическое описание для элементов может быть очень простым, однако взаимодействие большого количества простых по математическому описанию элементов и делает эту систему сложной. Алгоритмически же можно описывать даже такие объекты, которые в силу их сложности или громоздкости в принципе не допускают аналитического описания. В связи с этим к алгоритмическим моделям относятся такие, в которых критерии и (или) ограничения описываются математическими конструкциями, включающими логические условия, приводящие к разветвлению вычислительного процесса. К алгоритмическим моделям относятся и так называемые имитационные модели – моделирующие алгоритмы, имитирующие поведение элементов изучаемого объекта и взаимодействие между ними в процессе функционирования.

В зависимости от того, содержит ли ЭММ случайные факторы, она может быть отнесена к классу стохастических илидетерминированных .

В детерминированных моделях ни целевая функцияf , ни уравнения связиg j не содержат случайных факторов. Следовательно, для данного множества входных значений модели на выходе может быть получен только один-единственный результат. Длястохастических ЭММ характерно наличие среди факторовмодели, описываемой соотношениями (1.4) и (1.5), таких, которые имеют вероятностную природу и характеризуются какими-либо законами распределения, причем среди функцийf иg j могут быть и случайные функции. Значения выходных характеристик в таких моделях могут быть предсказаны только в вероятностном смысле. Реализация стохастических ЭММ в большинстве случаев осуществляется на ЭВМ методами имитационного статистического моделирования.

Следующим признаком, по которому можно различать ЭММ, является связь с фактором времени. Модели, в которых входные факторы, а следовательно, и результаты моделирования явно зависят от времени, называются динамическими , а модели, в которых зависимость от времениt либо отсутствует совсем, либо проявляется слабо или неявно, называютстатическими . Интересны в этом отношении имитационные модели: по механизму функционирования они являются динамическими (в модели идет имитация работы объекта в течении некоторого периода времени), а по результатам моделирования – статическими (например, ищется средняя производительность объекта за моделируемый период времени).

Статические модели представляют собой известную степень приближения к реальным объектам и системам, функционирующим во времени. Во многих случаях степень такого приближения, проявляющаяся в допущениях о неизменности или различного рода усреднениях факторов во времени (косвенно или приблизительно учитывающих фактор времени в определенных границах его изменения), является достаточной для практического применения статических моделей.

от лат. modulus – мера, образец, норма) – любое сущее по отношению к любому другому сущему, имеющее общую с ним структуру и функции, независимо от различий по составу (содержанию), внешней форме, количеству (например, размеру).

Отличное определение

Неполное определение ↓

МОДЕЛЬ

франц. mod?le, от лат. modus -образец) - условный образ (изображение, схема, описание и т.п.) к.-л. объекта (или системы объектов). Служит для выражения отношения между человеч. знаниями об объектах и этими объектами; понятие М. широко применяется в семантике, логике, математике, физике, химии, кибернетике, лингвистике и др. науках и их (гл. обр. технич.) приложениях в различных, хотя и тесно связанных между собой, смыслах. Эти различные понимания могут быть извлечены из след. общего определения. Две системы объектов А и В наз. М. друг друга (или моделирующими одна другую), если можно установить такое гомоморфное отображение системы А на нек-рую систему А? и гомоморфное отображение В на нек-рую систему В?, что А?иВ? между собой изоморфны (см. Изоморфизм; данные в этой статье определения следует обобщить, рассматривая отношения не только между элементами, но и - в случае надобности - между подмножествами систем). Определенное т.о. отношение "быть M." есть рефлексивное, симметричное и транзитивное отношение, т.е. отношение типа эквивалентности (равенства, тождества); ему, в частности (при А=А? и В=В), удовлетворяют любые изоморфные друг другу системы. Понятие М. в науке обычно связывают с применением т.н. метода моделирования (см. Моделирование). В силу вытекающей из определения М. симметричности отношения между к.-л. объектом (системой) и его М. любую из попарно изоморфных систем мы в принципе с равным основанием можем называть М. другой. Напр., в живописи и скульптуре М. наз. изображаемый объект; сравнивая же между собой к.-л. предмет и его фотографию, мы считаем М. именно фотографию. Какая из двух моделирующих друг друга систем (в смысле данного выше определения) при естеств.-науч. моделировании будет выбрана в качестве объекта исследования, а какая в качестве его М., зависит от встающих перед исследователем конкретных познавательно-практич. задач. Вследствие этого обстоятельства, отраженного и в самой грамматич. структуре термина "моделирование", последний имеет нек-рую субъективную окраску (будучи часто связан с тем, к т о "моделирует"). Термин же "М.", лишенный этой окраски, естественнее понимать (а следовательно, и определять) независимо от различных возможных "моделирований". Иначе говоря, если понятие моделирования характеризует выбор средств исследования к.-л. системы, то понятие М. – отношение между существующими (в том или ином смысле) конкретными и (или) абстрактными системами. Отношение между М. и моделируемой системой зависит от совокупности тех свойств и отношений между объектами рассматриваемых систем, относительно к-рых определяется их изоморфизм и гомоморфизм. Хотя данное выше определение М. настолько широко, что при желании (рассматривая "тривиальный" гомоморфизм каждой системы на множество, состоящее из одного единств. элемента) можно любые две системы счесть М. одна другой, такая широта понятия М. никоим образом не затрудняет применения принципа моделирования в науч. исследовании, поскольку интересующие нас свойства и отношения в принципе всегда могут быть фиксированы. Т.о., понятия М. и моделирования, как и понятия изоморфизма и гомоморфизма, всегда определяются относительно нек-рой совокуп-н о с т и п р е д и к а т о в (свойств, отношений). Хотя отношение "быть М." симметрично и моделирующие друг друга системы, согласно определению, совершенно равноправны, при употреблении термина "М." почти всегда все же предполагается (часто неявно) нек-рое "моделирование" [напр., моделирование, применяемое в теоретических исследованиях для построения моделей средствами математич. и логич. символики (т.н. абстрактно-логич. моделирование), или моделирование, заключающееся в воспроизведении изучаемых явлений на специально сконструированных М. в эмпирич. науках (э к с п е р и м е н т а л ь н о е моделирование) ]. В зависимости от того, какая из двух сравниваемых систем фиксируется как предмет изучения, а какая в качестве ее М., термин "М." понимается в двух различных смыслах. В теоретич. науках (особенно в математике, физике) М. к.-л. системы обычно наз. др. систему, служащую описанием исходной системы на языке данной науки; напр., систему дифференц. ур-ний, описывающих протекание во времени к.-л. физич. процесса, наз. М. этого процесса. Вообще, М. – в этом смысле – к.-л. области явлений наз. науч. теорию, предназначенную для изучения явлений из этой области. Аналогично, в (математической) логике М. к.-л. содержат. теории часто наз. формальную систему (исчисление), и н т е р п р е т а ц и е й к-рой является эта теория. [Содержательность, о к-рой здесь идет речь, конечно, относительна; так, интерпретацией к.-л. формальной системы может быть и др. формальная система – см. Интерпретация; с др. стороны, и М. – в этом понимании – вовсе не обязательно должна быть полностью формализована (составляющие ее объекты могут сами рассматриваться с содержат. т.зр., как имеющие определ. смысл); существенным является лишь то, что понятия (термины) "М." истолковываются в терминах и н т е р п р е т а ц и и. ] Такой же характер имеет употребление термина "М." в лингвистике ("модели языка", играющие важную роль как в теоретико-лингвистич. исследованиях, так и в задачах, связанных с построением информационных языков, с разработкой машинного перевода и др.; см. Лингвистика математическая), теоретич. физике (напр., "модели ядра") и вообще во всех тех случаях, когда слово "М." служит синонимом для понятий "теория" и "научное описание". Не менее распространенным является такое употребление термина "М.", когда под М. понимается не описание, а то, что о п и с ы в а е т с я. При таком употреблении (опять-таки в математич. логике, в аксиоматич. построениях математики, в семантике и др.) термин "М." рассматривается как синоним термина "интерпретация", т.е. М. к.-л. системы соотношений наз. совокупность объектов, удовлетворяющих этой системе. Точнее говоря, синонимами при таком употреблении являются выражения "построить М." и "указать интерпретацию"; иначе говоря, интерпретацией к.-л. системы объектов обычно называют не саму ее M. (т. е. нек-рую др. с и с т е м у), а перечень т.н. с е м а н т и ч е с к и х п р а в и л "перевода" с "языка" моделируемой системы (напр., науч. теории) на "язык" М. Так, интерпретациями геометрии Лобачевского фактически послужили не сами по себе М., предложенные Пуанкаре, итал. ученым Э. Бельтрами и нем. ученым Ф. Клейном, а именно истолкования понятий геометрии Лобачевского в терминах этих М. Впрочем, с содержат. т.зр. выделение к.-л. М. теории в качестве ее интерпретации равносильно указанию семантич. правил, согласно к-рым элементы одной из М. теории рассматриваются в качестве интерпретации ее объектов. В тех же случаях, когда основным являются не содержательный, а строго формальный аспект понятий М. и интерпретации (в частности, в логич. семантике), эти понятия могут быть уточнены, напр., след. образом: Пусть А есть формула нек-рого исчисления (формальной системы) L. Результат замены всех входящих в А нелогич. констант (если таковые имеются) переменными соответств. типов (см. Типов теория, Предикатов исчисление) обозначим через А?. Класс предметов N, выполняющих формулу А? (класс предметов, по определению, выполняет данную формулу, если при такой подстановке имен этих предметов на места всех входящих в нее переменных, что имя одного и того же предмета подставляется на место различных вхождений одной и той же переменной, формула переходит в истинную формулу), - при соблюдении требования, чтобы тип каждого предмета был равен типу переменной, на место к-рой он подставляется, -наз. М. формулы А (или -?. предложения, выражаемого этой формулой). Аналогично, если дан класс формул К, то система S классов предметов, элементам каждого из к-рых приписан определ. тип, одновременно выполняющих - при соблюдении вышеуказ. условий - все формулы класса К? (получающегося из К так же, как А? из А), наз. М. этого класса формул [имея в виду это понятие М., нек-рые авторы для М. отдельной формулы (предложения) - или, аналогично, отдельного терма (понятия) - употребляют термин "полумодель" ]. Модель S считается М. всего исчисления L, если: 1) все аксиомы исчисления L входят в К (и, следовательно, выполняются системой S); 2) каждая формула из L, выводимая по правилам вывода исчисления L из выполнимых в S формул исчисления L, также выполняется системой S. На основе этого определения легко определяются важнейшие семантич. понятия: "аналитическое" и "синтетическое" (предложения), "экстенсиональное" и "интенсиональное" (выражения) и вообще "семантич. отношение". В такой терминологии легко может быть охарактеризовано отношение логического следования: предложение А следует из предложения В, если и только если А выполняется всеми М., к-рыми выполняется В. У формальной системы может быть, вообще говоря, много различных М., как изоморфных между собой, так и не изоморфных. Если все М. к.-л. формальной системы изоморфны, то говорят, что лежащая в ее основе система аксиом к а т е г о р и ч н а (см. Категоричность системы аксиом), или п о л н а (в одном из значений этого термина; см. Полнота); в противном случае система наз. н е п о л н о й. (Для произвольной системы аксиом a priori возможен, конечно, и третий случай – отсутствие какой бы то ни было М. Тогда система наз. п р о т и в о р е ч и в о й, или – в соответствии с введенной выше терминологией – н е в ы п о л н и м о й. Обратно, указание М. к.-л. аксиоматич. системы служит доказательством ее непротиворечивости относительно системы, средствами к-рой построена М. – см. также Интерпретация, Метод аксиоматический). В любом из этих случаев одна из М. системы – т.н. выделенная (подразумеваемая при построении системы или рассматриваемая для к.-л. целей) – наз. и н т е р п р е т а ц и е й системы (если же интерпретацию отождествляют с М. – в последнем из употребленных здесь смыслов – то подразумеваемую интерпретацию наз. е с т е с т в е н н о й). Образно говоря, М. мы называем любой возможный "перевод" с языка моделируемой системы на любой др. язык, а интерпретацией – лишь тот из этих переводов (и на тот именно язык), к-рый мы имеем в виду при истолковании понятий системы, считая его (по к.-л. соображениям) единственно верным. Напр., конец англ. фразы "In this way we can obtain only a 50 per cent solution" может быть переведен и как "только 50-процентный раствор" и как "лишь половинное решение", причем легко представить себе конкретный текст, при переводе к-рого потребуются дополнительные (не содержащиеся в нем самом) указания на то, какую из этих "М." выбрать в качестве "интерпретации". Как известно, фигурирующее в только что приведенном определении понятий М. и интерпретации понятие выполнимости определяется (хотя и не обязательно явным образом) через понятие логической истинности, к-рое в таком случае принимается за первоначальное. С др. стороны, понятие истины в формализованных языках может быть в свою очередь определено через понятие выполнимости. Т.о., "содержательность" понятий M. и интерпретации носит относит. характер – эти понятия определяются в терминах (логической) "истинности", оказывающейся если не "формальным", то во всяком случае формализуемым понятием. Это обстоятельство оправдывает распространенную в математике и логике т.зр., согласно к-рой в с я к а я интерпретация "формальна" (а всякое изучение любой системы объектов есть изучение нек-рой ее М.) в том смысле, что служащая для целей интерпретации М. к.-л. системы должна быть описана в точных терминах (т.к. в противном случае не имеет смысла даже ставить вопрос об ее изоморфизме с какой бы то ни было др. системой); более того, именно само это описание можно рассматривать в этом случае в качестве М. Конечно, этим не снимается важнейший гносеологич. вопрос об адекватности М. – напр., эмпирич. описания – описываемой ею совокупности объектов реального мира, но критерии этой адекватности носят уже существенно внелогич. характер. Свойства моделей-интерпретаций в математике являются предметом изучения спец. алгебраич. "теории M.", где используется понятие "реляционной системы, т.е. множества, на к-ром определена нек-рая совокупность предикатов (свойств, операций, отношений) (ср. определения в ст. Изоморфизм). Следует иметь в виду, что природа математич. М. бывает очень сложной и даже "парадоксальной" (т. е. не соответствующей укоренившимся представлениям, из чего, однако, не следует их логич. противоречивость). Примером могут служить т.н. "нестандартные" М. аксиоматич. систем, характеризующиеся тем, что "исходный" натуральный ряд чисел (используемый в теории, средствами к-рой строится М.) оказывается неизоморфным натуральному ряду, построенному в М. (здесь речь идет об обычной, традиционной математике, исходящей, в отличие от т.н. ультра-интуиционистской, из предположения об однозначной – с точностью до изоморфизма – определенности множества натуральных чисел); отношение "быть М." трактуется при этом, конечно, как существенно несимметричное. Для совр. этапа развития науки характерно интенсивное расширение запаса применяемых в науч. исследовании способов построения и использования различных М. Особенно плодотворным в этом отношении оказался "кибернетич." подход к исследованию систем различной природы. Применяемые в наст. время науч. М. способствуют изучению не только структуры, но и ф у н к ц и о н и р о в а н и я весьма сложных систем (в т.ч. объектов живой природы). Расширение понятия моделирования (и М.), предполагающее учет не только структурных, но и функциональных свойств и отношений, может быть достигнуто по меньшей мере двумя (родственными) путями. Во-первых, можно потребовать, чтобы описание каждого элемента М. (и, конечно, моделируемой системы) включало в себя временную характеристику (как это, напр., принято в нек-рых разделах теоретич. физики – см. Континуум, Относительности теория); этот путь по существу означает, что введение параметра времени свело бы понятие функционирования к общему понятию "пространственно-временн?й структуры". Во-вторых, пользуясь точным математич. понятием функции (в логич. генезис к-рого, как известно, понятие "временн?й переменной" не входит), можно с самого начала считать элементами, из к-рых строится М., именно функции, описывающие изменение во времени элементов "статической" (т. е. "структурной") М. (используя для обобщенных т. о. определений изоморфизма, гомоморфизма и М. аппарат исчисления предикатов второй ступени – см. Предикатов исчисление). Именно в таком расширенном смысле говорят не просто о моделировании систем, но и о моделировании процессов (химич., физич., производственных, экономич., социальных, биологич. и др.). Примером описания к.-л. процесса, служащего для цели его моделирования, может служить схема его алгоритма; возможность четкого определения понятия алгоритма открыла, в частности, широкие возможности моделирования различных процессов с помощью программирования на электронно-вычислит. (цифровых) машинах. Др. пример "машинного" моделирования – использование т.н. аналоговых машин непрерывного действия [см. Техника(раздел Вычислительная техника) ]. Как это часто происходит в ходе развития науки, термин "М." применяется р а с ш и р и т е л ь н ы м образом и в тех случаях, когда предварит. учет всех подлежащих воспроизведению при моделировании параметров (необходимый для буквального понимания термина) оказывается, ввиду сложности моделируемой системы, практически невозможным. Это относится, в частности, к изменяющимся во времени т.н. самонастраивающимся М., напр. к "моделям обучения". Но даже если остаться в рамках точных определений, то в кибернетике (как и в физике, а также в математике и логике) понятие М. используется в обоих упомянутых выше смыслах [характерен следующий важный пример: "запись" наследств. информации в хромосомах м о д е л и р у е т родительский организм (или организмы) и в то же время м о д е л и р у е т с я в организме потомка ]. Эта кажущаяся двусмысленность термина "М." (снимаемая, впрочем, предложенным выше общим определением М., охватывающим оба смысла) на самом деле служит примером т.н. "оборачивания метода", характерного для конкретных применений многих гносеологич. понятий. Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, гл. 3, § 15; Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959, гл. 6; Лахути Д. Г., ?евзин И. И., Финн В. К., Об одном подходе к семантике, "Филос. науки" (Науч. докл. высш. школы), 1959, No 1; Черч?., Введение в математическую логику, пер. с англ., [т. ] 1, М., 1960, §7; Ревзин И. И., Модели языка, М., 1962; Генкин Л., О математич. индукции, пер. с англ., М., 1962; Моделирование в биологии. [Сб. ст. ], пер. с англ.,М., 1963; Молекулярная генетика. Сб. ст., пер. с англ. и нем., М., 1963; Бир С., Кибернетика и управление производством, пер. с англ., М., 1963; Саrnаp R., The logical syntax of language, L., 1937; Кemeny J. G., Models of logical systems, "J. Symbolic Logic", 1948, v. 13, No 1; Rosser J. В., Wang H., Non-standard models of formal logics, "J. Symbolic Logic", 1950, v. 15, No 2; Mostowaki ?., On models of axiomatic systems, "Fundamenta Math.", 1953, v. 39; Tarski ?., Contributions to the theory of models, 1–3, "Indagationes Math.", 1954, v. 16, 1955, v. 17; Mathematical interpretation of formal systems, Amst., 1955; Кemeny J. G., A new approach to semantics, "J. Symbolic Logic", 1956, v. 21, 1, 2; Sсоtt D., Suppes P., Foundational aspects of theories of measurement, "J. Symbolic Logic", 1958, v. 23, No 2; Rоbinsоn ?., Introduction to model theory and to the metamathematics of algebra, Amst., 1963; Сurrу H. В., Foundations of mathematical logic, N. Y., 1963. Ю. Гастев. Москва.

Похожие статьи