Двоичная система счисления в десятичную онлайн. Системы счисления. Позиционная система счисления двоичная. Правила перевода чисел из любой системы счисления в десятичную

15.04.2019

Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде

позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел

позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали

называть арабской.

Позиционная система — значение всех цифр зависит от позиции (разряда) данной цифры в числе.

Примеры, стандартная 10-я система счисления - это позиционная система. Допустим дано число 453.

Цифра 4 обозначает сотни и соответствует числу 400, 5 — кол-во десятков и соответствует значению 50,

а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.

Таким образом, заданное число запишем в виде суммы 400+50+3=453.

Двоичная система счисления.

Здесь только 2 цифры - это 0 и 1. Основание двоичной системы - число 2.

Цифра, которая находится с самого края справа, указывает количество единиц, вторая цифра -

Во всех разрядах возможна лишь одна цифра — или нуль, или единица.

С помощью двоичной системы счисления возможно закодировать всякое натуральное число, представив

это число в виде последовательности нулей и единиц.

Пример: 10112 = 1*2 3 + 0*2*2+1*2 1 +1*2 0 =1*8 + 1*2+1=1110

Двоичную систему счисления, как и десятичную систему счисления , зачастую используют в вычислительной

технике. Текст и числа компьютер хранит в своей памяти в двоичном коде и программным способом преобразует

в изображение на экране.

Сложение, вычитание и умножение двоичных чисел.

Таблица сложения в двоичной системе счисления:

10 (перенос в

старший разряд)

Таблица вычитания в двоичной системе счисления:

(заём из старшего

разряда) 1

Пример сложения «столбиком» (14 10 + 5 10 = 19 10 или 1110 2 + 101 2 = 10011 2):

+ 1 1 1 0
1 0 1
1 0 0 1 1

Таблица умножения в двоичной системе счисления:

Пример умножения «столбиком» (14 10 * 5 10 = 70 10 или 1110 2 * 101 2 = 1000110 2):

* 1 1 1 0
1 0 1
+ 1 1 1 0
1 1 1 0
= 1 0 0 0 1 1 0

Преобразование чисел в двоичной системе счисления.

Для преобразования из двоичной системы в десятичную пользуются следующей таблицей степеней

основания 2:

Начиная с цифры один каждая цифра умножается на 2. Точка, стоящая после 1, называют двоичной точкой .

Преобразование двоичных чисел в десятичные.

Пусть, есть двоичное число 110001 2 . Для перевода в десятичное записываем его в виде суммы по

разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

Немного по другому:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Также хорошо записывать расчет как таблицу:

Двигаемся справа налево. Под всеми двоичными единицами записываем её эквивалент строчкой ниже.

Преобразование дробных двоичных чисел в десятичные.

Задание: перевести число 1011010, 101 2 в десятичную систему.

Записываем заданное число в таком виде:

1*2 6 +0*2 5 +1*2 4 +1*2 3 +0 *2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 -1 + 0 * 2 -2 + 1 * 2 -3 = 90,625

Другой вариант записи:

1*64+0*32+1*16+1*8+0*4+1*2+0*1+1*0,5+0*0,25+1*0,125 = 90,625

Либо в виде таблицы:

0.25

0.125

0.125

Преобразование десятичных чисел в двоичные.

Пусть, необходимо перевести число 19 в двоичное. Можем сдеать это таким образом:

19 /2 = 9 с остатком 1

9 /2 = 4 c остатком 1

4 /2 = 2 без остатка 0

2 /2 = 1 без остатка 0

1 /2 = 0 с остатком 1

То есть, каждое частное делится на 2 и записывается остаток в конец двоичной записи. Деление

продолжается до того момента, когда в частном не будет нуля. Итог пишем справа налево. Т.е. нижняя

цифра (1) будет крайней левой и так далее. Итак, у нас получилось число 19 в двоичной записи: 10011.

Преобразование дробных десятичных чисел в двоичные.

Когда в заданном числе присутствует целая часть, то ее преобразуют отдельно от дробной. Перевод

дробного числа из десятичной системы счисления в двоичную происходит следующим образом:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего

разряда числа в двоичной системе счисления;

  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если

достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над

дробной частью произведения.

Пример : Нужно перевести дробное десятичное число 206,116 в дробное двоичное число.

Переведя целую часть, получаем 206 10 =11001110 2 . Дробная часть 0,116 умножается на основание 2,

заносим целые части произведения в разряды после запятой:

0,116 . 2 = 0,232

0,232 . 2 = 0,464

0,464 . 2 = 0,928

0,928 . 2 = 1,856

0,856 . 2 = 1,712

0,712 . 2 = 1,424

0,424 . 2 = 0,848

0,848 . 2 = 1,696

0,696 . 2 = 1,392

0,392 . 2 = 0,784

Результат: 206,116 10 ≈ 11001110,0001110110 2

Алгоритм перевода чисел из одной системы счисления в другую.

1. Из десятичной системы счисления:

  • делим число на основание переводимой системы счисления;
  • находим остаток от деления целой части числа;

2. Из двоичной системы счисления:

  • для перевода в десятичную систему счисления находим сумму произведений основания 2 на

соответствующую степень разряда;

Фраза о том, что все новое - это не что иное, как хорошо забытое старое, в полной мере относится к Оказывается, что еще в древнем Китае уже применяли нечто, напоминающее наши «единичка-нолик», правда не для арифметики, а для написания текстов книги Перемен. Ближе всех к пониманию разных систем счисления были инки: они использовали и десятичную, и двоичную системы, правда, последнюю только для текстовых и кодированных сообщений. Можно предположить, что уже тогда, 4 тыс. лет назад, инки знали, как делается перевод из двоичной в десятичную систему.

Современный вариант был предложен Лейбницем всего-то около 300 лет назад, а спустя еще полтора века оставил свое имя в памяти потомков работой по алгебре логики. Двоичная арифметика совместно с алгеброй логики стала фундаментом нынешней цифровой техники. А началось все в 1937 году, когда был предложен метод символического анализа релейных и переключательных схем. Эта работа Клода Шенона стала «мамой» для релейного компьютера, выполнявшего двоичное сложение уже в 1937 году. И, конечно же, одной из задач этого «прадедушки» современных компьютеров был перевод из двоичной в десятичную систему.

Прошло всего три года и очередная модель релейного «компьютера» посылала команды калькулятору используя телефонную линию и телетайп - ну прямо древний интернет в действии.

Что же представляют собой двоичная, десятичная, шестнадцатеричная и, вообще говоря, любая N-ичная система? Да ничего сложного. Возьмем трехзначное число в нашей любимой десятичной системе, оно изображается при помощи 10 знаков - от 0 до 9 с учетом их расположения. Определимся, что цифры этого числа находятся на позициях 0, 1, 2 (порядок идет от последней цифры к первой). На каждой из позиций может находиться любое из чисел системы, однако величина этого числа определяется не только его начертанием, но и местом положения. Например, для числа 365 (соответственно, позиция 0 - цифра 5, позиция 1 - цифра 6, и позиция 2 - цифра 3) значение числа на нулевой позиции - просто 5, на первой позиции - 6*10, и на второй - 3*10*10. Здесь любопытно, что начиная с первой позиции, число содержит значащую цифру (от 0 до 9) и основание системы в степени равной номеру позиции, т.е. можно записать, что 345 = 3*10*10 + 6*10 +3 = 3*102 + 6*101 + 5*100.

Еще пример:

260974 = 2*105 + 6*104 + 0*103 + 9*102 + 7*101 + 4*100.

Как видим, каждое позиционное место содержит значащее число из набора данной системы, и множитель из основания системы в степени равной позиции данного числа (разрядность числа это есть количество позиций, но на +1 больше).

С точки зрения представления числа, его двоичная форма озадачивает своей простотой - только 2 числа в системе - 0 и 1. Но красота математики в том, что даже в усеченном виде, как может показаться, двоичные числа такие же полноценные и равноправные, как и их более «рослые товарищи». Но как же их сравнивать, например, с десятичным числом? Как вариант, нужно сделать, и не торопясь, перевод из двоичной в десятичную. Задачу не назовешь трудной, но эта кропотливая работа требует внимания. Итак, начнем.

Исходя из сказанного выше о порядке представления чисел в любой системе, и имея в виду простейшую из них - двоичную, возьмем любую последовательность «единичек-ноликов». Назовем это число VO (по-русски ВО), и попробуем узнать, что это такое - перевод из двоичной в десятичную систему. Пусть это будет VO=11001010010. На первый взгляд, число как число. Посмотрим!

В первой строке расположим само число в растянутом виде, а вторую распишем как сумму каждой позиции в виде сомножителей - значащей цифры (здесь выбор небольшой - 0 или 1) и числа 2 в степени, равной позиционному числу в десятичной системе, мы же делаем перевод из двоичной в десятичную. Теперь во второй строке нужно просто выполнить вычисления. Для наглядности можно дописать еще и третью строку с промежуточными вычислениями.

VO = 1 1 0 0 1 0 1 0 0 1 0;

VO = 1*210 + 1*29 + 0*28 + 0*27 + 1*26 + 0*25 + 1*24 + 0*23 + 0*22 + 1*21 + 0*20;

VO=1*1024 + 1*512+0*256+0*128+ 1*64 + 0*32 + 1*16 + 0*8 +0*4 + 1*2 + 0*1.

Вычисляем «арифметику» в третьей строке и имеем то, что искали: VO = 1618. Ну и что же тут замечательного? А то, что это число - самое знаменитое из всех, которые известны людям: с ним связаны пропорции египетских пирамид, знаменитой Джоконды, музыкальных нот и человеческого тела, но… Но с небольшим уточнением - зная, что хорошего должно быть много, его величество случай дал нам это число в 1000 раз больше настоящего значения - 1,618. Наверное, чтобы всем досталось. А попутно перевод из двоичной системы в десятичную помог из бесконечного моря чисел «выловить» самое замечательное - его еще называют «золотая пропорция».

Чтобы быстро переводить числа из десятичной системы счисления в двоичную, нужно хорошо знать числа "2 в степени". Например, 2 10 =1024 и т.д. Это позволит решать некоторые примеры на перевод буквально за секунды. Одной из таких задач является задача A1 из демо ЕГЭ 2012 года . Можно, конечно, долго и нудно делить число на "2". Но лучше решать по-другому, экономя драгоценное время на экзамене.

Метод очень простой. Суть его такая: если число, которое нужно перевести из десятичной системы, равно числу "2 в степени", то это число в двоичной системе содержит количество нулей, равное степени. Впереди этих нулей добавляем "1".

  • Переведем число 2 из десятичной системы. 2=2 1 . Поэтому в двоичной системе число содержит 1 нуль . Впереди ставим "1" и получаем 10 2 .
  • Переведем 4 из десятичной системы. 4=2 2 . Поэтому в двоичной системе число содержит 2 нуля . Впереди ставим "1" и получаем 100 2.
  • Переведем 8 из десятичной системы. 8=2 3 . Поэтому в двоичной системе число содержит 3 нуля . Впереди ставим "1" и получаем 1000 2.


Аналогично и для других чисел "2 в степени".

Если число, которое нужно перевести, меньше числа "2 в степени" на 1, то в двоичной системе это число состоит только из единиц, количество которых равно степени.

  • Переведем 3 из десятичной системы. 3=2 2 -1. Поэтому в двоичной системе число содержит 2 единицы . Получаем 11 2.
  • Переведем 7 из десятичной системы. 7=2 3 -1. Поэтому в двоичной системе число содержит 3 единицы . Получаем 111 2.

На рисунке квадратиками обозначено двоичное представление числа, а слева розовым цветом-десятичное.


Аналогичен перевод и для других чисел "2 в степени-1".

Понятно, что перевод чисел от 0 до 8 можно сделать быстро или делением, или просто знать наизусть их представление в двоичной системе. Я привела эти примеры, чтобы Вы поняли принцип данного метода и использовали его для перевода более "внушительных чисел", например, для перевода чисел 127,128, 255, 256, 511, 512 и т.д.

Можно встретить такие задачи, когда нужно перевести число, не равное числу "2 в степени", но близкое к нему. Оно может быть больше или меньше числа "2 в степени". Разница между переводимым числом и числом "2 в степени" должна быть небольшая. Например, до 3. Представление чисел от 0 до 3 в двоичной системе надо просто знать без перевода.

Если число больше , то решаем так:

Переводим сначала число "2 в степени" в двоичную систему. А потом прибавляем к нему разницу между числом "2 в степени" и переводимым числом.

Например, переведем 19 из десятичной системы. Оно больше числа "2 в степени" на 3.

16=2 4 . 16 10 =10000 2 .

3 10 =11 2 .

19 10 =10000 2 +11 2 =10011 2 .

Если число меньше числа "2 в степени", то удобнее пользоваться числом "2 в степени-1". Решаем так:

Переводим сначала число "2 в степени-1" в двоичную систему. А потом вычитаем из него разницу между числом "2 в степени-1" и переводимым числом.

Например, переведем 29 из десятичной системы. Оно больше числа "2 в степени-1" на 2. 29=31-2.

31 10 =11111 2 .

2 10 =10 2 .

29 10 =11111 2 -10 2 =11101 2

Если разница между переводимым числом и числом "2 в степени" больше трех , то можно разбить число на составляющие, перевести каждую часть в двоичную систему и сложить.

Например, перевести число 528 из десятичной системы. 528=512+16. Переводим отдельно 512 и 16.
512=2 9 . 512 10 =1000000000 2 .
16=2 4 . 16 10 =10000 2 .
Теперь сложим столбиком:

Замечание 1

Если вы хотите перевести число из одной системы счисления в другую, то удобнее для начала перевести его в десятичную систему счисления, и уже только потом из десятичной перевести в любую другую систему счисления.

Правила перевода чисел из любой системы счисления в десятичную

В вычислительной технике, использующей машинную арифметику, большую роль играет преобразование чисел из одной системы счисления в другую. Ниже приведем основные правила таких преобразований (переводов).

    При переводе двоичного числа в десятичное требуется представить двоичное число в виде многочлена , каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $2$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_2=A_n \cdot 2^{n-1} + A_{n-1} \cdot 2^{n-2} + A_{n-2} \cdot 2^{n-3} + ... + A_2 \cdot 2^1 + A_1 \cdot 2^0$

Рисунок 1. Таблица 1

Пример 1

Число $11110101_2$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $1$ степеней основания $2$, представим число в виде многочлена:

$11110101_2 = 1 \cdot 27 + 1 \cdot 26 + 1 \cdot 25 + 1 \cdot 24 + 0 \cdot 23 + 1 \cdot 22 + 0 \cdot 21 + 1 \cdot 20 = 128 + 64 + 32 + 16 + 0 + 4 + 0 + 1 = 245_{10}$

    Для перевода числа из восьмеричной системы счисления в десятичную требуется представить его в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $8$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_8 = A_n \cdot 8^{n-1} + A_{n-1} \cdot 8^{n-2} + A_{n-2} \cdot 8^{n-3} + ... + A_2 \cdot 8^1 + A_1 \cdot 8^0$

Рисунок 2. Таблица 2

Пример 2

Число $75013_8$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $2$ степеней основания $8$, представим число в виде многочлена:

$75013_8 = 7\cdot 8^4 + 5 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 3 \cdot 8^0 = 31243_{10}$

    Для перевода числа из шестнадцатеричной системы счисления в десятичную необходимо его представить в виде многочлена, каждый элемент которого представлен в виде произведения цифры числа и соответствующей степени числа основания, в данном случае $16$, а затем нужно вычислить многочлен по правилам десятичной арифметики:

    $X_{16} = A_n \cdot 16^{n-1} + A_{n-1} \cdot 16^{n-2} + A_{n-2} \cdot 16^{n-3} + ... + A_2 \cdot 16^1 + A_1 \cdot 16^0$

Рисунок 3. Таблица 3

Пример 3

Число $FFA2_{16}$ перевести в десятичную систему счисления.

Решение. Используя приведенную таблицу $3$ степеней основания $8$, представим число в виде многочлена:

$FFA2_{16} = 15 \cdot 16^3 + 15 \cdot 16^2 + 10 \cdot 16^1 + 2 \cdot 16^0 =61440 + 3840 + 160 + 2 = 65442_{10}$

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

    Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби - дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение . Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.
Для микросхем компьютера важно лишь одно. Либо сигнал есть (1), либо его нет (0). Но записывать программы в двоичном коде - дело нелегкое. На бумаге получаются очень длинные комбинации из нулей и единиц. Человеку их тяжело.

Использование привычной всем десятичной системы в компьютерной документации и программировании очень неудобно. Преобразования из двоичной в десятичную системы и обратно - весьма трудоемкие процессы.

Происхождение восьмеричной системы, так же как и десятичной, связывают со счетом на пальцах. Но считать нужно не пальцы, а промежутки между ними. Их как раз восемь.

Решением проблемы стала восьмеричная . По крайней мере на заре компьютерной техники. Когда разрядность процессоров была невелика. Восьмеричная система позволила с легкостью переводить как двоичные числа в восьмеричные, так и наоборот.

Восьмеричная система счисления - система счисления с основанием 8. Для представления чисел в ней используются цифры от 0 до 7.

Преобразование

Для того чтобы перевести число в двоичное, необходимо заменить каждую цифру восьмеричного числа на тройку из двоичных цифр. Важно лишь запомнить, какая двоичная комбинация соответствует цифрам числа. Их совсем немного. Всего восемь!
Во всех системах счисления, кроме десятичной, знаки читаются по одному. Например, в восьмеричной системе число 610 произносится «шесть, один, ноль».

Видео по теме

У компонентов электронных машин, к которым относятся и компьютеры, есть только два различимых состояния: есть ток и нет тока. Их обозначают "1" и "0" соответственно. Поскольку таких состояний только два, многие процессы и операции в электронике можно описать с помощью двоичных чисел.

Инструкция

Делим десятичное число на два до тех пор, пока не получим неделимый на два остаток. На шаге получим остаток 1 (если число было нечетным) или 0 (если делимое делится на два без остатка). Все эти остатки обязательно должны быть учтены. Последнее частное, полученное в результате такого пошагового деления, всегда будет единицей.
Записываем последнюю единицу в старший разряд искомого двоичного , а полученные в процессе остатки записываем за этой единицей в обратном порядке. Здесь надо быть внимательным и не пропускать нули.
Таким образом, числу 235 в двоичном коде будет соответствовать число 11101011.

Теперь переведем в двоичную систему счисления дробную часть десятичного числа. Для этого последовательно умножаем дробную часть числа на 2 и фиксируем целые полученных . Эти целые части дописываем к полученному в предыдущем шаге числу после двоичной в прямом порядке.
Тогда десятичному дробному числу 235.62 соответствует двоичное дробное 11101011.100111.

Видео по теме

Обратите внимание

Двоичная дробная часть числа будет конечной, только если дробная часть исходного числа конечна и заканчивается на 5. Простейший случай: 0.5 х 2 = 1, следовательно 0.5 в десятичной системе - это 0.1 в двоичной.

Источники:

  • Перевод десятичных чисел в двоичную систему счисления в 2019

Совет 4: Как перевести в десятичную систему двоичные числа

Двоичная или бинарная система счисления применяется для отображения электронной информации. Любое число можно записать в двоичном виде. Двоичная система используется во всех вычислительных машинах. Каждая запись в них кодируется по определенным правилам с помощью набора двух символов: 0 и 1. Перевести двоичное число в его десятичное представление, более удобное пользователю, можно с помощью разработанного алгоритма.

Инструкция

Представьте число в виде записи степеней по 2. Для этого все восемь цифр последовательно умножаем на число 2, возведенное в . Степень должна соответствовать разряду цифры. Разряд считается от нуля, начиная с младшего, самого правого символа двоичного числа . Все восемь составленных произведений запишите в .

Совет 5: Как записывать десятичное число в двоичной системе счисления

Десятичная система счисления – одна из самых распространенных в математической теории. Однако с появлением информационных технологий, двоичная система получила не менее широкое распространение, поскольку она является основным способом представления информации в компьютерной памяти.

Инструкция

Преобразование из десятичной системы в двоичную реализуется как для целых чисел, так и для дробных. Перевод целого десятичного числа производится методом последовательного деления его на 2. При этом количество итераций (действий) увеличивается до тех пор, пока частное не станет равно нулю, а итоговое двоичное число записывается в виде полученных остатков справа налево.

Например, преобразования числа 19 выглядит так:19/2 = 18/2 + 1 = 9, в остатке – 1, пишем 1;9/2 = 8/2 + 1 = 4, в остатке – 1, пишем 1;4/2 = 2, остаток отсутствует, пишем 0;2/2 = 1, остаток отсутствует, пишем 0;1/2 = 0 + 1, в остатке – 1, пишем 1.Итак, после метода последовательного деления к числу 19 получилось двоичное число 10011.

Похожие статьи