Для начинающих. Схемы включения транзистора. Схема включения транзистора с общим коллектором (ОК)

08.09.2019

Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.

В прошлой статье мы с вами говорили о самой простой схеме смещения транзистора. Эта схема (рисунок ниже) зависит от , а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.

Чтобы такого не произошло, в эту схему добавляют еще парочку и в результате получается схема с 4-мя резисторами:


Резистор между базой и эмиттером назовем R бэ , а резистор, соединенный с эмиттером, назовем R э . Теперь, конечно же, главный вопрос: «Зачем они нужны в схеме?»

Начнем, пожалуй, с R э .

Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->R к ——> коллектор—> эмиттер—>R э —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как I э = I к + I б ) Грубо говоря, у нас получается вот такая цепь:

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина будет зависеть от силы тока в цепи, а также от номинала самого резистора.

Чуток упростим схемку:

R кэ — это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.

В результате, у нас получается простой делитель напряжения , где


Мы видим, что на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет равняться падению напряжения на резисторе R э .

А чему равняется падение напряжения на R э ? Вспоминаем закон Ома и высчитываем:

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора R э . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.

Какую же функцию выполняют резисторы R б и R бэ ?


Именно эти два резистора представляют из себя опять же простой делитель напряжения . Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит , что бывает крайне редко. В остальных случаях напряжение на базе будет стоять мертво.

Вернемся к R э.

Оказывается, он выполняет самую главную роль в этой схеме.

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе R э .

б) падение напряжения на резисторе R э — это и есть напряжение на эмиттере U э . Следовательно, из-за увеличения силы тока в цепи U э стало чуток больше.

в) на базе у нас фиксированное напряжение U б , образованное делителем из резисторов R б и R бэ

г) напряжение между базой эмиттером высчитывается по формуле U бэ = U б — U э . Следовательно, U бэ станет меньше, так как U э увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз U бэ уменьшилось, значит и сила тока I б , проходящая через базу-эмиттер тоже уменьшилась.

е) Выводим из формулы ниже I к

I к =β х I б

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток;-) Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор R э . Забегая вперед, скажу, что О трицательная О братная С вязь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

Расчет усилительного каскада


1) Первым делом находим из даташита максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт. Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

P рас = 150х0,8=120 милливатт.

2) Определим напряжение на U кэ . Оно должно равняться половине напряжения Uпит.

U кэ = Uпит / 2 = 12/2=6 Вольт.

3) Определяем ток коллектора:

I к = P рас / U кэ = 120×10 -3 / 6 = 20 миллиампер.

4) Так как половина напряжения упала на коллекторе-эмиттере U кэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах R к и R э . То есть получаем:

R к + R э = (Uпит / 2) / I к = 6 / 20х10 -3 = 300 Ом.

R к + R э = 300 , а R к =10R э, так как K U = R к / R э , а мы взяли K U =10 ,

то составляем небольшое уравнение:

10R э + R э = 300

11R э = 300

R э = 300 / 11 = 27 Ом

R к = 27х10=270 Ом

5) Определим ток базы I базы из формулы:

Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.


Значит,

I б = I к / β = 20х10 -3 /140 = 0,14 миллиампер

6) Ток делителя напряжения I дел , образованный резисторами R б и R бэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток I б :

I дел = 10I б = 10х0,14=1,4 миллиампер.

7) Находим напряжение на эмиттере по формуле:

U э = I к R э = 20х10 -3 х 27 = 0,54 Вольта

8) Определяем напряжение на базе:

U б = U бэ + U э

Давайте возьмем среднее значение падения напряжения на базе-эмиттер U бэ = 0,66 Вольт . Как вы помните — это падение напряжения на P-N переходе.

Следовательно, U б =0,66 + 0,54 = 1,2 Вольта . Именно такое напряжение будет теперь находиться у нас на базе.

9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.

Для удобства расчетов прилагаю кусочек схемы каскада:

Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на R б называется U 1 , а падение напряжения на R бэ будет U 2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

R б = U 1 / I дел = 10,8 / 1,4х10 -3 = 7,7 КилоОм . Берем из ближайшего ряда 8,2 КилоОма

R бэ = U 2 / I дел = 1,2 / 1,4х10 -3 = 860 Ом . Берем из ряда 820 Ом.

В результате у нас будут вот такие номиналы на схеме:


Проверка работы схемы в железе

Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:


Итак, беру свой и цепляюсь щупами на вход и выход схемы. Красная осциллограмма — это входной сигнал, желтая осциллограмма — это выходной усиленный сигнал.

Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты :


Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10. Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

Давайте подадим еще треугольный сигнал:


Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.

Если вспомнить осциллограмму схемы с двумя резисторами

то можно увидеть существенную разницу в усилении треугольного сигнала


Заключение

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых , эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI .

Во-вторых , ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

Ну а теперь немного минусов:

1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе

Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.

Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.


Рисунок 1 Структурная схема включения усилителя

Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.


Рисунок 2 Функциональная схема включения транзистора с общим эмиттером

На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:

  • схема с эмиттерной стабилизацией.

Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.


Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером

Расчет элементов данной схемы по постоянному току можно посмотреть в статье . Сейчас нас будут интересовать параметры , собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.

Входное сопротивление схемы с общим эмиттером

В схеме с общим эмиттером входное сопротивление транзистора R вхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения U б от тока базы I б) приведен на рисунке 4.


Рисунок 4 Входная характеристика кремниевого транзистора

Как видно из этого рисунка, входное сопротивление транзистора R вхОЭ зависит от тока базы I б0 и определяется по следующей формуле:

(1)

Как определить ΔU б0 и ΔI б0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.


Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора

Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.

(2)

где I б — ток базы в рабочей точке;
U бэ — напряжение базы в рабочей точке;
I s — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.

В этом выражении коэффициентом, нормирующим экспоненту, является ток I s , поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:

(3)

Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:

(4)

Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы r бб" .

Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.


Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером

Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.


Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером

Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы R вых и h 21 ×i вх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.

И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:

(5)

После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).


Рисунок 8 Схема измерения входного сопротивления усилительного каскада

В случае, если сопротивление R и будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление R и при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:

(6)

Выходное сопротивление схемы с общим эмиттером

Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.


Рисунок 9 Выходные характеристики кремниевого транзистора

К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.

Дата последнего обновления файла 31.05.2018

Литература:

Вместе со статьей "Схема с общим эмиттером (каскад с общим эмиттером)" читают:


http://сайт/Sxemoteh/ShTrzKask/KollStab/


http://сайт/Sxemoteh/ShTrzKask/EmitStab/


Схема включения транзистора с общим эмиттером (ОЭ). При исследовании свойств обычно используют схему включения транзистора с общим эмиттером, то есть когда эмиттер подключен к "земле", коллектор, через сопротивление нагрузки, подключен к источнику питания, а на базу подаётся напряжение смещения. Соберём схему, показанную на рисунке:

В схеме используется транзистор структуры n-p-n, нагрузочное сопротивление - 1 кОм, источник питания напряжением 12 вольт и амперметр.
Мы видим, что амперметр показывает очень низкое значение тока протекающего через нагрузочное сопротивление и переход коллектор - эмиттер транзистора. Этот ток называется током утечки n-p-n перехода.
По определению транзистора, малый ток базы управляет большим током в цепи коллектор - эмиттер (в схеме с ОЭ).
Для создания усилительного каскада по схеме с ОЭ, следует создать начальный ток базы, такой, чтобы транзистор находился рабочем режиме. В нашей схеме транзистор находится в режиме отсечки (сопротивление К - Э стремится к бесконечности). Второй крайний режим называется режимом насыщения, то есть когда на базу поступает максимальный ток, который уже никак не влияет на ток проходящий в цепи К-Э (ток коллектора). В этом случае говорят, что транзистор открыт и коллекторный ток определяется сопротивлением нагрузки, а сопротивление перехода К - Э можно принять равным 0. Между двумя этими точками, посередине находится рабочий ток (рабочая точка) базы транзистора.
На практике, для определения рабочего режима транзистора используют измерение не тока, а напряжения на базе и на участке К-Э. Включение вольтметра не требует разрыва цепи.
Для определения рабочей точки следует собрать схему, показанную на рисунке:

Через резистор R1 подаётся напряжение смещения, которое создаёт ток базы. Сопротивление R1, в процессе эксперимента, мы будем изменять от 40 до 300 кОм, с шагом 20 кОм. Вольтметром V1 будем измерять напряжение база - эмиттер, а вольтметром V2, напряжение коллектор - эмиттер.
Результаты измерений лучше заносить в таблицу, например в Microsoft Excel или Open Office Calc.

По результатам измерений построим график для изменения напряжения коллектор - эмиттер (КЭ):

Мы видим, что при измерениях 1-2-3 напряжение КЭ практически не меняется и близко к 0. Этот режим называется режим насыщения. В таком режиме каскад усилителя будет работать с сильными искажениями сигнала, так как усиление будет производиться только отрицательных полуволн сигнала.
На участке 12-13-14, тоже график постепенно приобретает линейную зависимость, а напряжение на коллекторе практически не меняется. В такой режим называется режимом отсечки. В этом режиме усиление сигнала будет производиться, так же с большими искажениями, так как усиливаться будут только положительные полуволны сигнала. Каскады с режимом отсечки используются в цифровой технике как ключ с инверсией - логический элемент "НЕ".
Для выбора рабочей точки транзистора в качестве усилителя следует рассчитать точку В на графике. Для этого, следует напряжение базы в точке А сложить с напряжением базы в точке С и поделить пополам (найти среднее арифметическое. (820 + 793)/2 = 806,5. Мы видим, что напряжение базы 806,5 мВ, примерно соответствует 6-му измерению - 807 мВ. Это напряжение на базе транзистора и соответствует рабочей точке каскада с общим эмиттером.
Подключим ко входу усилителя генератор, а ко входу и выходу осциллограф. Вход соединим с каналом А, а выход усилителя с каналом В. Для развязки усилительного каскада по переменному току на входе каскада установим конденсаторы С1 и С1.
Примем частоту генератора 1000 Гц (1 кГц), а амплитуду сигнала 10 мВ. На осциллографе установим время развёртки 0,5 миллисекунд на деление, чувствительность канала А - 10 милливольт на деление и чувствительность канала В - 1 вольт на деление.

Далее следует включить питание схемы и через 2 - 5 секунд выключить. Для удобного считывания показаний осциллографа, следует синусоиду входного сигнала опустить ниже оси Y (счётчиком Y position), а синусоиду выходного сигнала выше оси Y аналогичным образом. Мы видим, что выходной сигнал перевёрнут относительно входного на 180 градусов.
Рассмотрим амплитудные значения входного и выходного сигналов. Входной сигнал имеет амплитуду 10 мВ (такое значение мы установили на генераторе), а выходной сигнал получился с амплитудой в 1,5 вольта (3 деления по оси Y / 2. Одно деление - 1 вольт). Отношение выходного напряжения сигнала к входному называется коэффициентом усиления по напряжению транзистора в схеме с общим эмиттером. Рассчитаем усиление нашего транзистора Ku = Uвх / Uвых = 1,5 / 0,01 = 150. То есть, каскад на транзисторе, включенном по схеме ОЭ, усиливает входной сигнал в 150 раз.
Для транзисторного каскада с ОЭ справедливы следующие значения:
Ku - от 50 до 1500
Ki (коэффициент усиления тока) - 10-20
Kp (коэффициент усиления мощности) - 1000-10000
Rвх (входное сопротивление) - 100 ом - 10 ком
Rвых (выходное сопротивление) - 100 ом - 100 ком
Каскад с ОЭ используется, обычно, как усилитель назко- и высокочастотных сигналов.

Схема с общим эмиттером

Схема с общим эмиттером (ОЭ) представлена на рис. 1.11. Транзистор п-р-п в этой схеме работает так же, как и в схеме с ОБ. Заметим лишь, что общепринятое направление токов (от К источника напряжения), обозначенное на рис. 1.11, а, противоположно направлению движения электронов. Характерным признаком схемы с ОЭ является то, что нагрузка располагается в коллекторной цепи (рис. 1.11,6).

Рис. 1.11. Схема включения транзистора с общим эмиттером (а); типовое изображение в схемах (б)

Так же как и для схемы с ОБ, входным сигналом в этой схеме является напряжение между базой и эмиттером, а выходными величинами – коллекторный ток I к и напряжение на нагрузке U вых = I к R н Транзистор в схеме с ОЭ характеризуется коэффициентом передачи тока

имеющим значения β = 10... 100, который связан с коэффициентом α для схемы с ОБ соотношением:

Оценим значения коэффициентов усиления схемы с ОЭ (их обозначают индексом "Э").

Выходным током, как и в схеме с ОБ, является ток I к, протекающий но нагрузке, а входным током (в отличие от схемы с ОБ) – ток базы I Б; коэффициент усиления по току схемы с ОЭ равен

При α = 0,98 КIЭ = 0,98/(1 – 0,98) ≈ 50, т.е. нескольким десяткам, что многократно превосходит аналогичный коэффициент у схемы с ОБ.

Входное сопротивление в схеме с ОЭ также значительно выше, чем в схеме с ОБ, так как в схеме с ОЭ входным током является ток базы, а в схеме с ОБ – во много раз больший ток эмиттера (а именно в 1/(1 – α) ≈ β раз):

Величина входного сопротивления в схеме с ОЭ больше, чем в схеме с ОБ в ≈ β раз и составляет сотни ом.

Коэффициент усиления по напряжению в схеме с ОЭ соизмерим с таким же коэффициентом у схемы с ОБ:

По коэффициенту усиления по мощности схема с ОЭ за счет значительно большего коэффициента усиления по току также многократно превосходит схему с ОБ:

и зависит от коэффициента передачи тока β и отношения сопротивления нагрузки к входному сопротивлению.

Благодаря отмеченным свойствам, схема с ОЭ нашла очень широкое применение.

Входные и выходные характеристики схемы с общим эмиттером

Работу схемы обычно описывают с помощью входных и выходных характеристик транзистора в той или иной схеме включения. Для схемы с ОЭ входная характеристика – это зависимость входного тока от напряжения на входе схемы, т.е. I Б = f (UБЭ) при фиксированных значениях напряжения коллектор – эмиттер (U кэ = const).

Выходные характеристики – это зависимости выходного тока, т.е. тока коллектора, от падения напряжения между коллектором и эмиттером транзистора I к = f (и БЭ) при токе базы I Б = const.

Входная характеристика по существу повторяет вид характеристики диода при подаче прямого напряжения (рис. 1.12, б). С ростом напряжения U KЭ входная характеристика будет незначительно смещаться вправо.

Рис. 1.12. Выходные (а) и входная (б ) характеристики транзистора в схеме с общим эмиттером

Вид выходных характеристик (рис. 1.12, а) резко различен в области малых (участок ОA) и относительно больших значений U кэ. Напомним, что для нормальной работы транзистора необходимо, чтобы на переход база–эмиттер подавалось прямое напряжение, а на переход база–коллектор – обратное. Поэтому, пока |1/кэ|< 1/БЭ, напряжение на коллекторном переходе оказывается прямым, что резко уменьшает ток I к. При |UКЭ| > U БЭ напряжение на коллекторном переходе UБK = UКЭ – U БЭ становится обратным и, следовательно, мало влияет на величину коллекторного тока, который определяется в основном током эмиттера. При таком напряжении все носители, инжектированные эмиттером в базу и прошедшие через область базы, устремляются к внешнему источнику. При напряжении UБЭ < 0 эмиттер носителей не инжектирует и ток базы I Б = 0, однако в коллекторной цепи протекает ток I К0 (самая нижняя выходная характеристика). Этот ток соответствует обратному току I 0 обычного р-n-перехода.

При работе транзистора изменяется его режим. Действительно, чем больше ток, протекающий через транзистор, тем больше падение напряжения на нагрузке, а следовательно, тем меньшее напряжение будет падать на самом транзисторе. Характеристики, представленные на рис. 1.12, а, б, описывают лишь статический режим работы схемы. Для оценки динамики и влияния нагрузки на работу схемы используют графоаналитический метод расчета на основе входных и выходных характеристик. Рассмотрим этот метод на примере входных и выходных характеристик схемы с ОЭ.

Проведем прямую через точку Eк, отложенную на оси абсцисс, и точку Е к /R н отложенную на оси ординат выходных характеристик транзистора. Полученная прямая называется нагрузочной. Точка Е к /R н этой прямой соответствует такому току, который мог бы течь через нагрузку, если транзистор замкнуть накоротко. Точка Е к соответствует другому крайнему случаю – цепь разомкнута, ток через нагрузку равен нулю, а напряжение Uкэ равно Е к. Точка р пересечения нагрузочной прямой со статической выходной характеристикой, соответствующей входному току I Б, определит рабочий режим схемы, т.е. ток в нагрузке I к, падение напряжения на ней U н = I к R н и падение напряжения (/кэ на самом транзисторе. На рис. 1.12, а точка р соответствует подаче в транзистор тока базы I Б = 1 мА. Нетрудно видеть, что подача тока базы I Б = 2 мА приводит к смещению рабочей точки в точку А и перераспределению напряжений между нагрузкой и транзистором.

Пример 1.1. Рассчитайте схему с ОЭ и R н =110 Ом при входном напряжении UБЭ = +0,1 В, напряжении питания Е к = +25 В, используя характеристики транзистора.

Решение. Найдем отношение E K/R н = 25/110 = 228 мА и, отложив найденную точку на оси I к и значение Е к = +25 В на оси Uкэ, проведем нагрузочную прямую.

По входной характеристике для напряжения 1/БЭ = 0,1 В определим входной ток I Б = 1 мЛ.

Точка пересечения р прямой с характеристикой, соответствующей I Б = 1 мА, определит ток I к = 150 мА.

Напряжение на нагрузке равно

Напряжение между коллектором и эмиттером транзистора

В заключение отметим, что режим, соответствующий точке А, называют режимом насыщения (при заданных значениях R н и Е к ток I к в точке А достигает наибольшего возможного значения). Режим, соответствующий точке В (входной сигнал равен нулю), а также точке С (входной сигнал отрицателен и запирает транзистор), называют режимом отсечки. Все промежуточные состояния транзистора с нагрузкой между точками А и В относятся к активному режиму его работы.

Введение

Современную жизнь трудно представить без хорошо развитой электроники.

Но современная аппаратура обеспечивается совокупностью электротехнических и электронных устройств различной сложности, состоящих из элементов, к которым приложены электрические напряжения или протекают электрические токи. Сколь угодно сложные электронные устройства, в конечном счете, состоят из разнообразных электронных приборов, обладающих вполне определенными свойствами. Таким образом, чтобы разрабатывать, изготавливать или эксплуатировать различную аппаратуру, следует, прежде всего, знать процессы, происходящие в электронных приборах при различных условиях, а также законы, которым подчиняются эти процессы, т.е. освоить основы электроники.

Транзистор представляет собой управляемый прибор, его коллекторный ток зависит от тока эмиттера, который в свою очередь можно изменять напряжением эмиттер – база, U ЭБ. Поскольку напряжение в цепи коллектора, включенного в обратном направлении, значительно больше, чем в цепи эмиттера, включенного в прямом направлении, а токи в этих цепях практически равны, мощность, создаваемая переменной составляющей коллекторного тока в нагрузке, включенной в цепи коллектора, может быть значительно больше мощности, затрачиваемой на управление тока в цепи эмиттера, т. е. транзистор обладает усилительным эффектом.

Для усиления электрических сигналов применяются схемы с общим коллектором (ОК) и общим эмиттером (ОЭ). Работу биполярного транзистора по схеме с ОЭ определяют статические входные и выходные характеристики.

При схеме включения биполярного транзистора с общим эмиттером (ОЭ) входной сигнал подаётся на базу, а снимается с коллектора. При этом фаза выходного сигнала отличается от входного на 180°. Усиливает и ток, и напряжение. Данное включение транзистора позволяет получить наибольшее усиление по мощности, поэтому наиболее распространено. Однако при такой схеме нелинейные искажения сигнала значительно больше. Кроме того, при данной схеме включения на характеристики усилителя значительное влияние оказывают внешние факторы, такие как напряжение питания, или температура окружающей среды. Обычно для компенсации этих факторов применяют отрицательную обратную связь, но она снижает коэффициент усиления.



Биполярные транзисторы управляются током. В схеме с ОЭ - током базы. Напряжение на переходе база-эмиттер при этом остаётся почти постоянным и зависит от материала полупроводника, для германия около 0,2 В, для кремния около 0,7 В, но на сам каскад подаётся управляющее напряжение. Ток базы, коллектора и эмиттера и другие токи и напряжения в каскаде можно вычислить по закону Ома и правилам Кирхгофа для разветвлённой многоконтурной цепи.


Режимы работы биполярного транзистора

Транзистором называют электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, пригодный для усиления мощности электрических сигналов и имеющий три или более выводов. По принципу действия транзисторы бывают биполярные и полевые.

Биполярный транзистор содержит три полупроводниковые области с чередующимися типами проводимости n-p-n или p-n-p, которые называют соответственно эмиттером, базой и коллектором.

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база - в обратном (закрыт) U ЭБ >0;U КБ <0;

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход - прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты).

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор.

В таком включении транзистор представляет из себя диод, включенный последовательно с резистором.

Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, неразборчивостью к параметрам транзисторов.

Эмиттерный повторитель - частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное - мало.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, входной сигнал подаётся на базу, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель, а также в качестве выходных каскадов усилителей мощности.

Схемы включения

Схема включения с общим эмиттером

U вых = U кэ

· Коэффициент усиления по току:


I вых /I вх =I к /I б =I к /(I э -I к) = α/(1-α) = β [β>>1]

· Входное сопротивление:

R вх =U вх /I вх =U бэ /I б

Достоинства:

· Большой коэффициент усиления по току

· Большой коэффициент усиления по напряжению

· Наибольшее усиление мощности

· Можно обойтись одним источником питания

· Выходное переменное напряжение инвертируется относительно входного.

Недостатки:

· Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Похожие статьи