CPU - центральный процессор компьютера. Что такое регистр процессора

12.08.2019

CPU (Central Processing Unit) - центральный процессор компьютера (его мозги), физически представляет собой большую интегральную схему (микросхему), в которой функционально представлены различные узлы (не только собственно процессор). В многопроцессорной системе функции центрального процессора распределены между несколькими процессорами, один из которых считается главным.

Сложилось так, что процессорный рынок уверенно завоевали две компании: Intel и AMD . Именно эти две компании ведут постоянную борьбу за клиента и остро соперничают между собой, перехватывая время от времени инициативу друг у друга. Ниже представлены обозначения популярных моделей процессоров этих фирм на момент написания данной статьи (июнь 2010 года):

  • Процессоры AMD
    • Socket AM3 AMD Sempron™ LE-140 BOX 2700 Model Number 140, Frequency 2.7GHz, L2 Cache 1024KB, Thermal Design Power 45W, Process Technology 45 nanometer SOI technology
    • Socket AM3 AMD Athlon II X2 240 2800 OEM без вентилятора Model Number 215, Frequency 2.8, CMOS Technology 45nm SOI, Total Dedicated L2 Cache 1024MB, Packaging socket AM3, Thermal Design Power 65W
    • Socket AM3 AMD Athlon II X3 435 2900 BOX Frequency 2.9, CMOS Technology 45nm SOI, Total Dedicated L2 Cache 1.5MB, Packaging socket AM3, Thermal Design Power 95W
    • Socket AM3 AMD Phenom II X4 945 3000 BOX Frequency 3.0 GHz, Total L2 Cache 2MB, L3 Cache 4MB, Packaging socket AM3, Thermal Design Power 95W, CMOS Technology 45nm SOI
    • Socket AM3 AMD Phenom II X6 1055T 2800 Black Edition BOX 2.8GHz, 125W, 3MB total dedicated L2 cache, 6MB L3 cache, socket AM3
  • Процессоры Intel
    • Intel Celeron® Dual - Core E3200 2400 1024kb cache ОЕМ без вентилятора S775 Bus Speed 800 MHz EM64T
    • Intel® Pentium Dual - Core™ E5300 (Socket 775) 2600 2048kb cache BOX с вентилятором 800 MHz bus Hyper-Threading Technology ! EM64T
    • Intel® Core™Intel Pentium G6950(Socket 1156) 2800 BOX 512 Kb / 3072Kb , ClarkDale, 73W, S1156, Cooling Fan
    • Intel® Core™Core i3 540(Socket 1156) 3067 BOX 1024 Kb / 4096Kb , ClarkDale, 73W, S1156, Cooling Fan
    • Intel® Core™Core i5 750(Socket 1156) 2660 BOX 1024 Kb / 8192Kb , Lynnfield, 95W, S1156, Cooling Fan

Теперь рассмотрим основные параметры процессора:

Марка процессора и номер модели

Все довольно просто. Марка процессора, как правило, указывается в самом начале, при этом пишется фирма-изготовитель и собственно сама марка процессора:

  • AMD Sempron
  • AMD Athlon II
  • AMD Phenom II
  • Intel Celeron® Dual
  • Intel® Core™Intel Pentium
  • Intel® Core™Core

В рамках одного модельного ряда может быть несколько моделей, отличающихся номером, например: Intel® Core™Core i3 и Intel® Core™Core i5 .


Наиболее важным параметром процессора является его частота. При этом следует учитывать довольно любопытный нюанс: если фирма Intel указывает действительные значения частот для своих процессоров, то фирма AMD - некое теоретическое значение частоты, которую бы имел процессор Intel с такой же производительностью. Это связано с тем, что процессоры AMD обладают несколько меньшей действительной частотой, но большей производительностью.

Форм-фактор

Различные модели процессоров могут иметь некоторые контсруктивные отличия, к тому же, питающие напряжения могут у разных процессоров быть разными. Все это называется форм-фактором . Конечно же, под разные процессоры изготавливаются "свои" материнские платы, подходящие только для процессоров с аналогичным форм-фактором.

Частота шины

Для обмена данными между различными составляющими компьютера и процессором используется шина FSB (Front Side Bus). У процессоров AMD Athlon 64 - используется шина HT (Hyper Transport). За один такт шины передается несколько пакетов данных, и в параметрах процессора его частота указыватеся с учетом такого умножения скорости. Так процессор Pentium 4 с частотой шины 800 МГц на самом деле работает на частоте FSB 200 МГц, т.к. за один такт передается 4 пакета данных.

Множитель

Частота на которой работает процессор компьютера определяется произведением частоты шины FSB на некоторый множитель, который, как правило, нельзя изменять. Этот множитель задается автоматически, в зависимости от материнской платы. Однако, системные платы, которые позволяют делать "разгон" компьютера, разрешают делать изменение множителя, тем самым увеличивая скорость работы процессора в ущерб его надежности и долговечности работы.

Напряжение ядра

Разные модели процессоров для своей нормальной работы требуют разные напряжения питания, которые можно увеличивать при разгоне компьютера.

Степпинг

Степпингами называют модификации одного и того же ядра процессора, которые производятся с целью улучшения рабочих характеристик процессора.

Кэш-память

Цифровые технологии таковы, что скорость работы процессора в несколько раз превышает скорость работы памяти. Поскольку этот тандем всегда работает в паре, то, фактически скорость работы компьютера определяется скоростью работы памяти. Получается, что процессор бОльшую часть времени просто простаивает без дела в ожидании пока память обработает очередную порцию данных. Чтобы "разрулить" ситуацию придумали, так называемую, кэш-память , которая встраивается непосредственно в микросхему процессора и работает на скоростях соизмеримыми со скоростью работы процессора.


Кэш-память очень дорогое "удовольствие" - ее стоимость составляет половину стоимости процессора, но она позволяет значительно поднять производительность системы процессор-память, в результате чего, значительно возрастает общая скорость работы компьютера.


Из-за своей дороговизны размер кэш-памяти относительно небольшой и измеряется килобайтами, но этого оказывается вполне достаточно, т.к. в кэш-память помещаются только наиболее часто используемые в данный момент данные.


Практичечески все процессоры имеют двухуровневую кэш-память - L1 (кэш-память первого уровня), L2 (кэш-память второго уровня).


Кэш-память первого уровня наиболее быстрая память, ее размер составляет 16..128 Кб.


Кэш-память первого уровня бывает единой (принстонская архитектура) и разделенной на две части (гарвардская архитектура):

  1. L1 data cashe - первичный кэш данных, в котором хранятся данные, к которым недавно обращался процессор;
  2. L1 instruction cashe - первичный кэш инструкций, в котором хранятся инструкции, которые процессор недавно выполнял или будет выполянть в ближайшее время.

Кэш-память второго уровня работает значительно медленне, чем кэш-память первого уровня, но имеет гораздо больший объем - 128 Кб.. 6 Мб.


Кэш-память второго уровня может быть эксклюзивной (не могут храниться данные, содержащиеся в L1), либо инклюзивной (хранится копия L1).


Довольно редко, но встречается еще и кэш-память третьего уровня - L3 .

Процессор – это одна из самых главных частей компьютера, его мозг. Он управляет его вычислительной частью, выполняет коды программ. Иначе процессор называют микропроцессором. А в переводе с английского аббревиатуры CPU значит центральное процессорное устройство.

Первый процессор подобного рода был изобретен в компании Intel. Дата появления на свет 15 ноября 1971 года. Это был первый четырехбитный процессор под названием intel 4004. Он очень сильно отличался от современных потомков мощностью, дизайном. Имел тактовую частоту не более 740 кГц, шестнадцать четырехбитных выходов и столько же входов. Он активно использовался в светофорах, анализаторах крови, а затем в зонде Пионер-10. Конечно у всех первых ЦПУ было очень слабое ядро для операций вычисления.

Что такое процессор

Процессор или CPU (как расшифровывается аббревиатура было написано ранее) обрабатывает получаемую информацию из других устройств. Он делает это как в своей собственной памяти, так и в памяти других устройств. Кроме этого устройство может самостоятельно руководить работой других элементов материнской платы, как встроенных, так и дискретных.

ЦП находится не только в материнской плате. В видеокартах есть свои собственные устройства или GPU (графические процессоры). Они отвечают за производительность видео и вывод на экран изображения. Можно сделать вывод, что там, где необходимы сложные математические вычислительные работы, где необходимо управление командами и взаимодействием между электронными деталями устройств – всегда нужен мозг, который будет собирать все воедино и создавать правила, не даст процессу течь хаотично. Этим мозгом служит центральное процессорное устройство (ЦПУ).

Мощность зависит от вложенной производителем скорости сопоставления команд, обработки данных. Скорость и многие другие параметры зависят от количества транзисторов, находящихся в устройстве, количества ядер, его разрядности. А способность исполнять определенный набор команд называется архитектурой ЦПУ.

Что такое архитектура процессора

Под архитектурой ЦПУ подразумевается совместимость устройства с определенным набором команд, способы их исполнения, структуры. По количеству и скорости выделяются RISC и CISC.

RISC в переводе означает компьютер с сокращенным набором команд. Для такой архитектуры характерно увеличение быстродействия за счет упрощения инструкций. Таким образом увеличивается тактовая частота и повышается распределение их между блоками.

Для ЦПУ с RISC архитектурой характерна фиксация длины инструкций машины (32 бита), отсутствие операций «читать-записать-изменить». В микропроцессоре с такой архитектурой нельзя найти микропрограммы внутри него. Команды исполняются как обычный машинный код.

CISC архитектура – это комплексный набор команд. Следует сказать, что все нынешние ЦП построены по данной архитектуре. А многие современные процессоры созданы на базе данной архитектуры но с RISC ядром. От RISC ее отличает нефиксированное число длины команд, все действия кодированы в одной команде, малое количество регистров.

Разновидности CPU

ЦП подразделяются на виды по производителям, по монтажу, по количеству ядер по многим другим параметрам. Все это условно и достаточно сложно. Рассмотрим основные из них.

ЦПУ по производителям делятся на Intel, AMD, VIA. ЦПУ от фирмы Интел делятся на линейки i3, i5, i7. Каждая линейка имеет от двух ядер, например i3, до четырех и более (i5, i7, i9). Каждая линейка имеет в себе несколько поколений ЦПУ. Каждое поколение модифицируется за счет добавления ядер, увеличения скорости вычислительных работ. До сих пор еще не вышли из использования более старые линейки от Интел такие, как core 2 duo и другие.

ЦПУ от AMD отличаются тем, что эта фирма выпускает гибридные устройства . А также включают в себя графический чип. Поэтому порой дискретная видеокарта не требуется. Это эффективные, рабочие лошадки. Единственный минус — это быстрое повышение температуры . Они намного горячее, чем процессоры фирмы Intel.

CPU тайваньской компании VIA не так популярны. Они не могут составить конкуренцию таким фирмам гигантам как Intel или AMD.

Устройства делятся по разрядности . Разрядность – это размер обрабатывания данных за один такт, которыми ЦПУ обменивается с ОЗУ. Их всего две – 32 разрядный и 64 разрядный. На компьютер с 32 разрядным ЦП устанавливается Windows только 32 битная. Ограничение в оперативной памяти до 4 гигабайт. 64 разрядный процессор был выпущен, как расширение первого. Поэтому на него можно установить, как 32, так и 64 битную систему. Ограничения по ОЗУ уже составляет 16 террабайт.

По количеству ядер ЦПУ делится на двухъядерные, четырех-ядерные, шести-, восьми ядерные и т.д. Чем больше ядер, тем больше потоков, а значит производительность компьютера увеличивается.

Приобретая процессор со встроенной видеокартой , пользователю не нужно будет дополнительно тратиться на дискретную. Современные процессоры со встроенной видеокартой вполне позволяют работать со многими нетребовательными программами и играть в старые игры. Для более новых игр или тяжелых программ таких, как автокад, фотошоп, которые усиленно задействуют графические вычисления, дополнительная видеокарта все-таки понадобится.

Из чего состоит и принцип работы

Ниже на рисунке увидите внутреннюю схему параметров, из которых состоит процессор. Внешне он представляет из себя кремниевую пластину с миллиардами транзисторов, с помощью которых он обменивается сигналами с другими устройствами.

Главными устройствами любого ЦПУ являются ядро или несколько ядер, два или три уровня кэш-памяти, контроллер оперативно-запоминающего устройства, контроллер системных шин.

Ядро включает в себя блок выборки инструкций , предсказателя переходов, блоков декодирования, выборки данных, выполнения инструкций, управляющего блока, блок прерывания, регистров и счетчика команд.

Самыми важными являются блок работы с прерываниями. Он позволяет останавливать программы и своевременно реагировать на происходящий события. То есть этот блок отвечает за многозадачность процессора.

Кэш-память отвечает за временное хранение информации , к которой чаще всего обращается пользователь. За счет нее увеличивается скорость доставки данных в регистры ЦПУ.

Контроллер оперативно-запоминающего устройства находится в северном мосте . Он отвечает за соединение ЦП с узлами ОЗУ, графического контроллера.

Контроллер системных шин отвечает за передачу двоичных кодов .

Так как процессор выполняет практически всю работу и сильно нагружен, то соответственно должна работать система теплоотвода. Требования по теплоотводу или tdp прописаны для каждого процессора. Они показывают не максимальные значения, а минимальные при нормальных условиях работы. Если компьютер перегревается, из-за плохого охлаждения, температура поднимается. При срабатывании сигнала перегрева компьютер выключается или пропускает часть циклов работы. То есть он может подвисать, медленно работать.

Основные характеристики ЦПУ

К основным характеристикам CPU относятся:

  • Количество ядер . Они отвечают за одновременно работающие программы. Но это не значит, что чем больше ядер, тем быстрее будет работать программа. Если утилита оптимизирована под два ядра, то она будет работать на двух ядрах и не более.
  • Частота CPU руководит скоростью обмена информации процессора с системной шиной.
  • Техпроцесс . На данный момент равен 22 нанометрам. Техпроцессом является размер транзисторов. Они отвечают за производительность. Чем меньше размер, тем больше их разместиться на кристалле ЦП.
  • Тактовая частота . Это количество вычислений за единицу времени. Чем больше, тем лучше. Но не следует забывать и о других характеристиках.
  • Сокет вычислительного устройства. Необходимо, чтобы сокет совпадал с сокетом материнской платы.

С каждым годом технология все совершенствуется и совершенствуется. Поэтому данные могут изменяться из года в год.

Доброго времени суток и моё почтение, уважаемые читатели, посетители, мимопроходящие личности и.. вообще все, кто читает эти строки. Сегодня поговорим о том какой процессор выбрать и как это сделать.

Многие из нас хотят всегда иметь под рукой адекватную компьютерную железку хорошего качества и мощной мощности, да еще и по доступной цене.

Однако, несмотря на наши хотелки, далеко не все (я бы даже сказал, единицы) способны с ходу назвать все основные критерии выбора того или иного компонента компьютера. И если с видеокартой и еще вроде кое-как справляются, то когда речь заходит про мозг всего и вся, а именно, центральный процессор, то вот здесь-то и начинается абсолютная засада.

Поэтому мы в очередной раз (ибо, как многие помнят, были уже статьи по выбору , и много чего еще) решили протянуть руку помощи всем нуждающимся и рассказать о том, как правильно выбрать процессор, а именно, что же нужно знать, на что обращать внимание, какие характеристики есть и всё такое прочее.

В общем, сегодня нас ждет статья из серии: «Хочу купить процессор, но не знаю на что обращать внимание.. Подскажете?».

Короче говоря, рассаживайтесь поудобней и.. Поехали!

Какой процессор выбрать - основные характеристики

Как я и говорил, статья будет максимально практической, поэтому не будем долго разглагольствовать по поводу, что такое ЦП и для чего он нужен, а сразу же рванем с места в карьер.

Мы уже как-то затрагивали процессорную тематику в таких статьях, как и , однако от читателей постоянно сыплются вопросы, мол, выдайте четкое руководство, что и как нужно покупать.

А так как проект, так сказать, социальный (учитываем «хотелки» посетителей), то недолго думая решили освятить сей вопрос максимально подробно.

Примечание:
Очень часто приходится сталкиваться с ситуацией, когда пользователи покупают разные навороченные и дорогие в надежде, что все сразу полетит и забегает, а вот процессору не уделяют должного внимания, после чего тот тормозит всю систему, ибо просто не может обеспечить всей необходимой прыти и шустрости всем остальным работающим подсистемам и комплектующим.

Посему знание основных параметров необходимо в первую очередь для того, чтобы оценить реально возможную вычислительную производительность будущей системы. Получается, что ориентируясь в характеристиках процессора, Вы сможете максимально полно раскрыть потенциал всех компонентов Вашего компьютерного собрата.

Собственно, вот с чем предстоит определиться при выборе процессора:

  • Бренд производителя (Intel или AMD );
  • Тех.процесс производства;
  • Маркировка и архитектура;
  • Платформа CPU или тип разъема (cокет);
  • Тактовая частота процессора;
  • Разрядность;
  • Количество ядер;
  • Многопоточность;
  • Кэш-память;
  • Энергопотребление и охлаждение;
  • Фирменные прибамбасы технологии.

Здесь был большой текст, но я его вырезал, ибо моё, Sonikelf"а, личное мнение всё еще совпадает с статьей.

Тех.процесс и как участвует в выборе

Очень часто про этот параметр просто забывают, однако от него, бывает, зависит производительность. Для того, чтобы изготовить микросхемы и кристаллы CPU используется метод фотолитографии – нанесение на кремниевую подложку специальным оборудованием проводников, изоляторов и т.п., которые и формируют само ядро процессора.


В зависимости от разрешающей способности этого оборудования формируется определенный тип технологического процесса производства. Чаще всего он указывается в нанометрах: 130 нм, 90 нм, 45 нм и т.п. На что влияет техпроцесс и почему он важен при выборе CPU ?

Все очень просто, чем меньше цифра, тем меньше размеры структур, которые помещаются на подложку. Все это приводит к пониженному энергопотреблению процессорных ядер, их большей вычислительной мощности, а также к снижению общей стоимости ЦП .

Вывод . Какой процессор выбрать исходя из этого? Чем меньше число в индексе технологического процесса, тем более высокопроизводительный и менее затратный (в сравнении со старшими собратьями) получается процессорный чип. Однако не стоит сильно обольщаться, пока эту «дешевизну» нового техпроцесса сможет ощутить конечный потребитель, пройдет немало времени.

Маркировка, архитектура и код name

Все производимые процессоры обладают специальной маркировкой, которая указывает на их принадлежность к определенному семейству (архитектуре) и основные характеристики.

Ниже мы подробней и наглядней рассмотрим некоторые маркировки, чтобы Вы могли легко их читать и понимать всю заложенную в них информацию. Если по-простому, то архитектура – это набор инструкций и свойств, присущих не одной конкретной модели, а целому семейству микрочипов.

Она определяет конструктивные особенности и организацию процессоров.

Архитектурам практически всегда присваивается код-name , т.е. кодовые имена, которые позволяют уже только по названию определить, в каком году была выпущена та или иная архитектура и какие характеристики заложены в моделях этой линейки.

Примечание:
Например, Intel имеет такие архитектуры для Core 2 Duo (архитектура Конрой ): Lynnfield, Nehalem и т.п. AMD: Piledriver, Bulldozzer, Trinity .

Вывод . Какой процессор выбрать исходя из этого? Если есть возможность пощупать процессор ручками, то уделите внимание его маркировке на лицевой стороне. Там можно найти массу дополнительной информации, неуказанной на коробке.

Сокет или тип разъема процессора

Процессор устанавливается в специальный раздел на – гнездо или, как его называют, Socket (сокет). Условно можно сказать, что это срок жизни Вашей платформы или потенциал возможного развития на будущее. Номер сокета, т.е. его модель (например, Socket 775 ) должен совпадать с номером сокета на мат.плате, иначе установить процессор на неё не получится.


Очень часто можно столкнуться с ситуацией, когда люди пытаются сэкономить на разъеме процессора, т.е. они изначально покупают морально устаревший процессор и мат.плату, вышедшие в тираж уже довольно давно. Это плохо тем, что как только появятся новые стандарты и новый тип разъема, то, скорее всего, под старый уже не будут выпускать новые, более мощные процессоры, т.е. Вы будете ограничены в возможности апгрейда компьютера и при желании его улучшить придется менять не только процессор, но и мат.плату.

Примечание:
Сокет процессора и сокет материнской платы должны совпадать, иначе просто ничего работать не будет.

Впрочем, не всё всегда так критично, ибо, например, у AMD более гибкая политика в отношении этого вопроса. Компания даёт возможность провести безболезненный для кошелька апгрейд путем поддержки совместимости новых платформ со старыми. У каждого производителя имеются свои типы сокетов. Основными из новых и условно-новых, скажем, для Intel считаются LGA 2011, LGA 1155, LGA 775 и LGA 1156 , причем два последние уже практически «канули в лету». У AMD самыми ходовыми являются разъемы AM3, Socket AM3+ и Socket FM1 .

Самый простой способ отличить процессор Intel от AMD – это посмотреть на них и запомнить, что изделия от AMD всегда имеют на задней поверхности множество штырьков-контактов, с помощью которых они и вставляются в разъем материнской платы. Intel же с некоторых пор, в свою очередь, использует другое решение – контактные ножки находятся внутри разъема самой материнской платы.

Вывод . Какой процессор выбрать исходя из этого? Сокет процессора и материнской платы должны совпадать или быть обратно совместимы.

Тактовая частота процессора

Самый известный параметр оценки производительности процессора – это количество производимых операций/вычислений в единицу времени (измеряется в Гц). Например, если говорится, что процессор имеет тактовую частоту равную 3,4 ГГц , то это значит, что он за одну секунду производит обработку 3 миллиардов 400 миллионов тактов (интервал выполнения операции).


Процессоры Intel и AMD имеют разные частоты, однако в целом «камни» (процессоры) нередко показывают одинаковую производительность. Многие считают, что только тактовая частота однозначно характеризует мощность процессора, и, значит, чем она выше, тем быстрее компьютер и всё тут. Однако это не совсем так. Важную роль играют все составляющие, например, такой параметр, как скорость работы оперативной памяти, разрядность шины передачи данных и прочее. В идеале все компоненты компьютера должны работать, так сказать, «в унисон».

Вывод . Тактовая частота - важный параметр производительности, однако далеко не единственный, поэтому не стоит гнаться только за ним.

Разрядность процессора

Также является одной из важнейших характеристик производительности процессора и показывает количество бит, обработанных процессором за один такт.

На текущий момент самый высокий показатель разрядности CPU - 128 , однако на потребительском рынке такие модели крайне мало распространены, а вот 32 и 64 бита – самые ходовые.

Примечание:
Разрядность процессора должна поддерживаться ОС, в частности, например, способна работать с 128- разрядными ЦП .

Многие пользователи при покупке путаются в маркировке разрядности 32 - и 64- битный «камней», поэтому здесь следует запомнить, что разрядности 86 бит не бывает, ибо такой маркировкой («х86 ») обозначаются 32 -разрядные процессоры. Если разрядность 64 бита, то процессор маркируются как, например, AMD64 или х64 .

В одной из статей, в частности в этой , мы говорили в чем отличие разрядностей. В самом общем случае следует запомнить, что 32 -битная архитектура не поддерживает больше 3,75 Гб , так что учитывайте это при апгрейде процессора.

Вывод . Какой процессор выбрать исходя из этого? При покупке обращайте внимание на разрядность процессора, лучше выбирать 64 -битный CPU .

Количество ядер процессора

Некое, совсем небольшое, количество лет назад такого понятия как многоядерность не существовало вовсе. Сейчас же, «куда ни плюнь», сплошь многоядерные процессоры. В выборе количества ядер следует в первую очередь исходить из конкретных задач.

Понятно, что чем больше ядер, тем лучше, но если Вы используете компьютер для решения офисных задач по работе с документами, серфинга в интернете и легких мультимедийных задач, то, скорее всего, процессор с количеством ядер больше двух - это выброшенные на ветер деньги.

Вывод . Какой процессор выбрать исходя из этого? «Ядреность» процессоров призвана в первую очередь повысить производительность при работе со специально оптимизированным софтом, играми и приложениями. Поэтому, если Вы «штатный» юзер с минимальными целями и задачами, то смысла переплачивать за количество ядер – нет. Оптимальным вариантом будет: 2 ядра – для стандартного офисного ПК (эдакой рабочей лошадки) и 4 и более ядра – если Вы хотите использовать ПК в качестве мультимедийного и игрового центра.

Многопоточность и тому подобное

Часто многие путают такие понятия как многопоточность и многоядерность, однако это совершенно разные вещи. Многопоточность – это способность платформы (ОС, программы, приложения) работать в несколько потоков, выполняющихся параллельно. Для раскрытия всего потенциала многоядерных процессоров им необходима работа с многопоточными приложениями. К таким приложениям можно отнести: архиваторы, кодировщики видео, дефрагментаторы, браузеры, flash и пр.

Из ОС к «любителям» многопоточности можно отнести Windows 8 , Windows 7 и различные -системы.

Вывод . Какой процессор выбрать исходя из этого? Многопоточность зависит от оптимизации платформы разработчиком. Сейчас все больше игр и приложений достойно поддерживают эту способность. Однако не факт, что стоит искать в прайсах на процессоры этот параметр.

Кэш-память и другие хвосты

Помимо оперативной памяти существует сверхбыстрая кэш-память, с которой и работает кристалл процессора, ибо он не может ждать, пока ОЗУ «раскачается» и выполнит требуемые операции.


Кэш-память – это область процессорного кристалла, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами. Другими словами – это сверхбыстрый энергозависимый буфер, позволяющий быстро получить доступ к часто используемым данным.

Кэш-память имеет трехуровневую организацию (хотя некоторые процессоры имеют только 2 ):

  • L1 – кэш первого уровня. Самый маленький (по объему, 16 -128 Кбайт) и очень быстрый, зачастую он работает на частоте самого CPU . Имеет высокую пропускную способность и процессорные ядра работают с ним напрямую.
  • L2 – медленней, но больше чем L1 по объему.
  • L3 – самый объемный кэш (от 6 до 16 Мб).

В целом основная задача разработчиков (в отношении кэша) – это определение его оптимальных размеров для выпускаемого процессора. Ведь именно от этого зависит прирост производительности в определенных приложениях. Любая кэш-память снабжена системой защиты от возможных ошибок (ECC ), при обнаружении которых последние автоматически исправляются.

Вывод . Какой процессор выбрать исходя из этого? Если Вы страстный поклонник хорошей графики, компьютерных игр и мощных видеоподсистем с двумя видеокартами, то выбирайте процессор с большим объемом кэш-памяти третьего уровня (16 Мб и выше). Во всех остальных случаях вполне достаточно будет процессора с почти любым объемом сверхбыстрой памяти.

Ну вот и закончили мы с техническими параметрами, теперь рассмотрим некоторые, так сказать, фишки..

Энергопотребление и охлаждение

Конечно же развитие производственных мощностей процессоров не могло не отразиться на их энергопотреблении, которое существенно возросло. Если раньше можно было спокойно обойтись «комплектным» вентилятором, то теперь для отвода тепла необходимы специальные системы охлаждения (см. изображение).

Для оценки же тепловыделения была введена величина TDP , которая показывает, на отвод какого количества тепла должна быть рассчитана система охлаждения, при использовании ее с определенной моделью CPU . В настоящий момент, эпоху развития портативных устройств (планшетов, нетбуков и т.п.) параметр энергопотребления, за счет тех.процесса и тп, удалось существенно снизить. Так, например, TDP процессоров мобильных решений компьютеров составляет всего 40 Вт .

Информация по выбору системы охлаждения для Вашего процессора была в статье " ".

Вывод . Какой процессор выбрать исходя из этого? Если Вы сторонник всяких ноутбуков и подобных портативных устройств, то на TDP и всякие там вентиляторы не стоит обращать особого внимания - там и так всё за Вас уже рассчитано и установлено. Если же Вы хотите собрать высокопроизводительную настольную систему, то нужно брать серьезную «охлаждалку».

Встроенное графическое ядро

С развитием техпроцесса производства процессоров появилась возможность размещать внутри ЦПУ различные микросхемы, в частности графическое ядро.

Удобно такое решение тем, что не требуется покупать отдельную видеокарту. Ориентировано оно в основном на бюджетный сектор (офисную среду), где графические возможности системы вторичны. AMD встраивает в свои вычислительные процессоры видеочипы Radeon HD , такой единый элемент получил название APU (ускоренный процессорный элемент).

Вывод . Какой процессор выбрать исходя из этого? Если Ваша цель - бюджетный компьютер, в котором графика не играет важной роли (ну, не играете Вы в мощные игры, не занимаетесь 3D -дизайном и тд и тп, а просто смотрите фильмы, лазаете по инету и тд и тп), то тогда гибридный процессор со встроенным видеоядром – это то что доктор прописал, так сказать дешево и сердито. Если же Вам нужны видеомощности, то, само собой, нет смысла тратится на процессор с видеоядром - лучше .

Всякие там фирменные технологии

За столь долгое время существования процессоров, их производители обзавелись своими «примочками» - дополнительными функциями, ускоряющими и расширяющими вычислительные мощности CPU . Например, вот некоторые из них.

От AMD :

  • 3DNow!, SSE (инструкции) – ускорение работы в мультимедиавычислениях;
  • AMD64 – работа с 64 -битными инструкциями, а также с 32 -битными архитектурами;
  • AMD Turbo Core – аналог Intel Turbo Boost ;
  • Cool’n"Quiet – снижение энергопотребления за счет уменьшения множителя и напряжения на ядре.

От Intel :

  • Hyper Threading (гиперпоточность) – создание для каждого физического ядра по два виртуальных (логических), вычислительных;
  • Intel Turbo Boost – повышение частоты ЦП в зависимости от загруженности ядер;
  • Intel Virtualization Technology – запуск нескольких ОС одновременно без потери производительности.

Вывод . Какой процессор выбрать исходя из этого? Конечно дополнительные «ништяки» в виде фирменных технологий – это не то, на чем стоит базироваться при выборе ЦП, однако приятным бонусом получить их бесплатно Вам никто не мешает, главное определиться, что необходимо.

Итак, последнее на сегодня, это…

Маркировка процессора

Весьма важно уметь читать и правильно истолковывать маркировку процессора, ибо магазины бывают разные, продавцы – не всегда честные, а вот выложить лишние N -тысяч рублей за непонятный «камень» вряд ли кому-то хочется, а посему важно уметь читать маркировку процессора. Давайте разберем ее на конкретном примере, допустим, для производителя AMD .

В общем виде маркировку от AMD (для поколения Family 10h ) можно представить в следующем виде (см. изображение):

Расшифровка будет следующей:

Марка процессора (1 ). Возможны следующие символы:

  • A – AMD Athlon;
  • H – AMD Phenom;
  • S – AMD Sempron;
  • O – AMD Optheron.

Назначение процессора (2 ). Варианты:

  • D – desktop – для рабочих станций или настольных ПК;
  • E – embedded server – для выделенных серверов;
  • S – server – для серверов.

Модель процессора (3 ). Возможны обозначения:

  • Е – энергоэффективные процессоры;
  • Х – заблокированный множитель;
  • Z – разблокированный множитель.

Тепловой пакет и класс системы охлаждения (4 ). Данные берутся из таблицы (см. изображение):

Корпус процессора (5 ). Данные берутся из таблицы (см. изображение).

Количество ядер (6 ). Значения от 2 до С (12 ).

Объем кэш-памяти (7

Ревизия процессора или степпинг (8 ). Данные из таблицы (см. изображение).

Итак, на основании данных таблицы можно легко определить, что перед нами за процессор, допустим, судя по модели ниже (см. изображение), перед нами..

Процессор AMD с маркировкой HDZ560WFK2DGM , которая означает:

  • H CPU семейства AMD Phenom ;
  • D – назначение: рабочие станции/настольные ПК;
  • Z560 – модельный номер процессора 560 (Z - со свободным множителем);
  • WF TDP до 95 Вт;
  • K – упакован процессор в корпус 938 pin OµPGA (Socket AM3);
  • 2 – общее количество активных ядер;
  • D – объем кэш-памяти L2 512 КБ и объем кэш-памяти L3 6144 КБ;
  • GM - ядро процессора степпинга C3.

Вот так, зная учетные данные таблиц, можно легко вычислить, что перед Вами за экземпляр.

Собственно, это все, что хотелось бы рассказать. Думаю, что информация окажется для Вас полезной и пригодится еще не один раз.

Где лучше всего купить процессор?

  • , - для тех, кто не боится покупать за рубежом и экономить деньги. Есть много , несколько популярных марок, да и вцелом приятный магазин, где идут постоянные и прочее;
  • , - пожалуй, лучший выбор с точки зрения соотношения цена-качество SSD (и не только). Вполне внятные цены, хотя ассортимент не всегда идеален с точки зрения разнообразия. Ключевое преимущество, - гарантия, которая действительно позволяет в течении 14 дней поменять товар без всяких вопросов, а уж в случае гарантийных проблем магазин встанет на Вашу сторону и поможет решить любые проблемы. Автор сайта пользуется им уже лет 10 минимум (еще со времен, когда они были частью Ultra Electoronics ), чего и Вам советует;
  • , - один из старейших магазинов на рынке, как компания существует где-то порядка 20 лет. Приличный выбор, средние цены и один из самых удобных сайтов. В общем и целом приятно работать.

Выбор, традиционно, за Вами. Конечно, всякие там Яндекс.Маркет "ы никто не отменял, но из хороших магазинов я бы рекомендовал именно эти, а не какие-нибудь там МВидео и прочие крупные сети (которые зачастую не просто дороги, но ущербны в плане качества обслуживания, работы гарантийки и пр).

Послесловие

Сегодня мы максимально подробно выяснили, какой процессор выбрать и как правильно это сделать, т.е. на что можно обращать внимание при его покупке.

Информация довольно специфичная и технически, возможно, для некоторых непростая и непривычная, поэтому если чего-то не усвоили, то перечитайте еще раз, а потом еще, после чего откройте прайс и попробуйте сделать несколько вариантов выбора процессоров под разные нужды.

Потом снова перечитайте, потом снова выберите. В общем и так по кругу, пока не набьете руку:)

Мы же свою благую миссию выполнили, значит, пришла пора прощаться на некоторое время.
Как и всегда, если есть какие-то вопросы, дополнения, благодарности и всё такое прочее, то смело пишите комментарии.

P.S. За существование данной статьи спасибо члену команды 25 КАДР

Компьютер представляет собой комплекс из различных устройств, объединенных в единый блок посредством шин (актуально для внутренних комплектующих). Например, в состав любого компьютера входят центральный процессор, видеоадаптер и пр. Их характеристики определяют общую итоговую производительность и возможности. Одним из важнейших компонентов является центральный процессор. Иногда можно встретить другие его названия: CPU (англ. Central Processing Unit - основная вычислительная единица), проц, камень.

Что такое CPU с точки зрения рядового пользователя? По аналогии с телом человека проц можно сравнить с мозгом. Он выполняет все математические расчеты и частично обеспечивает взаимодействие компонентов между собой. Физически процессор представляет собой самую крупную микросхему, устанавливаемую в специальный разъем материнской платы. Внутри нее содержатся сложные логические схемы из нескольких миллиардов транзисторов. Люди, интересующиеся вопросом «что такое CPU», могут легко определить процессор среди других внутренних компонентов. Ведь на нем всегда расположена система активного охлаждения: массивный металлический радиатор и вентилятор. Необходимость в них вызвана тем фактом, что потребляемая микросхемой часто составляет десятки ватт. Малый объем рассеивающей поверхности и высокая мощность приводят к нагреву корпуса CPU, что требует использования охлаждения.

По-разному решают вопрос нагрева: одни оптимизируют архитектуру, внося механизмы отключения неиспользуемых блоков, другие снижают напряжение питания и используют для производства новейшие достижения («тонкий» техпроцесс) и пр. В настоящее время основными «игроками» на рынке центральных процессоров для настольных компьютеров и ноутбуков являются две компании - Intel и AMD. Соответственно, вся остальная инфраструктура подстраивается под особенности их продукции.

Часто на вопрос «что такое CPU» дают довольно обобщающие ответы. Это объясняется очень просто: сейчас термин «процессор» приобрел более широкое значение, чем «часть компьютера». Так, в любом современном мобильном телефоне есть блок, выполняющий математические расчеты - это тоже процессор. Даже владельцам управляемых детских игрушек полезно знать, что такое CPU, ведь в них тоже присутствует вычислительный блок.

Очевидно, что не рассмотрев принцип работы процессора, понять общие особенности его работы невозможно. Работой CPU управляют программы. Они представляют собой наборы инструкций для процессора, написанные на каком-либо языке программирования. Говоря человеческим языком, в программе указан точный порядок действий. Все помнят или хотя бы слышали о В нем для того, чтобы нарисовать на экране круг, требовалось выполнить команду Circle (координаты). Современные принципы создания программ остались такими же: задачи создаются командами языков программирования. При запуске программы на компьютере специальный программный декодер преобразует команды используемого языка в предназначенный для непосредственной обработки на CPU. Этот код - двоичный, представляет собой последовательность единиц и нулей. Многие не могут понять, почему было решено использовать именно а не привычную десятеричную. На самом деле все объясняется очень просто: двоичные разряды легко можно представить командами для самих транзисторов. Например, так как речь идет о цифровых устройствах, то можно представить цифру «1» как наличие напряжения на базе определенного транзистора, а «0» - как его отсутствие. Соответственно, в первом случае транзистор открыт и пропускает через себя ток, а во втором - заперт (конечно, все упрощенно и с множеством оговорок).

Скорость выполнения инструкций программы определяет быстродействие процессора. На это влияют архитектура, частота работы внутренних схем, оптимизация кода.

CPU (Central Processing Unit) – центральный процессор, главная микросхема в компьютере, его «мозг». Содержит регистровый файл (register file), устройство управления (control unit), устройство управления памятью (MMU), арифметико-логическое устройство (ALU) и другие блоки.

Чем быстрее работает центральный процессор, тем быстрее работает весь ПК. CPU состоит из специальных ячеек, которые называют регистрами, в них находятся команды, которые выполняет процессор, а также данные, которыми оперируют команды. Главными характеристиками центральных процессоров являются быстродействие и разрядность. Под быстродействием понимается количество тактов, выполняемых процессором за секунду. Данный параметр измеряется в мегагерцах (МГц), 1 МГц = 1 000 000 тактов в секунду. Разрядность – это параметр, который является важным для таких устройств компьютера, как внутренние регистры, шина ввода вывода данных, шина адреса памяти.

В настоящее время существует довольно большое разнообразие процессоров, и они постоянно совершенствуются. Ниже приведены основные типы таких CPU.

CISC-процессоры

Complex Instruction Set Computing - вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд).

RISC-процессоры

Reduced Instruction Set Computing (technology) - вычисления с сокращённым набором команд. Архитектура процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком (John Cocke) из IBM Research, название придумано Дэвидом Паттерсоном (David Patterson). Самая распространённая реализация этой архитектуры представлена процессорами серии PowerPC, включая G3, G4 и G5. Довольно известная реализация данной архитектуры - процессоры серий MIPS и Alpha.

MISC-процессоры

Minimum Instruction Set Computing - вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится на стековой вычислительной модели с ограниченным числом команд (примерно 20–30 команд).

Многоядерные процессоры

Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах). Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию системы «Мультипроцессор». На данный момент массово доступны процессоры с двумя ядрами, в частности Intel Core 2 Duo на ядре Conroe и Athlon64X2 на базе микроархитектуры K8.

В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Двухядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двуядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Duo состоит из двух физических ядер, что существенно влияет на скорость его работы.

10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхьядерные процессоры для серверов AMD Quad-Core Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barc elona. 19 ноября 2007 вышел в продажу четырёхьядерный процессор для домашних компьютеров AMD Quad-Core Phenom. Эти процессоры реализуют новую микроархитектуру K8L (K10). 27 сентября 2006 года Intel продемонстрировала прототип 80-ядерного процессора. Предполагалось, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, что должно было произойти к 2010 году. В настоящее время распространены процессоры, выполненные по 28 и 22 нанометровому процессу.

Похожие статьи