Автомобильное USB зарядное устройство с индикацией напряжения бортовой сети и тока зарядки. Почему «тормозит» USB-зарядник? Проверяем вскрытием

05.08.2019

Недавно я разработал автомобильный USB источник питания. Но статья будет совсем не о нем. В процессе разработки я ознакомился с двумя стандартами: ISO 16750-2, ISO 7637-2, которые подробно отвечают на часто задаваемый вопрос «Какое напряжение в автомобиле», а потом познакомил с ними десяток покупных USB зарядок разных производителей. Здесь ( , ) и там я видел статьи о разработке/доработке/запиле готовых источников для автомобилей, где авторы не задумываются о таких вещах, как защитные цепи. В моём источнике схема защиты получилась сложнее самого источника, т.к. пожар в машине - это, безусловно, неприятно. Как показали себя испытуемые и почему выжил только один - в этой статье.

Зачем нужна собственная зарядка

Кто-то спросит: «А зачем разрабатывать собственную зарядку, если полно готовых устройств?». Как и многие автолюбители, в машине я пользуюсь несколькими дополнительными устройствами, для которых не предусмотрено штатное питание. Сложившаяся ситуация на рынке источников питания для автомобиля - использование разъема прикуривателя для всего на свете. В итоге - провода по всему салону, непонятно, включен регистратор или нет... Наверное, для большинства пользователей это удобно, но не для меня. Внезапно захотелось иметь розетки USB, чтобы любое устройство заряжалось быстро как дома, чтобы в прикуривателе ничего не торчало и не мешало закрыть шторку около селектора АКПП. Захотелось, чтобы регистратор просто включался и работал во время движения, а задние пассажиры не ломали ногами его адаптер. Ничего готового, к счастью, не нашлось - и вот я уже рисую схему!

​Список тестируемых устройств

  1. Gerffins CC02
  2. Samsung Сar adapter
  3. Phantom PH2163
  4. Deppa Ultra duo
  5. Ginzzu GA-4415UW
  6. Stark CC2USBSTWH
  7. GAL UC-1127M
  8. Ginzzu GA-4015UB
  9. Pockets SPECHR-011
  10. Belkin RoadRockstar
  11. Мой 4USB

Тестирование

При проведении испытаний я старался следовать рекомендациям двух стандартов:
  1. ISO 16750-2 , Road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 2: Electrical loads
  2. ISO 7637-2 , Road vehicles - Electrical disturbances from conduction and coupling - Part 2: Electrical transient conduction along supply lines only. Местный аналог - ГОСТ 28751, Электрооборудование автомобилей. Электромагнитная совместимость. Кондуктивные помехи по цепям питания. Требования и методы испытаний.
К сожалению, оборудование позволило сделать не все интересные тесты - высоковольтные и «быстрые» сделать не удалось. Однако, все устройства были препарированы, схемы защиты изучены, что дает возможность судить о сопротивляемости этим воздействиям.

Тестирование проводилось по двум схемам включения из стандарта ISO 7637-2:

  1. Voltage transient emissions test
  2. Transient immunity test

Описание тестирования

Voltage transient emissions test (ISO 7637-2:2004 4.3)

Этот тест предназначен для оценки устройства как источника помех в сети питания. Стенд, собранный по этой схеме, показан на первой иллюстрации.

  1. Осциллограф (Keysight MSO-X 3104T 1GHz)
  2. Пробник осциллографа
  3. Эквивалент сети (самодельный, см. ниже)
  4. Тестируемое устройство (источник помех)
  5. Источник питания (Keysight DC power analyser N6705B)
  6. Заземление

Где A - контакт источника питания, B - земля, C - конденсатор, L - индуктивность, P - контакт тестируемого устройства, R - резистор.

Их характеристики:

L = 5 мкГн (без сердечника);
Сопротивление между P и A: < 5 mΩ;
C = 0,1 μF на напряжение 200 В a.c. and 1500 В d.c.;
R = 50 Ω.

Сопротивление катушки вышло чуть больше указанного в стандарте, так что лабораторию по сертификации мне не открыть.

Сняты осциллограммы:

  • в момент включения входного питания
  • выключения входного питания
  • помехи в режиме работы на номинальную нагрузку
Измерен полный размах напряжения, времена нарастания-спада не измерялись. В нормальном режиме измерена частота основной помехи (часто она была не одинока).

ВАХ

Состав стенда как в тесте Voltage transient emissions test. Измерено напряжение на выходе устройства при номинальном токе, потребляемый ток. Нагрузка имитируется тем же прибором N6705B - у него 4 порта, каждый со своим внутренним модулем, некоторые модули можно использовать как нагрузку. Номинальный ток потреблялся только с одного порта USB, для многопортовых устройств данные о КПД и максимальных помехах могут быть неточными. Сняты сопротивления проводов для ввода поправок.

Совместимость с разными устройствами

Проверялась возможность заряда Apple Ipad и Samsung Galaxy, измерялась величина входного тока.

Transient immunity test (ISO 7637-2:2004 4.4)

Эта схема включения предназначена для проведения тестов на устойчивость к переходным процессам. По этой схеме проведены все последующие тесты.

  1. Осциллограф (внутренний осциллограф у Keysight N7973A)
  2. Пробник осциллографа (в нашей конфигурации отсутствует)
  3. Генератор тестовых импульсов (Keysight N7973A 60V 33A)
  4. Тестируемое устройство
  5. Заземленная поверхность(металлический лист серый)
  6. Заземление
  7. Опциональный резистор (в нашей конфигурации отсутствует)
  8. Опциональный диодный мост (в нашей конфигурации отсутствует)

Импульс 2b (ISO 7637-2:2004 п. 5.6.2b)

Симулирует помехи от моторов постоянного тока, работающих в режиме генератора после выключения зажигания.

Импульс 4 (ISO 7637-2:2004 п. 5.6.4)

Симулирует просадку питания, вызванную включением стартера ДВС, исключая всплески, вызванные стартом.

Импульс 5b (ISO 7637-2:2004 п. 5.6.5)

Этот тест моделирует помеху «Сброс нагрузки», которая происходит в случае отсоединения батареи. Генератор продолжает отдавать ток зарядки, при этом остальные нагрузки остаются подключенными. Под грозный импульс попало два устройства: №4 и №11. Оба сгорели. Потом я прочитал, что в современных автомобилях есть супрессор, и таких напряжений не будет. №4 выбыл из дальнейшего тестирования. Для всех остальных устройств вместо него использовался следующий импульс (LV124).

LV124/VW8000 2013-6:E-05 «Load dump»

Суть та же, что у импульса 5b, но он определен производителями Audi, BMW, Daimler, Porsche и VW. Взят из брошюры Keysight.

Direct current (ISO 16750-2 п.4.1)

Этот тест проверяет функционирование оборудования в пределах между минимальным и максимальным напряжением питания. Критерий оценки: класс A.

Overvoltage (ISO 16750-2 п.4.2)

Этот тест симулирует ситуацию, когда вышел из строя регулятор генератора, и его выходное напряжение превысило нормальные значения. Этот тест симулирует «прикуривание». Подавал напряжение 24В в течение 60с из п. 4.2.1.2. Критерий оценки: класс D.

Superimposed alternating voltage (ISO 16750-2 п.4.3)

Этот тест симулирует добавленное переменное напряжение поверх постоянного. Частота изменялась 50Гц - 10кГц - 50Гц, в стандарте до 20 кГц, у нас до 10 кГц, источник больше не мог. Критерий оценки: класс А.

Starting profile (ISO 16750-2 п.4.5.3)

Этот тест проверяет поведение тестируемого устройства во время и после старта. Критерий оценки: класс С. По сути, он такой же как Имульс 4 из ISO 7637-2, только дбавилась осцилляция на полочке.

Short circuit protection (ISO 16750-2 п.4.8)

Этот тест симулирует короткое замыкание входов и выходов устройства. Коротим все контакты одного USB выхода между собой, т.е. на землю. В стандарте предписано коротить на землю и на питание 12В, но у нас второй вариант невозможен, и я его не моделировал. Один раз это получилось случайно - так сгорел один из Ginzzu «GA-4015UB». Критерий оценки: класс С.

Reversed voltage (ISO 16750-2 п.4.6)

Этот тест проверяет устойчивость устройства к неверной полярности батареи когда используется вспомогательное пусковое устройство. Прикладываем -14В на вход на 60с. Критерий оценки: после замены сгоревших предохранителей класс С. Внешний предохранитель не использовался, был сожжен один 10А стандартный FUSE - на токе 33А это заняло 150 мс, что намного больше чем выдержало любое сгоревшее устройство.

Препарирование

Когда запах горелой электроники подвыветрился, я приступил к разбору всех этих устройств. Привожу все по порядку с комментариями о схеме защиты, схеме подключения USB разъема, общими впечатлениями.

Какие они внутри

Gerffins CC02

Лучшее из купленных устройств - на входе самовосстанавливающиеся предохранители, супрессор, LC-фильтр, диоды для защиты от обратного напряжения. Разводка аккуратная, устройство сильно усложнено, видимо, из экономии на микросхемах источников. Предусмотрены варианты подключения линий D+ D- к делителям напряжения для Apple, но закорочены. Написано, что разработано в США, изготовлено в Китае, собственность Евросеть. Не хотят у нас разрабатывать…

Samsung Сar adapter


LC-фильтр, плавкий предохранитель, после замены которого (пайка) устройство работает. Аккуратная трассировка.

Phantom PH2163


Входная защита не предусмотрена, взорвался электролит. Микросхема питания зашлифована (защита от копирования?), микросхему пробило.

Deppa Ultra duo


Плавкий предохранитель, после замены которого (пайка) устройство работает. На одном порту D+ D- соединены, на другом - делители. IC зашлифована. Аккуратная трассировка.

Ginzzu GA-4415UW


Защита не предусмотрена. На одном порту D+ D- соединены, на другом - делители. Плата сильно пострадала. Трассировка плоха - расположение дросселя и микросхемы. Зато англоязычным пользователям предлагают 4.8А против 3.1А для русских. В миллиамперах характеристики совпадают!

Stark CC2USBSTWH


Плавкий предохранитель, после замены которого (пайка) устройство работает. На одном порту D+ D- соединены, на другом - делители. Дроссель далеко от микросхемы. Зато однослойная плата…

GAL UC-1127M


Плавкий предохранитель не сработал. Плата низкого качества.

Ginzzu GA-4015UB


Защита не предусмотрена. На одном порту D+ D- соединены, на другом - делители. Правда, разбираться какой где пользователю придется самостоятельно. Плотная компоновка, элементы залиты каким-то компаундом. Убиты 2 шт.

Pockets SPECHR-011


Плавкий предохранитель, после замены которого (пайка) устройство работает. Предусмотрены варианты подключения линий D+ D- к делителям напряжения, но линии закорочены.

Belkin RoadRockstar


Плавкий предохранитель, после замены которого (пайка) устройство работает. Супрессор, предохранитель, LC-фильтр на штекерной части, предохранитель и фильтр на пассажирской части. Замечательное качество разработки. IC для определения устройства как оригинальной зарядки разными потребителями.

Мой 4USB


Плавкий предохранитель, супрессор, e-Fuse, IC для определения устройства как оригинальной зарядки разными потребителями.



Где Iout - выходной ток устройства; Vout - измеренное напряжение на потребителе; Vout c - напряжение на выходе устройства, с учетом падения на проводе; Iin - потребляемый ток; Pout - выходная мощность; Pt - мощность тепловых потерь в устройстве; n - КПД; Vp-p on, off, noise - размах напряжения при включении, выключении и работе соответственно; F noise - частота помехи.

В ячейках тестов проставлены оценки буквами. Буквы - это классы функционального статуса (ISO 16750-1 п.6):

  • Класс А . Все функции устройства работают штатно во время и после теста.
  • Класс B . Все функции устройства работают штатно во время теста. Однако, одна или более выходит за пределы указанного допуска. После окончания теста устройство автоматически вернулось к нормальной работе. Функции памяти по классу А.
  • Класс C . Одна и более функций устройства не работает как положено во время теста, после окончания теста устройство автоматически вернулось к нормальной работе.
  • Класс D . Одна и более функций устройства не работает как положено во время теста, после окончания теста устройство не вернулось к нормальной работе, пока не перезапущено пользователем.
  • Класс E . Одна и более функций устройства не работает как положено во время теста, после окончания теста устройство не вернуть к нормальной работе без ремонта или замены устройства/системы.

Почему класс C зеленый, а B - желтый?

Мы можем закрыть глаза на требование стандарта сохранять полную или частичную работоспособность во время теста, ведь для зарядки важно не сгореть и не пожечь заряжаемые устройства. Класс A и C считаю лучше класса B - либо делаем как положено, либо ничего не заряжаем.

Анализ результатов

Честно говоря, ожидал гораздо худших результатов, возгораний и дымовых завес, даже камеру поставил, чтобы всё зафиксировать, но красивых возгораний не было.

По результатам тестирования все ЗУ выдали номинальный ток, некоторые устройства готовы давать больше, чем написано. Только два ЗУ (Belkin и мой) ограничивают ток по портам USB, у остальных порты по 5В запараллелены, ограничением занимается только источник. Заявления на упаковках про ток на портах имеют рекламный характер. Многие производители дают возможность любителям Apple заряжать свои устройства, в основном с помощью резисторов.

КПД устройств от 82% до 90% - вполне прилично, но у устройств малого размера с большим током длительная работа не гарантирована. В дальней поездке Ginzzu периодически надо будет остужать.

Некоторые зарядки дают сильную помеху в сеть (до 7.2 В), что может негативно сказываться на качестве аудио, приеме радио.

Только одно устройство из покупных (Gerffins) оказалось устойчивым к отрицательному напряжению. Причем, некоторые из погорельцев перед смертью выдавали в USB отрицательное напряжение (измерялось только до -3 В, т.к. срабатывала защита источника питания). Кто-то заметит, что при переполюсовке батареи в машине выгорят гораздо более ценные вещи (должны сгореть только предохранители), а происходит это крайне редко у крайне криворуких людей. Но. В стандарте есть ещё импульсы №1(-150 В, длительность 2 мс, группа импульсов), №3(-220 В, длительность 15 нс, группа импульсов), которые возникают и без переполюсовки батареи.

Почему разработчики не ставят диод?

Думаю, тут сошлись три проблемы: КПД, нехватка места и себестоимость. Кроме того, многие микросхемы позволяют работать с повышенным напряжением (34063A имеет максимальное напряжение на входе 40В), а входной конденсатор может сглаживать часть помех. КПД с диодом будет хуже (допустим, - 10%), что для ЗУ, помещающихся в разъем прикуривателя, чревато перегревом (от 3-амперного Ginzzu ждал, что перегреется и сгорит под номинальным током, через час он начал сбрасываться, разогревшись очень сильно, но не сгорел). Для многопортовых ЗУ диод будет рассеивать очень много - у belkin при мощности на выходе 36Вт, общие тепловые потери будут около 10Вт, а сейчас только 4Вт. Если поставить транзисторную защиту - дорого.

Что делать

Если про схемотехнику - ставить диод, фильтр, предохранитель, супрессор. Я вместо диода поставил электронный ключ от TI LM5060
Не все автомобильные зарядки одинаково полезны. Некоторые даже могут вызвать пожар (хотя, может, это Honda виновата).

Устройства, продающиеся для использования в жестких условиях, не подлежат обязательной сертификации на территории РФ. Среди купленных устройств только одно выдерживает тесты, все остальные сгорели.

P.S. Спасибо компании Keysight за предоставленное во временное пользование оборудование и разъяснения. Хорошие анализаторы и осциллограф, надеюсь, софт потом подтянут. Очень порадовала возможность всё это хозяйство синхронизировать и управлять с одного рабочего места по сети. Спасибо dimonfofr за сборку эквивалента сети и помощь по тестированию.

P.P.S. Обращайте внимание на инструкции к ЗУ - там много веселого. Pockets рекомендует выключить мобильный телефон перед зарядкой, Stark - отключать зарядку во время пуска двигателя, Deppa может синхронизировать ваше устройство с компьютером, Phantom рекомендует держать разъем прикуривателя чистым.

Держите ваши разъемы чистыми и не суйте туда что попало.

Теги: Добавить метки

Передовые технологии смартфонов развиваются по экспоненте, предлагая значительные улучшения, которые вы можете видеть в области дисплея, производительности, камеры и других, из года в год. Тем не менее, один аспект, который не демонстрирует роста – время автономной работы. В то время как производители пытались решить проблему с помощью больших аккумуляторов и функций, как быстрая зарядка, большинство смартфонов нынешнего поколения не предлагают больше одного рабочего дня, и эти сроки значительно сокращаются под нагрузкой.

Возможность зарядить свой телефон на ходу имеет важное значение, а если вы ведете продолжительный разговор, или используете свой телефон для навигации, музыки и других функций, пока ведете машину, есть хорошие автомобильные зарядные устройства, способные создать разницу. Чтобы помочь вам, вы собрали некоторые из лучших зарядных USB-устройств в машину, доступные в настоящее время. Давайте посмотрим!

CHARGED Quick Charge 3.0/2.0 & USB-C

Если быстрая зарядка именно то, что вы ищите, то Charge 3.0 предлагает сразу 4-е порта, включая USB с поддержкой Quick Charge 3.0, последней технологией, а также USB Type-C с двумя Smart-портами USB, способными поставлять на ваши устройства необходимое количество энергии для наиболее эффективной зарядки. QC 3.0 порт поддерживает устройства с Quick Charge 2.0. Это зарядное устройство включает все новейшие технологии и будет служить вам в течении некоторого времени. CHARGED Quick Charge 3.0 в настоящее время доступен за 14,99$ (1.000 р.).

Anker PowerDrive 2

Anker PowerDrive 2 это автомобильное зарядное USB-устройство с 2-мя портами, что позволяет заряжать до двух устройств одновременно. Технология Power IQ распознает устройство, чтобы обеспечить максимально возможную скорость зарядки, до 2,4 ампер на один USB-порт, однако, имейте в виду, что это зарядное устройство не поддерживает Qualcomm Quick Charge 2.0 / 3.0. Система Menas MultiProtect Anker обеспечивает защиту от перенапряжения, температурный контроль и дополнительные функции безопасности, призванные защитить заряжаемое устройство. Anker PowerDrive 2 в настоящее время доступен с ценником в 7,99$ (520 р.).

5ive - зарядка на 2 порта с Quick Charge 2.0

Автомобильное зарядное устройство 5ive сертифицировано Qualcomm Quick Charge 2.0 и поставляется с двумя портами, которые поддерживают быструю зарядку и способны заряжать два устройства одновременно. Помимо того, что вы получаете QC 2.0 на совместимых планшетах и смартфонах, зарядное устройство также поставляется с умной технологией распознания устройства, без QC 2.0, предлагая максимальный уровень зарядки в этом случае (2,4 А / 5Вт). Несколько встроенных систем защиты гарантируют, что устройство защищено от повреждений по средствам перегрузки, перезарядки и перегрева. Если у вас есть смартфон, который поддерживает Quick Charge 2.0, зарядка в машину от 5ive является отличным выбором, в настоящее время зарядное устройство доступно за 7,99$ (520 р.).

Anker PowerDrive+ 2 с Quick Charge 3.0

Anker PowerDrive+ 2 приходит с двумя портами, один из которых поддерживает Quick Charge 3.0, а другой Quick Charge 2.0, в сочетании с технологией Power IQ, чтобы обеспечить самую быструю зарядку из возможных. Это одно из самых компактных зарядных устройств в машину на рынке, в крепком корпусе, вместе со светодиодным кольцом, чтобы вы могли использовать его в условиях плохого освещения. Зарядное устройство также поставляется с защитой от перенапряжения, защитой от перегрузки и перегрева, чтобы обеспечить безопасность вашего устройства. Если у вас есть смартфон, который поддерживает Qualcomm Quick Charge 3.0, это зарядное устройство должно быть в вашей машине. Anker PowerDrive+ 2 доступен по цене 24,59$ (1.600 р.).

Зарядное устройство UNITEK с 3-мя портам и Qualcomm Quick Charge 2.0

Автомобильное зарядное устройство UNITEK предлагает несколько портов, чтобы заряжать до 3-х устройств одновременно. Один из портов поставляется с поддержкой Quick Charge 2.0, что позволяет заряжать совместимый QC 2.0 смартфон или планшет на 75% быстрее, чем со стандартным зарядным устройством. Остальные два порта не предлагают функций Quick Charge, но она автоматически определяет подключенные устройства, чтобы обеспечить наиболее быструю зарядку из возможных, до 2,4 А. Как и в случае с другими автомобильными зарядными устройствами из списка, она также приходит с несколькими функциями безопасности, призванными защитить ваше устройство от перезарядки, перегрева и перегрузки сети. 3-портовый UNITEK в настоящее время доступен за 13,99$ (900 р.).

Автомобильное зарядное устройство Aukey на 4 порта с Quick Charge 3.0

Это автомобильное зарядное устройство Aukey позволяет заряжать до 4-х устройств одновременно, если необходимо. Один из портов поставляется с поддержкой Qualcomm Quick Charge 3.0, что позволяет заряжать совместимый с QC 3.0 смартфон в 4 раза быстрее, чем стандартное зарядное устройство. Зарядное устройство сопровождается MicroUSB-кабелем, но, если у вас есть соответствующий кабель под рукой, вы сможете использовать это зарядное устройство для зарядки смартфонов с USB Type-C. Остальные три порта не предлагают быстрой зарядки, но обеспечивают оптимизированную зарядку до 2,4 А. Зарядное устройство также обеспечивает безопасность заряжаемых мобильных устройств, защищая те от перегрева, перезарядки и перенапряжения. Зарядное устройство в машину Aukey обойдется вам в 25,99$ (1.700 р.).

Зарядка для автомобиля Spigen USB Type-C

Всё больше и больше ОЕМ-производителей переходят на стандарт USB Type-C и, если у вас есть смартфон с таким портом, Spigen USB Type-C становится идеальным зарядным устройством в автомобиль. Зарядное устройство поставляется в комплекте с кабелем Type-C, что позволяет заряжать устройство быстрее, чем стандартное, вплоть до 3А. Зарядное устройство также оборудовано стандартным USB-портом, что позволяет заряжать другое устройство на максимальной скорости в 2,4 А. Зарядное устройство USB Type-C от Spigen в настоящее время доступно за 14,99$ (1.000 р.).

Зарядка в машину Aukey USB Type-C

Это ещё одно зарядное устройство USB Type-C, но в отличие от устройства Spigen выше, зарядка от Aukey не комплектуется соответствующим кабелем, вместо этого предлагая только порт Type-C. Порт также поставляется с поддержкой Quick Charge 3.0, комбинация, которая доступна с большинством текущих флагманов. Зарядное устройство также поставляется двумя другими стандартными USB-портами, что позволяет потенциально заряжать до трех устройств одновременно. Мало того, зарядное устройство также поставляется со встроенными функциями защиты вашего устройства от перезарядки, перегрева и перенапряжения. Автомобильное зарядное устройство Aukey USB Type-C обойдется вам в 25,99$ (1.700 р.).

Ваших гаджетов с помощью USB-тестера. Представляем вашему вниманию ещё один способ, для которого не понадобится никакого дополнительного оборудования.

Современные смартфоны и телефоны сами обеспечивают свою зарядку, контролируя уровень зарядного напряжения, ток заряда, напряжение батареи и её температуру. Все эти данные телефон знает и может показать своему владельцу в сервисном режиме. Его ещё называют инженерным, заводским или тестовым.

Внимание! Если вы не уверены в своих действиях, пожалуйста, не вводите свой телефон в сервисный режим. Ходят слухи, что кто-то каким-то образом умудрился испортить при этом свой аппарат.

А для тех, кто уверен и не боится, продолжаем.

Для чистоты эксперимента переводим свой телефон в «самолётный» режим (чтобы его потребление от зарядки не плавало в зависимости от силы GSM-сигналов, Wi-Fi и Bluetooth). Отключаем GPS-приёмник, отключаем авторегулировку яркости экрана.

Переводим телефон в сервисный режим. Для моего Lenovo это комбинация ####1111#, набранная в звонилке; для телефона Samsung подходит комбинация *#0228#. Я думаю, вы легко найдёте эту комбинацию для своего аппарата в интернете. Кстати, я наталкивался на комбинацию типа *777#, на которую многие жаловались: выполнив этот USSD-запрос, обладатели смартфонов получили от оператора сотовой связи какой-то дико дорогой набор ненужных опций. Наверное, это была разводка сайта с сервисными кодами, не знаю. В любом случае включённый «самолётный» режим обезопасит вас от этого. Кроме того, имейте в виду, что сервисные коды для телефонов начинаются обычно с *# (да, должна присутствовать решётка) и не требуют нажатия кнопки вызова.

Итак, мы вошли в сервисный режим. Структура сервисного меню уникальна для каждого производителя аппаратов. В моём Lenovo я выбрал пункт Item Test → BatteryChargingActivity, в Samsung просто появились какие-то параметры, и я пару раз пролистал вниз до появления нужных значений.

Для проверки зарядок мы будем контролировать силу тока. Она может быть обозначена как Charging Current, измеряется в mA (миллиамперах) и при неподключённой зарядке имеет значение «ноль».

Собираем интересующие нас зарядные устройства. Лучше, если их будет побольше и у них будут съёмные кабели, тогда качество анализа будет лучше.

Я взял несколько зарядок с выходом USB и, соответственно, несколько кабелей вида USB → microUSB. Подключив их в различных сочетаниях к своему аппарату, для каждого сочетания определил минимальный и максимальный ток зарядки (он немного плавает во времени) и записал их в таблицу.

Ток заряда в различных комбинациях зарядок и кабелей в миллиамперах (минимальное и максимальное значения)

Кабель 1 Кабель 2 Кабель 3
Зарядка 1 820…970 820…970 130…340
Зарядка 2 −150…0 −130…0 0
Зарядка 3.1 820…970 900…970 130…280
Зарядка 3.2 820…970 820…900 280…410
Зарядка 4 820…970 820…970 430…490
Зарядка 5 411…485 411…485 −73…+58

»
Заодно посчитаем, на сколько процентов плавает ток при зарядке. Запишем результаты во вторую таблицу.

Изменение тока в процессе зарядки в процентах

По результатам измерений можно сделать следующие выводы:

  • Отображаемый ток измеряется не точно, а с каким-то шагом. Соответственно, не стоит обращать пристального внимания на точные значения измеренного тока.
  • Мой телефон при зарядке потребляет около 1 000 мА (это видно на кабелях № 1 и 2 в сочетании с зарядками № 1, 3 и 4 - значения токов похожи между собой и максимальны из всех измерений). Об этом свидетельствует и максимальный ток, написанный на «родной» зарядке, - 1 000 мА.
  • Кабели № 1 и 2 одинаково хорошо передают заряжающее напряжение.
  • Кабель № 3 имеет высокое сопротивление, поэтому ток заряда гораздо меньше положенного. Его использовать для зарядки можно только в безвыходной ситуации. При включённых модулях GSM, Wi-Fi, Bluetooth он вряд ли сможет даже поддерживать уровень заряда батареи.
  • Зарядка № 2 (заявлена как одноамперная) даёт отрицательный ток, то есть текущий в другом направлении. Она вместо заряда разряжает гаджет. Кстати, телефон Samsung не показал отрицательный ток, а только ноль.
  • Зарядка № 4 - от iPad, заявлена как дающая 2 400 мА, обладает наиболее высокой мощностью (это видно на «высокоомном» кабеле № 3). Зарядка № 3 (заявлена как трёхамперная) - сдвоенная, оба разъёма одинаково хорошо заряжают телефон, но при подключении к ней более мощной нагрузки (например, планшета) больший ток отдаст по второму порту. Если грубо прикинуть соотношение максимальных токов на её разъёмах, полученных на плохом кабеле (280 и 410 мА), первый разъём способен выдать 1 200 мА, а второй - 1 800 мА. Это косвенно подтверждается максимальной просадкой тока (во второй таблице): чем мощнее зарядка, тем меньше просадка.
  • Зарядка № 5 (автомобильная, в прикуриватель) даёт недостаточный для заряда ток (по сравнению с зарядками № 1, 3 и 4). Действительно, при поездке на юг со смартфоном в режиме навигатора за 16 часов дороги она смогла только поддерживать процент заряда на одном значении.

Чтобы немного реабилитировать кабель № 3, скажем, что при его работе на менее требовательную нагрузку он и мешает меньше: при зарядке телефона Samsung вместо требуемых 453 мА он передаёт 354 мА, что уже можно и потерпеть.

Вот что получилось по итогам теста моих зарядок. У вас результаты будут немного другими, но общий смысл, я думаю, вы уловили: находим максимальный ток из всех комбинаций, определяем удачные кабели и зарядки и отдельно анализируем комбинации, дающие меньший ток.

Удачи в измерениях!

Новенький автомобильный USB-адаптер заряжает смартфон со скоростью улитки? Действительно, из некоторых зарядников даже за длительную поездку телефону или планшету удается «высосать» лишь пару десятков процентов энергии! Выясняем, почему покупка недорогого зарядного устройства в прикуриватель – лотерея.

Многие автовладельцы замечали, что автомобильные зарядные устройства, подключаемые к прикуривателю, работают по-разному. Одни заряжают быстро, другие – медленно, а третьи – не только «тупят», но еще и неспособны даже запустить процесс зарядки на севшем в нуль телефоне… Почему так происходит – загадка для рядового автовладельца…

Нуждаясь в срочной зарядке смартфона в машине, автор этих строк и сам как-то был вынужден экстренно купить во время поездки автомобильный USB-адаптер в магазине, более известном в народе под прозвищем «Все за 37 рублей». Цена – замечательная, вот только при работе в режиме навигатора с этим адаптером смартфон не заряжался, а лишь шатко балансировал на изначальном уровне батареи… При попытке же поставить на зарядку аппарат, батарея которого села до полного выключения, USB-адаптер не смог его даже «стронуть с места» – аккумулятор телефона просто не хотел переходить в режим зарядки!

Попробуем выяснить, почему некоторые зарядные устройства демонстрируют столь жиденькие таланты! И возможно ли это как-то выяснить ДО покупки или что-то исправить впоследствии?

Что там внутри?

На тесте-вскрытии у сайт – 3 автомобильных зарядных устройства с USB-разъемами, которые при работе показали свою полную или частичную непригодность, заряжая мобильные гаджеты медленно, очень медленно и даже демонстрируя неспособность перевести в режим зарядки телефон с полностью посаженной батареей. Это зарядное устройство из «Все за 37», зарядное устройство из магазина «Ашан» и еще одно, неизвестного происхождения. Все гаджеты – совершенно «беспородные», noname.


Как правило, внутри каждого зарядного устройства стоит специализированная микросхемка из разряда так называемых «DC/DC Step-Down-преобразователей» плюс несколько сопутствующих пассивных деталек, которые называют «обвязкой». Эта микросхема делает из 12-14 вольт автомобильной бортсети 5 вольт, предусмотренные стандартом USB. Разбираем зарядники и вдумчиво смотрим на их «потроха». Находим микросхему-стабилизатор – она там одна, и её ни с чем не перепутаешь. Читаем название, написанное на микросхеме, ищем в Сети её описание от производителя – так называемый «datasheet» – и смотрим, на что она реально способна.

Вот, скажем, зарядник из «Все за 37 рублей». На нем написано, что он обеспечивает выходной ток 500 мА, что реально маловато для смартфона. Но по субъективным ощущениям даже такого тока нет и в помине!

Вскрываем корпус зарядника и видим, что собран он на основе микросхемы MC34063. Это неплохая и хорошо известная электронщикам микросхема-импульсный стабилизатор, которая обеспечивает выходной ток… до 1,5 ампер! Шикарный ток (если так уместно говорить о токе!), пригодный для быстрой зарядки и смартфонов с мощной батареей, и даже планшетов. Однако почему-то этого не происходит – смартфоны заряжаются еле-еле, процентов на 15-20 за час…


Читаем datasheet микросхемы и видим, что выходной ток этого чипа регулируется элементами «обвязки» – а именно определенным резистором. При его сопротивлении, равном 0,2-0,15 ома, микросхема выдаст ток около 1 ампера, при сопротивлении 0,1 ома – максимальные 1,5 ампера.

А что же установлено на самом деле? Упс…. Китайцы припаяли параллельно 2 резистора по 1 ому, что суммарно дает 0,5 ома и ограничивает выходной ток MC34063 на уровне смешных 300 миллиампер – то есть почти в пять раз меньше, чем эта замечательная микросхема может обеспечить!


Что можно зарядить током 300 мА? Ну разве что простейший кнопочный телефон с крошечным аккумулятором, да и то небыстро… А вот современному смартфону с батареей 2700-3000 мАч этого тока категорически недостаточно!

Почему же адаптер так собран?

Да потому, что у китайцев не оказалось под рукой радиокомпонентов нужного номинала, и они поставили детальки из того ведра, где еще что-то было на дне, не заморачиваясь с точностью и рекомендациями производителя микросхемы!

В других дефективных китайских зарядных поделках – ровно та же история… Берем следующую зарядку, на корпусе которой анонсирован выходной ток 800 мА. Открываем и видим старую-добрую знакомую – микросхему MC34063! Смотрим на номинал пресловутого резистора, регулирующего ток, – и видим сопротивление 0,33 ома! А при нем выходной ток составляет, согласно данным производителя чипа, 450 мА, а вовсе не 800, как обещано!

Открываем следующий зарядник – и опять видим популярнейший чип MC34063, но регулировочный резистор уже имеет номинал 0,7 ома, что гарантирует ток не более 200 мА! Это уже полный финиш – такой адаптер ни для чего не пригоден…

Сейчас самый универсальным и надежным способом зарядить смартфон является использование зарядных устройств с USB портом. Люди которые много ездят на машине и не хотят остаться с севшим смартфоном посреди дороги, вынуждены покупать себе автомобильные зарядные устройства. Среди сотен, если не тысяч автомобильных зарядных устройств, представленных на рынке, можно порекомендовать к покупке десять лучших, которые выделяются дизайном, качеством сборки, количеством портов и высокой выходной мощностью.

10. R2D2 car charger fits cup holder (40$)

Фанатам фантастической саги «Звездные войны» должно понравиться это автомобильное зарядное устройство, сделанное в виде робота R2D2. В отличие от большинства конкурентов R2D2 car charger fits cup holder ставиться в подстаканник и подключается к прикуривателю отдельным кабелем.

9. Back To The Future Flux Capacitor car USB charger (25$)

Это зарядное устройство это настоящая находка для гиков, сделанное по мотивам серии научно-фантастических фильмов «Назад в будущее». Верхняя часть с красивой светодиодной подсветкой с хитрым переплетением проводов, это только красивая декорация, даже если разгонитесь точно до 141,592 км/ч (88миль/ч), не сможете путешествовать по времени. Здесь есть два USB порта на 1 и 2,1 ампера.

8. Vano 4-port USB car charger (15$)

Эти автомобильным зарядным устройством вы не будете испытывать дефицита в USB портах, четыре штуки должно хватить на все случаи жизни. Vano 4-port USB car charger способен выдать суммарно 6,8 ампер, чего хватать хватит для одновременной зарядки смартфона и планшетника.

7. Incipio USB & Lightning (40$)

Автомобильное зарядное устройство Incipio USB & Lightning сделано специально для смартфонов iPhone и планшетных компьютеров iPad. Здесь есть несъемный Lightning кабель и стандартный USB порт для других мобильных устройств.

6. Aukey CC-T1 2-Port USB Car Charger (17$)

Это одно из немногих зарядных устройств на рынке, у которого есть два USB порта, один стандартный, а второй поддерживающий технологию быстрой зарядки QuickCharge 2.

5. Motorola TurboPower QuickCharge 2.0 (30$)

Motorola сделало это зарядное устройство для своих телефонов поддерживающих технологию быстрой зарядки QuickCharge 2. Однако Motorola TurboPower QuickCharge 2.0 прекрасно работает и с другими QuickCharge 2.0 смартфонами.

4. Ventev Dashport q1200 (20$)

Этот зарядник поддерживает технологию быстрой зарядки Quick Charge 2.0. В случае если смартфон тоже поддерживает Qualcomm Quick Charge 2.0, то он будет очень быстро заряжаться от USB порта.

3. Anker 48W 4-Port USB Car Charger (15$)

Если вам нужно автомобильное зарядное устройство более чем с одним USB портом, тогда Anker 48W 4-Port USB Car Charger с четырьмя USB портом станет отличным выбором. Суммарная мощность, которую может зарядник через четыре порта, составляет 48 ватт. Плюс Anker умеет динамически менять силу тока в зависимости о того сколько «электричества» потребляет смартфон.

2. Xentris Quick Charge 2.0 Vehicle Charger (35$)

Главная фишка этого зарядного устройства, это поддержка технологии быстрой зарядки Quick Charge 2.0. Если ваш смартфон поддерживает Qualcomm Quick Charge 2.0, то будет заряжаться просто с реактивной скоростью. Кабель, идущий в комплекте с Xentris Quick Charge 2.0 Vehicle Charger, имеет встроенную светодиодную подсветку, чтоб его было легче подключить к microUSB разъему на смартфоне в темноте.

1. TYLT Ribbn (40-50$)

Несмотря на легкомысленный внешний вид (ведь яркие ядовитые цвета обычно выбирает молодеж), это весьма серьезное автомобильное зарядное устройство, на выходе способное выдать 2,4 ампера. Самое интересное, немногие обычные зарядные устройства, работающие от розетки, способный выдать больше 2 ампер. Для удобства TYLT Ribbn идет с несъемным метровым плоским microUSB или Lightning кабелем, который невозможно потерять. Кроме того дополнительно есть стандартный USB порт, для подключения второго мобильного устройства.

Похожие статьи