Аналоговые и дискретные сигналы. Аналоговые, дискретные и цифровые сигналы

13.08.2019

Любая система цифровой обработки сигналов независимо от ее сложности содержит цифровое вычислительное устройство - универсальную цифровую вычислительную машину, микропроцессор или специально разработанное для решения конкретной задачи вычислительное устройство. Сигнал, поступающий на вход вычислительного устройства, должен быть преобразован к виду, пригодному для обработки на ЭЦВМ. Он должен иметь вид последовательности чисел, представленных в коде машины.

В некоторых случаях задача представления входного сигнала в цифровой форме решается сравнительно просто. Например, если нужно передать словесный текст, то каждому символу (букве) этого текста нужно поставить в соответствие некоторое число и, таким образом, представить передаваемый сигнал в виде числовой последовательности. Легкость решения задачи в этом случае объясняется тем, что словесный текст по своей природе дискретен.

Однако большинство сигналов, с которыми приходится иметь дело в радиотехнике, являются непрерывными. Это связано с тем, что сигнал является отображением некоторого физического процесса, а почти все физические процессы непрерывны по своей природе.

Рассмотрим процесс дискретизации непрерывного сигнала на конкретном примере. Допустим, на борту некоторого космического аппарата производится измерение температуры воздуха; результаты измерения должны передаваться на Землю в центр обработки данных. Температура

Рис. 1.1. Виды сигналов: а - непрерывный (континуальный) сигнал; 6 - дискретный сигнал; в - АИМ-колебание; г - цифровой сигнал

воздуха измеряется непрерывно; показания датчика температуры также являются непрерывной функцией времени (рис. 1.1, а). Но температура изменяется медленно, достаточно передавать ее значения один раз в минуту. Кроме того, нет необходимости измерять ее с точностью выше чем 0,1 градуса. Таким образом, вместо непрерывной функции можно с интервалом в 1 мин передавать последовательность числовых значений (рис. 1.1, г), а в промежутках между этими значениями можно передавать сведения о давлении, влажности воздуха и другую научную информацию.

Рассмотренный пример показывает, что процесс дискретизации непрерывных сигналов состоит из двух этапов: дискретизации по времени и дискретизации по уровню (квантования). Сигнал, дискретизированный только по времени, называют дискретным; он еще не пригоден для обработки в цифровом устройстве. Дискретный сигнал представляет собой последовательность, элементы которой в точности равны соответствующим значениям исходного непрерывного сигнала (рис. 1.1, б). Примером дискретного сигнала может быть последовательность импульсов с изменяющейся амплитудой - амплитудно-импульсно-модулированное колебание (рис. 1.1, в). Аналитически такой дискретный сигнал описывается выражением

где исходный непрерывный сигнал; единичный импульс АИМ-колебания.

Если уменьшать длительность импульса сохраняя его площадь неизменной, то в пределе функция стремится к -функции. Тогда выражение для дискретного сигнала можно представить в виде

Для преобразования аналогового сигнала в цифровой после дискретизации по времени должна следовать дискретизация по уровню (квантование). Необходимость квантования вызвана тем, что любое вычислительное устройство может оперировать только числами, имеющими конечное число разрядов. Таким образом, квантование представляет собой округление передаваемых значений с заданной точностью. Так в рассмотренном примере производится округление значений температуры до трех значащих цифр (рис. 1.1, г). В других случаях число разрядов передаваемых значений сигнала может быть иным. Сигнал, дискретизированный и по времени, и по уровню, называется цифровым.

Правильный выбор интервалов дискретизации по времени и по уровню очень важен при разработке цифровых систем обработки сигналов. Чем меньше интервал дискретизации, тем точнее дискретизированный сигнал соответствует исходному непрерывному. Однако при уменьшении интервала дискретизации по времени возрастает число отсчетов, и для сохранения общего времени обработки сигнала неизменным приходится увеличивать скорость обработки, что не всегда возможно. При уменьшении интервала квантования требуется больше разрядов для описания сигнала, вследствие чего цифровой фильтр становится более сложным и громоздким.

Человек ежедневно разговаривает по телефону, смотрит передачи различных телеканалов, слушает музыку, бороздит по просторам интернета. Все средства связи и иная информационная среда основываются на передаче сигналов различных типов. Многие задаются вопросами о том, чем отличается аналоговая информация от других видов данных, что такое цифровой сигнал. Ответ на них можно получить, разобравшись в определении различных электросигналов, изучив их принципиальное отличие между собой.

Аналоговый сигнал

Аналоговый сигнал (континуальный) – естественный инфосигнал, имеющий некоторое число параметров, которые описываются временной функцией и беспрерывным множеством всевозможных значений.

Человеческие органы чувств улавливают всю информацию из окружающей среды в аналоговом виде. Например, если человек видит рядом проезжающий грузовик, то его движение наблюдается и изменяется непрерывно. Если бы мозг получал информацию о передвижении автотранспорта раз в 15 секунд, то люди всегда бы попадали под его колеса. Человек оценивает расстояние моментально, и в каждый временной момент оно определено и различно.

То же самое происходит и с иной информацией – люди слышат звук и оценивают его громкость, дают оценку качеству видеосигнала и тому подобное. Соответственно, все виды данных имеют аналоговую природу и постоянно изменяются.

На заметку. Аналоговый и цифровой сигнал учувствует в передаче речи собеседников, которые общаются по телефону, сеть интернет работает на основе обмена этих каналов сигналов по сетевому кабелю. Такого рода сигналы имеют электрическую природу.

Аналоговый сигнал описывается математической временной функцией, похожей на синусоиду. Если совершить замеры, к примеру, температуры воды, периодически нагревая и охлаждая ее, то на графике функции будет отображена беспрерывная линия, которая отражает ее значение в каждый временной промежуток.

Во избежание помех такие сигналы требуется усиливать посредством специальных средств и приборов. Если уровень помех сигнала высокий, то и усилить его нужно сильнее. Этот процесс сопровождается большими затратами энергии. Усиленный радиосигнал, например, нередко сам может стать помехой для иных каналов связи.

Интересно знать. Аналоговые сигналы ранее применялись в любых видах связи. Однако сейчас он повсеместно вытесняется или уже вытеснен (мобильная связь и интернет) более совершенными цифровыми сигналами.

Аналоговое и цифровое телевидение пока сосуществуют вместе, но цифровой тип телерадиовещания с большой скоростью сменяет аналоговый способ передачи данных из-за своих существенных преимуществ.

Для описания этого типа инфосигнала применяются три основных параметра:

  • частота;
  • протяженность волны;
  • амплитуда.

Недостатки аналогового сигнала

Аналоговый сигнал имеют нижеследующие свойства, в которых прослеживается их разница от цифрового варианта:

  1. Этот вид сигналов характеризуется избыточностью. То есть аналоговая информация в них не отфильтрована – несут много лишних информационных данных. Однако пропустить информацию через фильтр возможно, зная дополнительные параметры и природу сигнала, например, частотным методом;
  2. Безопасность. Он практически полностью беспомощен перед неавторизированными вторжениями извне;
  3. Абсолютная беспомощность перед разнородными помехами. Если на канал передачи данных наложена любая помеха, то она будет в неизменном виде передана сигнальным приемником;
  4. Отсутствие конкретной дифференциации уровней дискретизации – качество и количество передаваемой информации ничем не ограничивается.

Вышеприведенные свойства являются недостатками аналогового способа передачи данных, на основании которых можно считать его полностью себя изжившим.

Цифровой и дискретный сигналы

Цифровые сигналы – искусственные инфосигналы, представленные в виде очередных цифровых значений, которые описывают конкретные параметры предаваемой информации.

Для информации. Сейчас преимущественно применяется простой в кодировании битовый поток – двоичный цифровой сигнал. Именно такой тип может использоваться в двоичной электронике.

Различие цифрового типа передачи данных от аналогового варианта состоит в том, что такой сигнал имеет конкретное число значений. В случае с битовым потоком их два: «0» и «1».

Переход от нулевого значения к максимальному в цифровом сигнале производится резко, что позволяет принимающему оборудованию более четко считывать его. При появлении определенных шумов и помех приемнику будет легче декодировать цифровой электросигнал, чем при аналоговой информационной передаче.

Однако цифровые сигналы отличаются от аналогового варианта одним недостатком: при высоком уровне помех их восстановить невозможно, а из континуального сигнала присутствует возможность извлечения информации. Примером этому может послужить разговор по телефону двух человек, в процессе которого могут пропадать целые слова и даже словосочетания одного из собеседников.

Этот эффект в цифровой среде называется эффектом обрыва, который можно локализовать уменьшением протяженности линии связи или установкой повторителя, какой полностью копирует изначальный вид сигнала и передает его дальше.

Аналоговая информация может передаваться по цифровым каналам, пройдя процесс оцифровки специальными устройствами. Такой процесс именуется аналогово-цифровым преобразованием (АЦП). Данный процесс может быть и обратным – цифро-аналоговое преобразование (ЦАП). Примером устройства ЦАП может послужить приемник цифрового ТВ.

Цифровые системы также отличает возможность шифрования и кодирования данных, которая стала важной причиной оцифровывания мобильной связи и сети интернет.

Дискретный сигнал

Существует и третий тип информации – дискретная. Сигнал такого рода является прерывистым и меняется за момент времени, принимая любое из возможных (предписанных заранее) значений.

Дискретная передача информации характеризуется тем, что изменения происходят по трем сценариям:

  1. Электросигнал меняется только по времени, оставаясь непрерывным (неизменным) по величине;
  2. Он изменяется только по уровню величины, оставаясь непрерывным по временному параметру;
  3. Также он может изменяться одномоментно и по величине, и по времени.

Дискретность нашла применение при пакетной передаче большого объема данных в вычислительных системах.

Сигнал информационный - физический процесс, имеющий для человека или технического устройства информационное значение. Он может быть непрерывным (аналоговым) или дискретным

Термин “ «сигнал» очень часто отождествляют с понятиями “данные” (data) и “информация” (information). Действительно, эти понятия взаимосвязаны и не существуют одно без другого, но относятся к разным категориям.

Сигнал - это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Передается информация в виде сигналов. Сигнал есть физический процесс, несущий в себе информацию. Сигнал может быть звуковым, световым, в виде почтового отправления и др

Сигнал является материальным носителем информации, которая передается от источника к потребителю. Он может быть дискретным и непрерывным (аналоговым)

Аналоговый сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией времени и непрерывным множеством возможных значений.

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют непрерывным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые).

Примеры непрерывных пространств и соответствующих физических величин: (прямая: электрическое напряжение; окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала; отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде различные многомерные пространства: цвет, квадратурно-модулированный сигнал.)

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.



Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте "количество информации" будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Применение:

Аналоговые сигналы часто используют для представления непрерывно изменяющихся физических величин. Например, аналоговый электрический сигнал, снимаемый с термопары, несет информацию об изменении температуры, сигнал с микрофона - о быстрых изменениях давления в звуковой волне, и т.п.

Дискретный сигнал слагается из счетного множества (т.е. такого множества, элементы которого можно пересчитать) элементов (говорят – информационных элементов). Например, дискретным является сигнал “кирпич”. Он состоит из следующих двух элементов (это синтаксическая характеристика данного сигнала): красного круга и белого прямоугольника внутри круга, расположенного горизонтально по центру. Именно в виде дискретного сигнала представлена та информация, которую сейчас осваивает читатель. Можно выделить следующие ее элементы: разделы (например, “Информация”), подразделы (например, “Свойства”), абзацы, предложения, отдельные фразы, слова и отдельные знаки (буквы, цифры, знаки препинания и т.д.). Этот пример показывает, что в зависимости от прагматики сигнала можно выделять разные информационные элементы. В самом деле, для лица, изучающего информатику по данному тексту, важны более крупные информационные элементы, такие как разделы, подразделы, отдельные абзацы. Они позволяют ему легче ориентироваться в структуре материала, лучше его усваивать и готовиться к экзамену. Для того, кто готовил данный методический материал, помимо указанных информационных элементов, важны также и более мелкие, например, отдельные предложения, с помощью которых излагается та или иная мысль и которые реализуют тот или иной способ доступности материала. Набор самых “мелких” элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также сообщением .

Дискретизация – это преобразование непрерывного сигнала в дискретный (цифровой).

Разница между дискретным и непрерывным представлением информации хорошо видна на примере часов. В электронных часах с цифровым циферблатом информация представляется дискретно – цифрами, каждая из которых четко отличается друг от друга. В механических часах со стрелочным циферблатом информация представляется непрерывно – положениями двух стрелок, причем два разных положения стрелки не всегда четко отличимы (особенно если на циферблате нет минутных делений).

Непрерывный сигнал – отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука. В виде непрерывного сигнала представлена настоящая информация для тех студентов – потребителей, которые посещают лекции по информатике и через звуковые волны (иначе говоря, голос лектора), носящие непрерывный характер, воспринимают материал.

Как мы увидим в дальнейшем, дискретный сигнал лучше поддается преобразованиям, поэтому имеет преимущества перед непрерывным. В то же время, в технических системах и в реальных процессах преобладает непрерывный сигнал. Это вынуждает разрабатывать способы преобразования непрерывного сигнала в дискретный.\

Для преобразования непрерывного сигнала в дискретный используется процедура, которая называется квантованием .

Цифровой сигнал - сигнал данных, у которого каждый из представляющих параметров описывается функцией дискретного времени и конечным множеством возможных значений.

Дискретный цифровой сигнал сложнее передавать на большие расстояния, чем аналоговый сигнал, поэтому его предварительно модулируют на стороне передатчика, и демодулируют на стороне приёмника информации. Использование в цифровых системах алгоритмов проверки и восстановления цифровой информации позволяет существенно увеличить надёжность передачи информации.

Замечание. Следует иметь в виду, что реальный цифровой сигнал по своей физической природе является аналоговым. Из-за шумов и изменения параметров линий передачи он имеет флуктуации по амплитуде, фазе/частоте (джиттер), поляризации. Но этот аналоговый сигнал (импульсный и дискретный) наделяется свойствами числа. В результате для его обработки становится возможным использование численных методов (компьютерная обработка).

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

Лекция № 1

«Аналоговые, дискретные и цифровые сигналы.»

Двумя самыми фундаментальными понятиями в данном курсе являются понятия сигнала и системы.

Под сигналом понимается физический процесс (например, изменяющееся во времени напряжение), отображающий некоторую информацию или сообщение. Математически сигнал описывается функцией определенного типа.

Одномерные сигналы описываются вещественной или комплексной функцией , определенной на интервале вещественной оси (обычно – оси времени) . Примером одномерного сигнала может служить электрический ток в проводе микрофона, несущий информацию о воспринимаемом звуке.

Сигнал x (t ) называется ограниченным если существует положительное число A , такое, что для любого t .

Энергией сигнала x (t ) называется величина

,(1.1)

Если , то говорят, что сигнал x (t ) имеет ограниченную энергию. Сигналы с ограниченной энергией обладают свойством

Если сигнал имеет ограниченную энергию, то он ограничен.

Мощностью сигнала x (t ) называется величина

,(1.2)

Если , то говорят, что сигнал x (t ) имеет ограниченную мощность. Сигналы с ограниченной мощностьюмогут принимать ненулевые значения сколь угодно долго.

В реальной природе сигналов с неограниченной энергией и мощностью не существует. Большинство сигналов, существующих в реальной природе являются аналоговыми.

Аналоговые сигналы описываются непрерывной (или кусочно-непрерывной) функцией , причем сама функция и аргумент t могут принимать любые значения на некоторых интервалах . На рис. 1.1 а представлен пример аналогового сигнала, изменяющегося во времени по закону , где . Другой пример аналогового сигнала, показанный на рис 1.1б, изменяется во времени по закону .



Важным примером аналогового сигнала является сигнал, описываемый т.н. «единичной функцией» , которая описывается выражением

(1.3),

где.

График единичной функции представлен на рис.1.2.


Функцию 1(t ) можно рассматривать как предел семейства непрерывных функций 1(a , t ) при изменении параметра этого семейства a .

(1.4).

Семейство графиков 1(a , t ) при различных значениях a представлено на рис.1.3.


В этом случае функцию 1(t ) можно записать как

(1.5).

Обозначим производную от 1(a , t ) как d (a , t ).

(1.6).

Семейство графиков d (a , t ) представлено на рис.1.4.



Площадь под кривой d (a , t ) не зависит от a и всегда равна 1. Действительно

(1.7).

Функция

(1.8)

называется импульсной функцией Дирака или d - функцией. Значения d - функции равны нулю во всех точках, кроме t =0. При t =0 d -функция равна бесконечности, но так, что площадь под кривой d - функции равна 1. На рис.1.5 представлен график функции d (t ) и d (t - t ).


Отметим некоторые свойства d - функции:

1. (1.9).

Это следует из того, что только при t = t .

2. (1.10) .

В интеграле бесконечные пределы можно заменить конечными, но так, чтобы аргумент функции d (t - t ) обращался в нуль внутри этих пределов.

(1.11).

3. Преобразование Лапласа d -функции

(1.12).

В частности , при t =0

(1.13).

4. Преобразование Фурье d - функции. При p = j v из 1.13 получим

(1.14)

При t =0

(1.15),

т.е. спектр d - функции равен 1.

Аналоговый сигнал f (t ) называется периодическим если существует действительное число T , такое, что f (t + T )= f (t ) для любых t . При этом T называется периодом сигнала. Примером периодического сигнала может служить сигнал, представленный на рис.1.2а, причем T =1/ f . Другим примером периодического сигнала может служить последовательность d - функций, описываемая уравнением

(1.16)

график которой представлен на рис.1.6.


Дискретные сигналы отличаются от аналоговых тем, что их значения известны лишь в дискретные моменты времени.Дискретные сигналы описываются решетчатыми функциями – последовательностями – x д (nT ), где T = const – интервал (период) дискретизации, n =0,1,2,…. Сама функция x д (nT ) может в дискретные моменты принимать произвольные значения на некотором интервале. Эти значения функции называются выборками или отсчетами функции. Другим обозначением решетчатой функции x (nT ) является x (n ) или x n . На рис. 1.7а и 1.7б представлены примеры решетчатых функций и . Последовательность x (n ) может быть конечной или бесконечной, в зависимости от интервала определения функции.



Процесс преобразования аналогового сигнала в дискретный называется временная дискретизация. Математически процесс временной дискретизации можно описать как модуляцию входным аналоговым сигналом последовательности d - функций d T (t )

(1.17)

Процесс восстановления аналогового сигнала из дискретного называется временная экстраполяция.

Для дискретных последовательностей также вводятся понятия энергии и мощности. Энергией последовательности x (n ) называется величина

,(1.18)

Мощностью последовательности x (n ) называется величина

,(1.19)

Для дискретных последовательностей сохраняются те же закономерности, касающиеся ограничения мощности и энергии, что и для непрерывных сигналов.

Периодической называют последовательность x (nT ), удовлетворяющую условию x (nT )= x (nT + mNT ), где m и N – целые числа. При этом N называют периодом последовательности. Периодическую последовательность достаточно задать на интервале периода, например при .

Цифровые сигналы представляют собой дискретные сигналы, которые в дискретные моменты времени могут принимать лишь конечный ряд дискретных значений – уровней квантования. Процесс преобразования дискретного сигнала в цифровой называется квантованием по уровню. Цифровые сигналы описываются квантованными решетчатыми функциями x ц (nT ). Примеры цифровых сигналов представлены на рис. 1.8а и 1.8б.



Связь между решетчатой функцией x д (nT ) и квантованной решетчатой функцией x ц (nT ) определяется нелинейной функцией квантования x ц (nT )= F k (x д (nT )). Каждый из уровней квантования кодируется числом. Обычно для эих целей используется двоичное кодирование, так, что квантованные отсчеты x ц (nT ) кодируются двоичными числами с n разрядами. Число уровней квантования N и наименьшее число двоичных разрядов m , с помощью которых можно закодировать все эти уровни, связаны соотношением

,(1.20)

где int (x ) – наименьшее целое число, не меньшее x .

Т.о., квантование дискретных сигналов состоит в представлении отсчета сигнала x д (nT ) с помощью двоичного числа, содержащего m разрядов. В результате квантования отсчет представляется с ошибкой, которая называется ошибкой квантования

.(1.21)

Шаг квантования Q определяется весом младшего двоичного разряда результирующего числа

.(1.22)

Основными способами квантования являются усечение и округление.

Усечение до m -разрядного двоичного числа состоит в отбрасывании всех младших разрядов числа кроме n старших. При этом ошибка усечения . Для положительных чисел прилюбом способе кодирования . Для отрицательных чисел при использовании прямого кода ошибка усечения неотрицательна , а при использовании дополнительного кода эта ошибка неположительна . Таким образом, во всех случаях абсолютнок значение ошибки усечения не превосходит шага квантования:

.(1.23)

График функции усечения дополнительного кода представлен на рис.1.9, а прямого кода – на рис.1.10.




Округление отличается от усечения тем, что кроме отбрасывания младших разрядов числа модифицируется и m -й (младший неотбрасываемый ) разряд числа. Его модификация заключается в том, что он либо остается неизменным или увеличивается на единицу в зависимости от того, больше или меньше отбрасываемая часть числа величины . Округление можно практически выполнить путем прибавления единицы к (m +1) – муразряду числа с последующим усечением полученного числа до n разрядов. Ошибка округления при всех способах кодирования лежит в пределах и, следовательно,

.(1.24)

График функции округления представлен на рис. 1.11.



Рассмотрение и использование различных сигналов предполагает возможность измерения значения этих сигналов в заданные моменты времени. Естественно возникает вопрос о достоверности (или наоборот, неопределенности) измерения значения сигналов. Этими вопросами занимается теория информации , основоположником которой является К.Шеннон. Основная идея теории информации состоит в том, что с информацией можно обращаться почти также, как с такими физическими величинами как масса и энергия.

Точность измерений мы обычно характеризуем числовыми значениями полученных при измерении или предполагаемых погрешностей. При этом используются понятия абсолютной и относительной погрешностей. Если измерительное устройство имеет диапазон измерения от x 1 до x 2 , с абсолютной погрешностью ± D , не зависящей от текущего значения x измеряемой величины, то получив результат измерения в виде x n мы записываем его как x n ± D и характеризуем относительной погрешностью .

Рассмотрение этих же самых действий с позиции теории информации носит несколько иной характер, отличающийся тем, что всем перечисленным понятиям придается вероятностный, статистический смысл, а итог проведенного измерения истолковывается как сокращение области неопределенности измеряемой величины. В теории информации тот факт, что измерительный прибор имеет диапазон измерения от x 1 до x 2 означает , что при использовании этого прибора могут бытьполучены показания только в пределах от x 1 до x 2 . Другими словами, вероятность получения отсчетов, меньших x 1 или больших x 2 , равна 0. Вероятность же получения отсчетв где-то в пределах от x 1 до x 2 равна 1.

Если предположить, что все результаты измерения в пределах от x 1 до x 2 равновероятны, т.е. плотность распределения вероятности для различных значений измеряемой величины вдоль всей шкалы прибора одинакова, то с точки зрения теории информации наше знание о значении измеряемой величины до измерения может быть представлено графиком распределения плотности вероятности p (x ).

Поскольку полная вероятность получить отсчет где-то в пределах от x 1 до x 2 равна 1, то под кривой должна быть заключена площадь, равная 1, а это значит, что

(1.25).

После проведения измерения получаем показание прибора, равное x n . Однако, вследствие погрешности прибора, равной ± D , мы не можем утверждать, что измеряемая величина точно равна x n . Поэтому мы записывает результат в виде x n ± D . Это означает, что действительное значение измеряемой величины x лежит где-то в пределах от x n - D до x n + D . С точки зрения теории информации результат нашего измерения состоит лишь в том, что область неопределенности сократилась до величины 2 D и характеризуется намного большей плотностью ве5роятности

(1.26).

Получение каой-либо информации об интересующей нас величине заключается, таким образом, в уменьшении неопределенности ее значения.

В качестве характеристики неопределенности значения некоторой случайной величины К.Шеннон ввел понятие энтропии величины x , которая вычисляется как

(1.27).

Единицы измерения энтропии зависят от выбора основания логарифма в приведенных выражениях. При использовании десятичных логарифмов энтропия измеряется в т.н. десятичных единицах или дитах . В случае же использования двоичных логарифмов энтропия выражается в двоичных единицах или битах .

В большинстве случаев неопределенность знания о значении сигнала определяется действием помех или шумов. Дезинформационное действие шума при передаче сигнала определяется энтропией шума как случайной величины. Если шум в вероятностном смысле не зависит от передаваемого сигнала, то независимо от статистики сигнала шуму можно приписывать определенную величину энтропии, которая и характеризует его дезинформационное действие. При этом анализ системы можно проводить раздельно для шума и сигнала, что резко упрощает решение этой задачи.

Теорема Шеннона о количестве информации . Если на вход канала передачи информации подается сигнал с энтропией H ( x ), а шум в канале имеет энтропию H( D ) , то количество информации на выходе канала определяется как

(1.28).

Если кроме основного канала передачи сигнала имеется дополнительный канал, то для исправления ошибок, возникших от шума с энтропией H (D ), по этому каналу необходтмо передать дополнительное количество информации, не меньшее чем

(1.29).

Эти данные можно так закодировать, что будет возможно скорректировать все ошибки, вызванные шумом, за исключением произвольно малой доли этих ошибок.

В нашем случае, для равномерно распределенной случайной величины, энтропия определяется как

(1.30),

а оставшаяся или условная энтропия результата измерения после получения отсчета x n равна

(1.31).

Отсюда полученное количество информации равное разности исходной и оставшейся энтропии равно

(1.32).

При анализе систем с цифровыми сигналами ошибки квантования рассматриваются как стационарный случайный процесс с равномерным распределением вероятности по диапазону распределения ошибки квантования. На рис. 1.12а, б и в приведены плотности вероятности ошибки квантования при округлении дополнительного кода, прямого кода и усечении соответственно.



Очевидно, что квантование является нелинейной операцией. Однако, при анализе используется линейная модель квантования сигналов, представленная на рис. 1.13.

m – разрядный цифровой сигнал, e (nT ) – ошибка квантования.

Вероятностные оценки ошибок квантования делаются с помощью вычисления математического ожидания

(1.33)

и дисперсии

(1.34),

где p e – плотность вероятности ошибки. Для случаев округления и усечения будем иметь

(1.35),

(1.36).

Временная дискретизация и квантование по уровню сигналов являются неотъемлемыми особенностями всех микропроцессорных систем управления, определяемыми ограниченным быстродействием и конечной разрядностью используемых микропроцессоров.

Похожие статьи