Сила, скрытая внутри: тестируем возможности современной интегрированной графики. APU против GPU: сравнительный обзор

23.06.2019

На фоне последних успехов корпорации Intel, которая не так давно представила процессоры Devil’s Canyon , а затем выпустила экстремальные восьмиядерные Haswell-E , компания Advanced Micro Devices редко балует своих поклонников громкими анонсами. В то время как процессоры конкурента штурмуют новые высоты быстродействия в сегменте высокопроизводительных настольных систем, «бело-зеленые» сосредоточились на разработке и производстве APU — Accelerated Processing Units, сочетающих на одной кремниевой подложке несколько вычислительных модулей x86 и производительный графический акселератор. Основные достоинства гибридных процессоров — компактность, энергоэффективность и высокое быстродействие видеоподсистемы — нашли применение не только в неттопах и ноутбуках, но и в десктопах. В бюджетном классе AMD предлагает APU Kabini в исполнении Socket AM1, которые обеспечивают начальный уровень продуктивности при минимальных затратах, а для конфигураций среднего класса компания выпускает гибридные процессоры Kaveri . Изначально продуктовая линейка для платформы Socket FM2+ насчитывала всего три наименования: A10-7850K, A10-7700К и A8-7600, хотя, последняя модификация добралась до полок магазинов лишь в последнее время. А с недавних пор ассортимент пополнился двумя новыми APU: A6-7400К и A10-7800, а также тремя моделями Athlon на базе вычислительных модулей Steamroller. В итоге, модельный ряд процессоров AMD в исполнении Socket FM2+ приобрел следующий вид:

Процессор A10-7850K A10-7800 A10-7700К A8-7600 A6-7400K Athlon X4 860K Athlon X4 840 Athlon X2 450
Ядро Kaveri Kaveri Kaveri Kaveri Kaveri Kaveri Kaveri Kaveri
Разъем FM2+ FM2+ FM2+ FM2+ FM2+ FM2+ FM2+ FM2+
Техпроцесс, нм 28 28 28 28 28 28 28 28
Число ядер 4 4 4 4 2 4 4 2
Номинальная частота, МГц 3700 3500 3400 3100 3500 3700 3100 3500
Частота Turbo Core, МГц 4000 3900 3800 3800 3900 4000 3800 3900
L1-кеш, Кбайт 16 x 4 + 96 x 2 16 x 4 + 96 x 2 16 x 4 + 96 x 2 16 x 4 + 96 x 2 16 x 2 + 64 x 1 16 x 4 + 64 x 2 16 x 4 + 64 x 2 16 x 2 + 64 x 1
L2-кеш, Мбайт 4 4 4 4 1 4 4 1
Графическое ядро Radeon R7 series Radeon R7 series Radeon R7 series Radeon R7 series Radeon R7 series - - -
Число унифицированных шейдерных процессоров 512 512 384 384 256 - - -
Частота графического ядра, МГц 720 720 720 720 720 - - -
Поддерживаемый тип памяти DDR3-2133 DDR3-2133 DDR3-2133 DDR3-2133 DDR3-1866 DDR3-2133 DDR3-2133 DDR3-1866
TDP, Вт 95 65/45 95 45/65 65/45 95 65 65
Рекомендованная стоимость, $ 142 132 122 91 58 н/д н/д н/д

Новые модели Athlon смогут стать неплохой основой для бюджетных игровых ПК, оснащенных недорогой дискретной видеокартой, тогда как самый младший из гибридных процессоров — A6-7400K — сгодится для построения экономичного медиацентра, либо офисной «печатной машинки». В то же время, интересно выглядит четырехъядерный A10-7800, характеристики которого практически идентичны старшему A10-7850K, а стоимость меньше на 10 долларов. К тому же, новинка должна быть экономичнее флагманского APU, так как ее TDP составляет всего 65 Вт против 95 Вт у A10-7850K. Таким образом, потенциально, A10-7800 является неплохим вариантом для организации на его основе игровых конфигураций начального уровня. Справится ли новичок c этой задачей — мы с вами узнаем из сегодняшнего обзора, а заодно сравним быстродействие встроенного графического ядра с дискретными видеокартами начального уровня и сравним эффективность работы связки Dual Graphics.

Как водится, попавший в нашу тестовую лабораторию гибридный процессор AMD A10-7800 оказался лишенным комплекта поставки, тогда как розничные версии оснащаются простым алюминиевым охладителем, рассчитанным на работу с моделями, TDP которых не превышает 65 Вт. Конструктивно новейший APU полностью аналогичен старшей модели А10-7850К. Его полупроводниковый кристалл изготовлен по 28-нм технологическому процессу SHP (Super High Performance), кремниевая подложка занимает площадь 245 кв. мм, а количество транзисторов достигает 2410 млн. штук. Хрупкий кристалл от повреждений защищен металлической крышкой, которая также выполняет функцию равномерного распределения тепла. На крышку нанесена маркировка, согласно которой чип был изготовлен на 15 неделе 2014 года на мощностях GlobalFoundries в Германии, а окончательная сборка выполнялась на заводе AMD в Китае.


Процессор предназначен для установки в разъем Socket FM2+, поэтому, с его обратной стороны находятся 906 позолоченных ножек.

AMD A10-7800 (слева), AMD A10-7850K (справа)


В состав AMD A10-7800 входят два двухъядерных вычислительных модуля Steamroller, которые являются дальнейшим развитием микроархитектуры Bulldozer . Каждый такой модуль содержит по одному блоку вычислений с плавающей точкой (FPU), пару юнитов для целочисленных расчетов (ALU) и массив кэш-памяти второго уровня размером 2 МБ. Также, APU A10-7800 оснащен графическим акселератором класса Radeon R7, состоящим из восьми вычислительных модулей GCN, в состав которых входят по 64 потоковых процессора, одному блоку растеризации и четырех текстурных юнитов. Кроме того, на полупроводниковом кристалле гибридного процессора нашлось место для двухканального контроллера памяти стандарта DDR3, а также диспетчеров шин PCI Express 3.0 и UMI (Unified Media Interface).


Одной из ключевых особенностей APU Kaveri является поддержка на аппаратном уровне технологий hUMA (heterogeneous Memory Unified Access), предоставляющей процессорным и графическим ядам равноправный доступ ко всей области системной памяти, и hQ (heterogeneous Queue), которая позволяет гибко распределять задания между различными типами вычислительных модулей. Применение этих технологий расширило возможности для выполнения гетерогенных вычислений, в которых для расчетов привлекаются как модули х86, так и графические ядра, что дает компании AMD право называть A10-7800 12-ядерным процессором.

В определении спецификаций новинки помог диагностический модуль CPUID из состава программного продукта AIDA64. Штатная частота A10-7800 составляет 3500 МГц, но большую часть времени гибридный процессор работает на 3600 МГц с напряжением 1,408 В, а при запуске приложений, не имеющих многопоточной оптимизации, технология Turbo Core автоматически разгоняет вычислительные ядра до 3800-3900 МГц с одновременным увеличением Vcore до 1,416 В. Встроенный северный мост AMD A10-7800 всегда функционирует в режиме 1600 МГц, а подсистема ОЗУ способна работать на частотах до 2133 МГц включительно.




В моменты простоя функции энергосбережения понижают частоту APU до 1400 МГц, тогда как напряжение уменьшается 0,904 В.


Паспортное значение TDP для APU A10-7800 установлено на уровне 65 Вт, однако, системные платы для платформы Socket FM2+ получили возможность управления тепловым пакетом. Путем задания советующего параметра в UEFI Setup TDP можно снизить до 45 Вт, после чего меняется алгоритм управления тактовой частотой гибридного процессора. В энергоэффективном режиме тактовая частота понижается до 3000 МГц, тогда как во время однопоточной нагрузки вычислительные модули способны кратковременно ускориться до 3500 МГц.



Графическое ядро Radeon R7, в составе которого трудятся 512 потоковых процессоров, 32 TMU и 8 ROP, работает на частоте 720 МГц, а при отсутствии нагрузки для экономии электроэнергии оно замедляется до 351 МГц. Видеокарта совместима с DirectX 11.2, OpenCL 1.2 и Mantle — проприетарным API, разработанным AMD с учетом сильных сторон архитектуры GCN и продвигаемым чипмейкером в качестве альтернативы DirectX и OpenGL. Графический акселератор оснащен блоком VCE (Video Coding Engine), который отвечает за кодирование видео высокой четкости, и модулем UVD (Unified Video Decoder), призванным разгрузить вычислительные модули при воспроизведении видеопотока. Также имеется поддержка аппаратного ускорения звуковых эффектов AMD TrueAudio.


К сожалению, в процессе тестирования AMD A10-7800 был обнаружен один очень неприятный эффект: до тех пор, пока интегрированная видеокарта работает в режиме 2D или же обслуживает вывод изображения в легкой 3D-видеоигре, процессорные ядра, как и положено, функционируют на частоте до 3800 МГц включительно, но стоит запустить приложение, требовательное к ресурсам графической подсистемы, как вычислительные модули замедляются до 2500 МГц. Хуже всего то, что данное поведение совершенно не контролируется опциями энергосбережения, доступными в меню настройки системной платы. Очевидно, таким способом достигается нужный уровень экономичности, необходимый для соблюдения TDP. Стоит ли говорить, насколько пагубно может отразиться такое снижение частоты процессора на быстродействие в современных видеоиграх?! Следует заметить, что подобным образом ведет себя и старший AMD A10-7850К, правда, у него частота вычислительных модулей уменьшается до 3000 МГц.



Что касается разгонного потенциала, то коэффициенты умножения вычислительных модулей и встроенного северного моста у AMD A10-7800 заблокированы на повышение, поэтому, единственный способ повысить быстродействие новинки — форсировать частоту опорного генератора. Однако, на материнских платах Socket FM2+ от этой частоты зависит формирование тактовых сигналов для всех подсистем, в том числе контроллера цифровых видеовыходов, а также интерфейсов SATA и USB, поэтому, добиться прироста свыше 15-20% удается кране редко. В случае с нашим AMD A10-7800 частоту опорного генератора получилось поднять всего на 10 МГц, а превышение этого скромного значения приводило к сбоям и зависаниями в тестовых приложениях. Кроме того, изменение опорной частоты вызвало деактивацию технологии Turbo Core, а из меню настройки системной платы пропала функция оверклокинга интегрированного графического ядра. В итоге, максимальный разгон вычислительных модулей составил всего 3850 МГц, встроенная видеокарта работала на 792 МГц, а интегрированный северный мост — на частоте 1760 МГц. Подсистема ОЗУ функционировала в режиме 2346 МГц с таймингами 10-12-12-31-2Т.


Абсолютные показатели оверклокинга не впечатляют, зато, такой разгон не требует повышения напряжения и в полном объеме сохраняет работу технологий энергосбережения, а значит, снижаются требования к мощности блока питания. Кроме того, для охлаждения гибридного процессора не понадобится установка супер-кулера, что особенно актуально при эксплуатации в компактных корпусах.Тестовый стенд

Измерение уровня продуктивности и разгонного потенциала гибридного процессора AMD A10-7800 проводились в составе тестового стенда следующей конфигурации:

  • материнская плата: ASUS Crossblade Ranger (ATX, AMD A88X, UEFI Setup 0603 от 10.09.2014);
  • кулер: Noctua NH-U14S (вентилятор NF-A15 PWM, 140 мм, 1300 об/мин);
  • термопаста: Noctua NT-H1 ;
  • оперативная память: G.Skill TridentX F3-2400C10D-8GTX (2x4 ГБ, DDR3-2400, CL10-12-12-31);
  • накопитель: GoodRAM C100 Series (120 ГБ, SATA 6Gb/s);
  • блок питания: Seasonic X-650 (650 Вт);
  • операционная система: Windows 7 Enterprise 64 bit SP1;
  • драйвер чипсета: AMD Catalyst 14.4.
В операционной системе брандмауэр, UAC, Windows Defender и файл подкачки отключались, настройки видеодрайвера не изменялись, никаких других дополнительных настроек не проводилось. В прошивке материнской платы функции энергосбережения и технология AMD Turbo Core были установлены в значения по умолчанию. Гибридный процессор AMD А10-7800 тестировался в штатном режиме и при максимальном разгоне, а также энергосберегающем режиме при ограничении TDP до 45 Вт. Конкуренцию новинке составил APU A10-7850K, для которого был проведен цикл тестов в номинале и после оверклокинга. Параметры режимов работы процессоров указаны в следующей таблице:
AMD A10-7800 (45W) AMD A10-7850K AMD A10-7850K OC
Частота CPU, МГц 3500 3000 3850 4000 4400
Частота Turbo Core, МГц 3900 3500 - 3700 -
Напряжение Vcore, В 1,416 1,176 1,376 1,336 1,472
Частота NB, МГц 1600 1600 1760 1800 2000
Частота iGPU, МГц 720 720 792 720 960
Частота ОЗУ, МГц 1600 1600 2346 1600 2400
Тайминги 10-12-12-31-2T 9-9-9-24-1T 10-12-12-31-2T 9-9-9-24-1T 10-12-12-31-2T

В тестах графической подсистемы конкуренцию видеоядрам, встроенным в гибридные процессоры Kaveri, составили бюджетные ускорители Radeon R7 240 и Radeon R7 250, которые основаны на графических ядрах Oland, построенных на базе архитектуры GCN. В качестве Radeon R7 240 выступил видеоадаптер ASUS R7240-2GD3-L, а роль Radeon R7 250 исполнил акселератор MSI R7 250 1GD5 OC. Характеристики графических ускорителей приведены в следующей таблице:
Видеоадаптер Radeon R7 (встроенный) ASUS R7240-2GD3-L MSI R7 250 1GD5 OC
Ядро Spectre Oland Oland
Количество транзисторов, млн. шт 2410* н/д н/д
Техпроцесс, нм 28 28 28
Площадь ядра, кв. мм 245* 77 77
Количество потоковых процессоров 512 320 384
Количество текстурных блоков 32 20 24
Количество блоков рендеринга 8 8 8
Частота ядра, МГц 720 780 1100
Шина памяти, бит 128 128 128
Тип памяти DDR3 GDDR3 GDDR5
Частота памяти, МГц 2133 1800 4600
Объём памяти, МБ 1024/2048 2048 1024
Интерфейс - PCI Express 3.0 PCI Express 3.0
Заявленная максимальная потребляемая мощность, Вт 65/95* н/д 65
* — указано для APU в целом.

На фоне видеокарт начального уровня спецификации графического ядра, которым оснащены APU, выглядят самыми убедительными по количеству потоковых процессоров и числу текстурных блоков, но уступают дискретным ускорителям на базе Oland по тактовой частоте. Также, интегрированная видеокарта однозначно выигрывает у внешних графических ускорителей по энергоэффективности и компактности, однако, предлагает менее гибкие возможности по апгрейду.

Кроме того, ради эксперимента была собрана конфигурация Dual Graphics, которая позволяет объединять ресурсы встроенного видеоядра Kaveri и дискретного графического ускорителя класса Radeon R7 240 или Radeon R7 250 с видеопамятью GDDR3. Из имеющихся в наличии видеокарт только ASUS R7240-2GD3-L в полной мере соответствует указанным выше требованиям, тогда как видеокарта MSI R7 250 1GD5 OC, укомплектованная GDDR5, вовсе отказалась работать в составе Dual Graphics.

Для оценки продуктивности гибридного процессора был использован следующий набор тестовых приложений:

  • AIDA64 4.70.3200 (Cache & Memory benchmark);
  • Futuremark PCMark 8 v2.0.2028(OpenCL Accelerated);
  • Cinebench R11.5 64bit;
  • TrueCrypt 7.1 (встроенный тест);
  • WinRAR 5.2 (встроенный тест);
  • x264 HD Benchmark v5.0;
  • Futuremark 3DMark v 1.3.708;
  • Batman: Arkham City;
  • Hitman: Absolution;
  • F1 2012;
  • Metro: Last Light;
  • Sleeping Dogs;
  • Thief;
  • Total War: Rome II.
Результаты тестирования

Синтетические бенчмарки





Измерение пропускной способности ОЗУ в программе AIDA64 показало, что в скорости A10-7800 уступает старшему APU Kaveri как в режиме по умолчанию, так и после разгона из-за меньшей частоты встроенного северного моста. Что касается энрегоэффективного режима, то здесь наблюдается небольшое падение быстродействия, которое, впрочем, не должно отразиться на общем уровне продуктивности.





В комплексном бенчмарке Futuremark PCMark 8, с помощью которого можно оценить уровень производительности в повседневных задачах, при работе на штатной частоте гибридный процессор A10-7800 отстает от A10-7850K в среднем на 5%, а при включении повышенного энергосбережения теряет еще от 5% до 10% быстродействия. Разгон позволяет получить заметный прирост, которого вполне достаточно для успешной конкуренции со старшей моделью, работающей в номинальном режиме.

Прикладное ПО



В программе Cinebench R11.5, которая моделирует нагрузки при построении трехмерных изображений при помощи движка рендеринга CINEMA4D, новинка справляется с работой на 5% медленнее, чем A10-7850K, а при установке ограничения TDP не более 45 Вт снижает свою продуктивность еще на 15%. Зато, в подтесте с анимацией в режиме реального времени при использовании драйвера OpenGL быстродействие AMD A10-7800 почти не отличается от старшего APU Kaveri, в том числе и в энергоэффективном режиме, а разгон обеспечивает прирост почти в 25%.


При тестировании скорости шифрования данных с применением алгоритма AES+Twofish в программе TrueCrypt 7.1a наблюдается знакомая картина: в номинале герой сегодняшнего обзора отстает от A10-7850K на те же 5%, включение экономичного режиме отнимает еще 15% быстродействия, а после разгона A10-7800 почти догоняет флагманский APU AMD.


В задачах архивации в программе WinRAR разница между двумя гибридными процессорами не превышает 4%, снижение TDP для A10-7800 почти не отражается на его быстродействии, а небольшой оверклокинг позволяет новичку опережать A10-7850K, работающего в штатном режиме.



Во время кодирования видео Full HD при использовании кодека H.264 отставание A10-7800 от старшего Kaveri составляет не более 3-4%, искусственное ограничение теплового пакета снижает быстродействие еще на 10-12%, а эффективность разгона новинки достигает 10%.

Тесты в 3D-играх

При тестировании в игровых приложениях к результатам интегрированных графических ядер добавились показатели быстродействия пары бюджетных видеокарт и связки Dual Graphics, в которую входит акселератор Radeon R7 240 и видеокарта, встроенная в APU AMD A10-7800. В 3D-играх измерение частоты смены кадров проводилось в экранном разрешении 1366x768 при высоких настройках качества изображения.




Оценка быстродействия в популярном графическом бенчмарке Futuremark 3DMark показывает, что разница между двумя APU, работающими в штатном режиме не превышает 3% в пользу старшей модели, а разгон A10-7800 повышает производительность от 15% до 18%. Что касается сравнения с результатами дискретных видеокарт, то интегрированное видеоядро опережает Radeon R7 240 в среднем на 15%, но уступает акселератору Radeon R7 250, оснащенному быстрой памятью GDDR5, от 20% до 35%. Нельзя не отметить высокую эффективность связки Dual Graphisc, которая обеспечивает прирост порядка 35% относительно скорости работы интегрированного видеоядра.


В шутере Batman: Arkham City в штатном режиме A10-7800 уступает флагманскому APU не более 3%, ограничение TDP вызывает падение fps на 10%, а оверклокинг позволяет нарастить быстродействие на 30% и вплотную приблизиться к результатам разогнанного A10-7850K. Дискретной видеокартe Radeon R7 250 встроенное графическое ядро проигрывает почти 50%, а с Radeon R7 240 выступает практически на равных. Вновь радует эффективность работы Dual Graphics, достигающая 37%.


При тестировании в гоночном симуляторе F1 2012 отставание новичка от APU A10-7850K вновь не превышает 4%, разгон обеспечивает прирост в 18% относительно номинала, тогда как включение энергоэффективного режима приводит к уменьшению быстродействия почти на 9%. Обе дискретные видеокарты обыгрывают встроенное графическое ядро в среднем на 20%, однако, разгон гибридного процессора позволяет существенно сократить отставание. Что же до конфигурации Dual Graphics, то в F1 2012 она работала некорректно, вследствие чего игра напоминала слайд-шоу.


В игровом проекте Hitman: Absolution производительность обоих APU Kaveri очень близка, причем, искусственное ограничение TDP для А10-7800 почти не отражается на частоте смены кадров. Разгон новинки обеспечивает прирост в 26%, что позволяет её на равных соперничать с видеокартой Radeon R7 240, но результаты более скоростной Radeon R7 250 все еще остаются недосягаемыми. Связка Dual Graphics работает корректно, но польза от ее применения не слишком велика: чуть более 20% относительно встроенной видеокарты и всего 10% по сравнению с fps, которые Radeon R7 240 обеспечивает самостоятельно.


Популярный шутер Metro: Last light оказался слишком тяжелым для встроенных видеокарт, поэтому, более-менее комфортный геймплей APU обеспечивают только после разгона. Графический ускоритель Radeon R7 240 работает не намного быстрее, а вот связка Dual Graphics, построенная с его участием, демонстрирует неплохую эффективность, повышая частоту смены кадров почти на 40%, что, впрочем, не позволяет ей поравняться с Radeon R7 250.


В игре Sleeping Dogs в номинале быстродействие обоих APU практически равно, в режиме повышенного энергосбережения A10-7800 оказывается уже не в состоянии обеспечить комфортны гемплей. Разгон несколько улучшает ситуацию, повышая fps на 28%, но этого оказывается недостаточно, чтобы конкурировать с Radeon R7 250. Что касается младшей из дискретных видеокарт, то ее быстродействие находится на уровне интегрированных графических ядер, тогда как включение режима Dual Graphics позволяет получить потрясающий прирост в 60%!


Тестирование в 3D-игре Thief принесло сразу два неприятных сюрприза. Во-первых, быстродействия APU недостаточно, чтобы обеспечить комфортный игровой процесс, и даже разгон не позволяет исправить ситуацию, а во-вторых, связка Dual Graphics показала полную неработоспособность, встроенный бенчмарк зависал в самом начале своей работы. Что касается дискретных видеокарт, то Radeon R7 240 демонстрирует быстродействие на уровне интегрированных решений и только Radeon R7 250 удается перешагнуть барьер в 24 fps.


Измерение быстродействия в RTS Total War: Rome II показывает, что разница между гибридными процессорами вновь не превышает 3%, а ограничение теплового пакета для A10-7800 приводит к падению fps на 12%. Разгон обеспечивает прирост порядка 25%, причем, в режиме оверклокинга продуктивность старшего A10-7850К превышает аналогичные показатели новинки всего лишь на 6%. Дискретные графические ускорители продемонстрировали различное поведение: если Radeon R7 240 обеспечивает частоту смены кадров на уровне встроенных видеокарт, то Radeon R7 250 оказался быстрее на целых 40%, которые нельзя наверстать даже с помощью разгона APU. Что же до связки Dual Graphics, то она заработала, но эффективность от ее применения не достигает и 10%.

Энергопотребление

Для оценки энергопотребления тестовых стендов в режиме 2D использовалось устройство Basetech Cost Control 3000, с помощью которого было измерено среднее потребление электроэнергии «от розетки» при отсутствии нагрузки, а также пиковые значения потребляемой мощности во время прохождения стресс-теста Prime95 в режиме In-Place large FFTs.


В штатном режиме при отсутствии нагрузки энергопотребление гибридных процессоров идентично, тогда как при работе стресс-теста Prime95 оба APU совершенно неожиданно демонстрируют практически равные результаты при том, что расчетный TDP для A10-7800 меньше, чем аналогичный параметр для A10-7850К ровно на 30 Вт. Впрочем, свой вклад в погрешности измерения могла внести и «материнка» ASUS Crossblade Ranger, которая показала феноменальную энергоэффективность на фоне других системных плат для платформы Socket FM2+. Что касается ручного ограничения теплового пакета, то разница с режимом по умолчанию достигает 23 Вт. При разгоне энергопотребление A10-7800 почти не изменяется, поскольку напряжения питания не повышались, тогда как для A10-7850К наблюдается существенный рост потребления электроэнергии, который достигает 73 Вт относительно штатного режима.

Дополнительно была проведена оценка энергоэффективности тестовых стендов во время прохождения цикла графических бенчмарков, а также уровень потребления электроэнергии в простое для конфигураций с дискретными видеокартами и системы Dual Graphucs.


Разница энергопотребления между A10-7800 и А10-7850К в графических тестах оказалась еще меньше, чем при нагрузке на вычислительные ядра, а улучшение экономичности вследствие ограничения теплового пакета составило всего 11 Вт. После повышения частот уровень потребления электроэнергии для новинки вырос совсем незначительно, тогда как старший APU увеличил свои «аппетиты» на целых 68 Вт. Что касается конфигураций, оснащенных дискретными ускорителями, то в простое энергопотребление относительно встроенных видеокарт выросло всего на 5-6 Вт, а при нагрузке система, оснащенная Radeon R7 250, дополнительно расходует 42 Вт, тогда как для Radeon R7 240 прирост составляет всего 20 Вт, после включения Dual Graphics энергопотребление тестового стенда увеличивается до 130 Вт.

Выводы

По результатам тестирования стало понятно, что линейка гибридных процессоров AMD пополнилась очередной очень удачной моделью. Разница в быстродействии между A10-7800 и флагманским APU Kaveri не превысила и 3% в пользу последнего, тогда как рекомендованная стоимость новинки почти на 8% меньше. Также, герой сегодняшнего обзора продемонстрировал лучшую, чем A10-7850K энергоэффективность, правда, экономии в 30 Вт, которая следует из разности паспортных значений TDP, замечено не было. Зато, режим пониженного энергопотребления функционировал вполне корректно, снижая расход электроэнергии от 13% до 28% соответственно в видеоиграх и 2D-приложениях. Что касается разгона, то даже с тем ограниченным набором инструментов, что предлагается A10-7800, удалось добиться прироста быстродействия до 10% в прикладных программах, и почти на 25% повысить продуктивность в 3D-играх. А на фоне недавней коррекции стоимости стоимости на продукцию AMD, благодаря которой гибридные процессоры подешевели в среднем на 15-20%, приобретение APU Kaveri стало еще более оправданным. К сожалению, при тестировании А10-7800 было замечено снижение частоты вычислительных модулей при высокой нагрузке на встроенную видеокарту, про которое производитель почему-то скромно умалчивает. Очевидно, таким способом ограничивается общий уровень энергопотребления APU, который при отсутствии описанного выше защитного механизма наверняка превысил бы расчетные значения TDP.

Что касается графической подсистемы гибридных процессоров Kaveri, то ее быстродействие делает бессмысленным приобретение дискретных графических ускорителей Radeon R7 240, оснащенных видеопамятью GDDR3. Тоже самое касается перспективы организации систем Dual Graphics, эффективность которой во многих случаях не так высока, как того хотелось бы, а в некоторых тестах связка вовсе оказалась неработоспособной. Что же до графического акселератора Radeon R7 250, который использует быструю память GDDR5, то его результаты указывают на то, что гибридным процессорам AMD остро не хватает пропускной способности ОЗУ, которая сдерживает быстродействие мощного графического ядра. И, конечно, свою лепту в падение продуктивности в игровых приложениях внесло принудительное снижение частоты вычислительных модулей, которого нет в случае установки дискретного графического ускорителя. Таким образом, A10-7800 можно однозначно рекомендовать пользователям, которых в целом устраивает быстродействие APU в штатном режиме и которые готовы мериться с невозможностью полноценного разгона. Остальным же есть смысл доплатить лишние 10 долларов за старшую модель.

Сегодня мы поговорим про ряд видеокарт AMD Radeon R7 200 series. Речь пойдет о четырех представителях: 260, 250 и 240 сериях. Несмотря на то, что существует несколько отдельно взятых вариантов, разница между ними не настолько уж и велика. Все самые заметные отличия мы обязательно укажем и рассмотрим, чтобы вам не пришлось лишний раз задумываться о том, что покупать.

Цена

Начнем сразу с ценовой категории этих карточек. Несморя на то, что они все являются высокопроизводительными графическими процессорами и позволяют спокойно обрабатывать большие потоки данных, они находятся в так называемом эконом-секторе. В среднем вам придется отдать за такую карту до 10000 рублей, в зависимости от конкретной модели и магазина, что не может не радовать.

Хотя современные игры и создаются исключительно для самых новых видеокарт, а ультра-настройки работают только на видеопроцессорах от 50000 рублей, это не означает, что дешевые карты не смогут их заменить. Дело в том, что AMD Radeon R7 200 series отзывы от пользователей получают исключительно положительные, а значит, пользуются повышенным спросом.

Характеристики

Начнем мы с самых общих 200 series. Все они изготовлены по техпроцессу, определяющему размер кристалла 28 нм. Величина не слишком высокая, по сравнению с другими видеокартами, могла бы быть и лучше. В другом случае это привело бы к перегреву карты, однако два встроенных охлаждающих кулера сводят на нет данный конструкторский недочет AMD Radeon R7 200 series. Фото в статье это наглядно демонстрируют. Единственный недочет заключается в том, что вам придется чаще чистить систему охлаждения.

AMD Radeon R7 200 series, характеристики которых мы рассматриваем, подключаются через интерфейс PCI-E x16 версии 3.0. Вполне стандартно, но при этом намного лучше, чем AGP. При покупке просто обратите внимание на этот нюанс.

Монитор

Что касается вывода информации на экран, то тут у AMD Radeon R7 200 series драйвер дает жару. Если в 240 серии видеокарта поддерживает всего два монитора, то во всех последующих появляется несколько возможностей.

  • Если использовать и HDMI, то вы сможете подсоединить до 3-х экранов.
  • С разъемом DisplayPort их количество увеличивается до четырёх.
  • При использовании концентратора MST вы сможете подключить целых 6 мониторов.

При этом данные видеокарты поддерживают разрешение 4096х2160. Эти видеокарты подойдут как для обычных, так и для широкоформатных экранов. Таким образом, видеокарты способны поддерживать много-мониторные системы, а программное обеспечение, поставляемое вместе с ними, поможет пользователю с реализацией задуманного.

ТТХ

Давайте теперь поговорим о технической составляющей AMD Radeon R7 200 series. Характеристики данных видеокарт таковы, что они способны без особых усилий поддерживать работоспособность самых современных и требовательных игр. Исключением является AMD Radeon Но и выпущена она была достаточно давно.

Например, частота графического процессора, во многом определяющая производительность видеокарты, колеблется в районе 1 ГГц и может меняться в зависимости от производителя. В тоже время у 240 модели данная величина равна примерно 800 МГц.

Память видеокарты имеет форматы GDDR5 и DDR3. Но при этом если старые модели используют только устаревшую память, то новые (260 series) содержат исключительно современную технологию.

Также может существенно отличаться в пределах одной модели. Это также полностью зависит от производителя. Однако, несмотря на все старания, вы не сможете найти видеокарту AMD Radeon R7 200 series, характеристики которой содержат объем памяти выше 2 гигабайт. Но это и не нужно, если вас интересуют современные игры и требования к ним.

Исходя из формата памяти, также вытекает и пропускная способность AMD Radeon R7 200 series. Характеристики, которые мы получим на выходе, как нельзя лучше демонстрируют рабочие способности данных видеокарт:

  • 250 и 240 серии обладают пропускной способностью до 72 ГБ/с;
  • 260, 260х и 265 обеспечивают скорость обмена данными на 96/104/180 ГБ/с соответственно.

Как видите, при многих прочих равных параметрах выигрывают только самые новые модели. Впрочем, при средней цене 7700 рублей покупка данной видеокарты для апгрейда своего ПК не составит большой проблемы.

Вычислительный процесс

Рассмотрев общие данные, доступные покупателю на ценнике в магазине, мы переходим к более точным цифрам. Характеристики AMD Radeon R7 200 series позволят нам точно сказать, какая из данных видеокарт лучше остальных.

Начнем мы с числа универсальных процессоров. С их помощью производится расчет цвета и формы объектов, выводящихся на экран. Как вы понимаете, от этого параметра сильно зависит быстродействие карточки в целом. И вот тут-то мы смело можем сказать, что 240 модель сильно отстает от своих собратьев по серии.

  • AMD Radeon R7 240 имеет всего 5 вычислительных блоков, а это 320 процессоров.
  • AMD Radeon R7 250 содержит 8 блоков, а 250х - уже 14.
  • У AMD Radeon R7 260 есть 12 блоков, у 260х - 14, а вот 265 модель содержит целых 16 вычислительных устройств. Пояснений тут даже не требуется.

Дополнительно

Безусловно, технические характеристики AMD Radeon R7 200 series очень важны. То, какие технологии способна поддерживать современная видеокарта, определяет её функциональность и полезность для пользователя.

Видеокарты рассмотренной серии уверенно себя чувствуют при работе с Direct X 12.0 и с Open CL 1.2. Кроме того, они прекрасно взаимодействуют с Open GL 4.3. А технология CrossFire давно перестала удивлять и также прекрасно поддерживается данными карточками. В чем же тогда различия?

  1. Первым камнем преткновения становится AMD TrueAudio. Эта технология была создана для поддержания более качественного звука. Вот только далеко не все игры её используют, как и не всё оборудование способно её поддержать. Из всех представленных карточек данную технологию поддерживают только 260 и 260х.
  2. Также проблемой может стать декодер VCE, отвечающий за HD-видео. Он поддерживается только в карточках от 250х и выше.
  • Анализ среднегеометрических результатов, привлекательности покупки и замер энергопотребления
  • Вступление

    Целью обзора является определение оптимального процессора для совместной работы с видеокартой Radeon R7 260X 2048 Мбайт.

    В перечень испытуемых ЦП вошли:

    • Core i7-4770К;
    • Core i5-4670К;
    • Core i5-4570;
    • Core i5-4440;
    • Core i5-4430;

    • Core i3-4340;
    • Core i3-4130;

    • FX-8350 BE;
    • FX-6350 BE;
    • FX-4350 BE;

    • A10-6800K;
    • A8-6600K;

    • A10-5800K;
    • A8-5600K;

    • Athlon II X4 760K;
    • Athlon II X4 740.

    Материал является неотъемлемой частью проекта «База результатов тестов игровых конфигураций». Из нее производилась выборка данных, необходимых для данной работы. Прошу наших читателей принять во внимание тот факт, что была проделана огромная и кропотливая работа, поэтому стоит уважать нелегкий труд автора.

    Данное направление статей носит справочный характер, комментарии отсутствуют, поскольку каждый читатель сможет самостоятельно почерпнуть нужную ему информацию.

    Тестовая конфигурация

    Тесты проводились на следующем стенде:

    • Видеокарта: Radeon R7 260X 2048 Мбайт - 1100/6500 @ 1200/7200 МГц (Sapphire);
    • Материнская плата №1: GigaByte GA-Z87X-UD5H, LGA 1150, BIOS F7;
    • Материнская плата №2: GigaByte GA-990FXA-UD5, АМ3+, BIOS F12;
    • Материнская плата №3: ASRock FM2A85X Extreme4, FM2, BIOS 1.70;
    • Система охлаждения CPU: Corsair Hydro Series H100 (~1300 об/мин);
    • Оперативная память: 2 x 4096 Мбайт DDR3 Geil BLACK DRAGON GB38GB2133C10ADC (Spec: 2133 МГц / 10-11-11-30-1t / 1.5 В) , X.M.P. - off;
    • Дисковая подсистема: 64 Гбайта, SSD ADATA SX900;
    • Блок питания: Thermaltake Toughpower 1200 Ватт (штатный вентилятор: 140 мм на вдув);
    • Корпус: открытый тестовый стенд;
    • Монитор: 30" DELL 3008WFP (Wide LCD, 2560x1600 / 60 Гц).

    Процессоры:

    • Core i7-4770К - 3500 @ 4500 МГц;
    • Core i5-4670К - 3400 @ 4500 МГц;
    • Core i5-4570 - 3200 МГц;
    • Core i5-4440 - 3100 МГц;
    • Core i5-4430 - 3000 МГц;

    • Core i3-4340 - 3600 МГц;
    • Core i3-4130 - 3400 МГц;

    • FX-8350 BE - 4000 @ 4700 МГц;
    • FX-6350 BE - 3900 @ 4700 МГц;
    • FX-4350 BE - 4200 @ 4700 МГц;

    • A10-6800K - 4100 @ 4700 МГц;
    • A8-6600K - 3900 @ 4700 МГц;

    • A10-5800K - 3800 @ 4500 МГц;
    • A8-5600K - 3600 @ 4400 МГц;

    • Athlon II X4 760K - 3800 @ 4500 МГц;
    • Athlon II X4 740 - 3200 @ 4100 МГц.

    Программное обеспечение:

    • Операционная система: Windows 7 x64 SP1;
    • Драйверы видеокарты: AMD Catalyst 13.10 Beta.
    • Утилиты: FRAPS 3.5.9 Build 15586, AutoHotkey v1.0.48.05, MSI Afterburner 3.0.0 Beta 14.

    Инструментарий и методика тестирования

    Для более наглядного сравнения процессоров все игры, используемые в качестве тестовых приложений, запускались в разрешении 1920х1080.

    В качестве средств измерения быстродействия применялись встроенные бенчмарки, утилиты FRAPS 3.5.9 Build 15586 и AutoHotkey v1.0.48.05. Список игровых приложений:

    • Assassin"s Creed 3 (Бостонский порт).
    • Bioshock Infinite (Бенчмарк).
    • Crysis 3 (Добро пожаловать в джунгли).
    • Far Cry 3 (Глава 2. Охотник).
    • GRID 2 (Бенчмарк).
    • Hitman: Absolution (Бенчмарк).
    • Medal of Honor: Warfighter (Сомали).
    • Sleeping Dogs (Бенчмарк).
    • Tom Clancy"s Splinter Cell: Blacklist (Атака американской базы).
    • Tomb Raider (Бенчмарк).
    • Total War Rome II (Бенчмарк).
    • World of Tanks (Аэродром).

    Во всех играх замерялись минимальные и средние значения FPS. В тестах, в которых отсутствовала возможность замера минимального FPS , это значение измерялось утилитой FRAPS. VSync при проведении тестов был отключен.

    Технические характеристики компонентов

    Разгон процессоров

    Процессоры разгонялись следующим образом. Стабильность разгона проверялась утилитой ОССТ 3.1.0 «Perestroika» путем получасового прогона ЦП на максимальной матрице с принудительной 100% нагрузкой. Соглашусь с тем, что разгон тестируемых CPU не является абсолютно стабильным, но для любой современной игры он подходит на все сто.

    При максимальном разгоне у всех процессоров AMD частота контроллера памяти была поднята до 2400-2800 МГц.

    Core i7-4770К

    Штатный режим. Тактовая частота 3500 МГц, базовая частота 100 МГц (100х35), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.08 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен, Hyper Threading – включен.

    Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель был поднят до 45 (100х45), частота DDR3 – 2133 МГц (100х21.33), напряжение питания – до 1.25 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – выключен, Hyper Threading – выключен.

    Core i5-4670К

    Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.07 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен.

    Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель был поднят до 45 (100х45), частота DDR3 – 2133 МГц (100х21.33), напряжение питания – до 1.25 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – выключен.

    Core i5-4570

    Штатный режим. Тактовая частота 3200 МГц, базовая частота 100 МГц (100х32), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.07 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен.

    Core i5-4440

    Штатный режим. Тактовая частота 3100 МГц, базовая частота 100 МГц (100х31), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.06 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен.

    Core i5-4430

    Штатный режим. Тактовая частота 3000 МГц, базовая частота 100 МГц (100х30), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.06 В, напряжение питания DDR3 – 1.5 В, Turbo Boost – включен.

    Core i3-4340

    Штатный режим. Тактовая частота 3600 МГц, базовая частота 100 МГц (100х36), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.05 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

    Core i3-4130

    Штатный режим. Тактовая частота 3400 МГц, базовая частота 100 МГц (100х34), частота DDR3 – 1600 МГц (100х16), напряжение питания 1.04 В, напряжение питания DDR3 – 1.5 В, Hyper Threading – включен.

    FX-8350 BE

    Штатный режим. Тактовая частота 4000 МГц, частота системной шины 200 МГц (200х20), частота DDR3 – 1866 МГц (200х9.33), напряжение питания ядра 1.28 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 23.5 (200х23.5), напряжение питания ядра – до 1.54 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM – выключены.

    FX-6350 BE

    Штатный режим. Тактовая частота 3900 МГц, частота системной шины 200 МГц (200х19.5), частота DDR3 – 1866 МГц (200х9.33), напряжение питания ядра 1.28 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 23.5 (200х23.5), напряжение питания ядра – до 1.53 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM – выключены.

    FX-4350 BE

    Штатный режим. Тактовая частота 4200 МГц, частота системной шины 200 МГц (200х21), частота DDR3 – 1866 МГц (200х9.33), напряжение питания ядра 1.33 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 23.5 (200х23.5), напряжение питания ядра – до 1.52 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц (200х10.67), Turbo Core и APM – выключены.

    A10-6800K

    Штатный режим. Тактовая частота 4100 МГц, частота системной шины 100 МГц (100х41), частота DDR3 – 2133 МГц, напряжение питания ядра 1.31 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    A8-6600K

    Штатный режим. Тактовая частота 3900 МГц, частота системной шины 100 МГц (100х39), частота DDR3 – 1866 МГц, напряжение питания ядра 1.3 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    Процессор удалось разогнать до частоты 4700 МГц. Для этого множитель процессора был поднят до значения 47 (100х47), напряжение питания ядра – до 1.5 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц, Turbo Core и APM – выключены.

    A10-5800K

    Штатный режим. Тактовая частота 3800 МГц, частота системной шины 100 МГц (100х38), частота DDR3 – 1866 МГц, напряжение питания ядра 1.32 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    A8-5600K

    Штатный режим. Тактовая частота 3600 МГц, частота системной шины 100 МГц (100х36), частота DDR3 – 1866 МГц, напряжение питания ядра 1.31 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    Процессор удалось разогнать до частоты 4400 МГц. Для этого множитель процессора был поднят до значения 44 (100х44), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц, Turbo Core и APM – выключены.

    Athlon X4 760K

    Штатный режим. Тактовая частота 3800 МГц, частота системной шины 100 МГц (100х38), частота DDR3 – 1866 МГц, напряжение питания ядра 1.31 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    Процессор удалось разогнать до частоты 4500 МГц. Для этого множитель процессора был поднят до значения 45 (100х45), напряжение питания ядра – до 1.45 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2133 МГц, Turbo Core и APM – выключены.

    Athlon II X4 740

    Штатный режим. Тактовая частота 3200 МГц, частота системной шины 100 МГц (100х32), частота DDR3 – 1866 МГц, напряжение питания ядра 1.29 В, напряжение питания DDR3 – 1.5 В, Turbo Core и APM – включены.

    Процессор удалось разогнать до частоты 4100 МГц. Для этого частота шины была поднята до 114 МГц (114х36), напряжение питания ядра – до 1.42 В, напряжение питания DDR3 – 1.5 В. Частота DDR3 составила 2127 МГц, Turbo Core – включен и APM – выключен.

    Перейдем непосредственно к тестам.

    Основой при сборке компьютера является видеокарта. От ее стоимости напрямую зависит финальная стоимость ПК. По этой причине на рынке видеоускорителей большую популярность имеют бюджетные модели. Одним из ярких представителей является AMD Radeon R7 240.

    Ускоритель появился на рынке в 2013 году. Видеокарта не может похвастаться высокой производительностью. Но, даже несмотря на это, ее мощностей все еще достаточно для выполнения повседневных задач, а также для запуска некоторых современных игр и программ.

    Видеокарта работает на основе улучшенной архитектуры GCN. По отзывам пользователей и экспертов улучшение оказало положительное влияние на производительность ускорителя. Помимо этого, в R7 240 появилась поддержка системы API Mantle.

    В качестве графического ядра используется AMD Oland PRO. Его частота составляет 780 МГц в режиме ускорения. Минимальная частота равна 730 МГц.

    Число блоков растеризации устройства – 8. Объем памяти – 2 Гб типа GDDR3 и 4 Гб GDDR5. Из-за разницы в объеме памяти отличаются показатели частоты памяти. В первом случае она составляет 1600 МГц, а во втором – 4600 МГц. Пропускная способность составляет 28,8 Гбит/с. Ширина шины – 128 бит.

    Характеристики AMD Radeon R7 240 показывают, что мощностей видеокарты будет достаточно для работы в офисных программах и приложениях, а также для запуска и комфортной игры в проекты с низкими системными требованиями.

    Обзор Radeon R7 240

    На рынок было выпущено две версии видеоускорителя от компании AMD: Radeon R7 240 4 Gb и R7 240 2 Gb. От этих параметров, помимо производительности, напрямую зависит стоимость.

    Эта модель может похвастаться улучшенной активной системой охлаждения. Для этого производители добавили дополнительный вентилятор небольшого размера к уже имеющемуся радиатору. Единственным минусом этого решения стало то, что ускоритель стал более шумным во время рабочего процесса.


    Уровень энергопотребления AMD Radeon R7 240 series – 50 Вт. Из этого следует, что для комфортной работы видеокарты необходим блок питания объемом 300 Вт. Этого показателя будет достаточно в связке с производительным процессором и объемом ОЗУ от 6 Гб.

    Чтобы раскрыть максимальный потенциал видеоускорителя, не нужно приобретать мощный процессор. Поэтому в качестве чипа подойдет дешевая модель AMD Phenom 2 X6 1055T. Этой связки будет более чем достаточно для оптимальной работы. Устройство оснащено тремя разъемами: HDMI, VGA и DVI.

    Как разогнать видеокарту AMD Radeon R7 240

    Если вы хотите увеличить базовых параметры мощности, то тогда можно произвести разгон видеокарты AMD Radeon R7 240. Сделать это можно несколькими способами.

    В первом случае можно воспользоваться стандартными средствами утилиты Catalyst. Минусом этого способа является то, что максимально допустимое увеличение мощности GPU через эту утилиту не может превышать 1000MHz. Это ограничение установлено производителем.

    Чтобы избежать подобных ограничений, можно воспользоваться программой MSI Afterburner. С помощью этой утилиты вы можете увеличить показатель ядра до 1100MHz.

    Чтобы проверить видеоускоритель на наличие сбоев и неполадок, используйте софт Funmark. Он позволяет проводить стресс-тест, по завершению которого будут показаны сбои в случае их обнаружения.

    Для проверки текущих показателей мощности R7 240 скачайте и запустите утилиту GPU-Z. Она предоставит вам подробную информацию о текущих технических параметрах.

    Этих параметров разгона должно хватить для решения более «тяжелых» задач, таких как: обработка видео и изображений, запуск современных игр.

    Результаты тестирования в играх

    Чтобы получить полную картину о возможностях видеокарты, нужно провести тесты в играх AMD Radeon R7 240. Тестирование производилось в следующих проектах.

    Far Cry 3. Игра запускалась на высоких настройках графики в формате FullHD. Показатель FPS находился на уровне 35-37 кадров. В серьезных экшен-сценах и локациях с большой плотностью объектов: растительности, NPC, зданий фризов и лагов не наблюдалось.

    Alan Wake. На высоких настройках в разрешении 1920×1080 показатель кадров составлял 25-30. Это связано с тем, что у игры не самая лучшая оптимизация для компьютеров. В местах с большим количеством освещения случали микрофризы.

    Dota 2. Игра в жанре MOBA. В этом проекте R7 240 показал себя отлично. Даже на самых высоких графических настройках минимальный показатель FPS составлял стабильные 35 кадров, что является очень хорошим значением для комфортного игрового процесса.

    GTA 5. Запуск производился на средних настройках. FPS держался на уровне 25 кадров. В некоторых локациях случались просадки до 20 кадров. Это связано с тем, что GTA V очень требовательна к объему памяти видеокарты. При снижении качества графики FPS поднимался до стабильных 28.

    Fallout 4. Даже на минимальных настройках графики показатель FPS в этой игре не поднимался выше 15 кадров. Этого недостаточно для комфортной игры. Также очень часто в игре случаются лаги. Это связано с тем, что локации не успевают прогрузиться до конца.

    Dishonored. На высоких настройках в формате FullHD игра показывала стабильные и, что самое главное, комфортные 27 кадров. Минимальные просадки этого показателя случаются в моментах с большим скоплением NPC.

    Max Payne 3. Игра очень хорошо оптимизирована для ПК. Поэтому даже на самых высоких графических настройках и формате FullHD показатель FPS не опускался ниже 30 кадров. В экшен-сценах фризов и лагов обнаружено не было. Видеоускоритель очень хорошо справляется с Max Payne 3.

    Battlefield 4. В режиме кампании на низком уровне графики количество кадров находилось на уровне 20. При повышении настроек этот показатель опускался до 15, что рушит весь игровой процесс. В онлайн-сражения FPS еще ниже – 17-18 кадров с фризами в насыщенных баталиях.

    Watch Dogs. Запускалась игра в разрешении 1920×1080 и низких настройках. Игра не отличается своей оптимизацией и поэтому показатель FPS находился на достаточно низком уровне – 23. Несмотря на это, серьезных лагов во время игрового процесса замечено не было.

    Wolfenstein. Игра с очень хорошей оптимизацией. Благодаря этому показатель FPS находился на очень комфортном уровне – 30 кадрах. Настройки игры были выставлены на средние. Фризов и лагов даже во время перестрелок с большим количеством врагов обнаружено не было.

    Tomb Raider. При запуске игры на средних настройках минимальный показатель количества кадров находился на приемлемом уровне в 25 FPS. Этого показателя более чем достаточно для игры в формате FullHD.

    Metro: Last Light. На средних графических настройках видеокарта показала себя с лучшей стороны. Минимальный показатель FPS составил 27 кадров в разрешении 1920×1080 пикселей. Фризов и лагов во время перестрелок с врагами также не наблюдалось.

    На основе проведенных тестов можно сделать вывод, что видеоускоритель с трудом справляется с запуском современных игровых проектов. По большей части, R7 240 предназначен для решения офисных задач, нежели для работы с «тяжелыми» приложениями.

    Сравнение производителей

    Выпуском видеокарты на рынок занимаются три крупных производителя. Для выявления самого оптимально необходимо произвести сравнительный анализ в виде таблицы.

    Производитель HIS AMD Radeon R7 240 icooler Asus Radeon R7 240 Gigabyte AMD Radeon R7 240
    GPU Oland PRO Oland PRO Oland PRO
    Техпроцесс 28 нм 28 нм 28 нм
    Число транзисторов 1040 млн. шт. 1040 млн. шт. 1040 млн. шт.
    Блоков рендеринга 8 8 8
    Площадь кристалла (мм2) 90 90 90
    Число потоковых мультипроцессоров 320 320 320
    Объем видеопамяти (Мбайт) 2048 и 4096 2048 и 4096 2048 и 4096
    Тип видеопамяти DDR3/GDDR5 DDR3/GDDR5 DDR3/GDDR5
    Частота GPU (МГц) 780 730 900
    Предельная температура процессора (°С) 100 100 100
    DirectX 12 12 12
    Ширина шины 128 бит 128 бит 128 бит
    Xастота памяти 1600 МГц DDR3/4600 МГц GDDR5 1600 МГц DDR3/4600 МГц GDDR5 1600 МГц DDR3/4600 МГц GDDR5
    Пропускная способность (Гбайт/c) 72 72 72
    Цена AMD Radeon R7 240, руб. 3999 4285 4598

    Серьезных различий в стоимости видеоускорителя нет. Самым мощным по техническим параметрам является модель от компании Gigabyte, так как у нее наибольший показатель частоты ядра.

    Скачать драйвера

    Раз в 2-3 месяца выходит новый драйвер для видеокарты Radeon R7 240. Обновление ПО для ускорителя позволяет поддерживать его производительность на оптимальном уровне.

    Скачать драйвера на видеокарту AMD Radeon R7 240 можно с официального сайта компании.

    Нельзя сказать, что AMD выпускает слабые видеокарты, особенно в недорогом сегменте. Производительности видеокарт зачастую хватает на большинство задач. Особенно если это не высоко требовательные задачи, вроде рендера видео или работы с 3D графикой. Для того чтобы лучше определить уровень производительности, следует рассмотреть две видеокарты серии AMD Radeon R7 200 Series.

    В таблице описаны характеристики AMD Radeon R7 200 Series, а именно представлен сравнительный анализ двух видеокарт из этой серии.

    Параметры видеокарты

    Radeon R7 240
    Oland XT

    Частота ядра

    780 МГц

    Тип графической памяти

    DDR3

    Количество памяти

    2 Гб

    Частота памяти

    1600 МГц

    Техпроцесс

    28

    Потоковые процессы

    320

    Блоки рендеринга

    8
    20
    128 бит

    Транзисторы

    1040 миллионов

    1040 миллионов

    Теплоотвод

    30 Вт

    Поддержка

    DirectX 12

    Стоит учитывать, что базовая частота ядра R7 240 составляет 730 МГц, а 780 МГц – это частота после разгона. В параметрах видеокарт указан тип памяти DDR3, но при этом есть ещё вариант с GDDR5 памятью. В сравнении будет использоваться DDR3, поскольку на данный момент это самый распространённый тип.

    Обзор Radeon R7 200 Series

    AMD Radeon R7 200 Series относиться к категории бюджетных и доступных видеокарт. Тем не менее, она выполнена достаточно качественно. Видеокарты, рассматриваемые в этом обзоре, представлены от компании Gigabyte.

    Обзор Radeon R7 240

    Модель получила 2 Гб видеопамяти типа DDR3. Также она имеет изначальный заводской разгон. Сама сборка выполнена качественно, хоть это и бюджетный сегмент.

    На верхней части графической карты расположен охлаждающий кулер с большим радиатором. Такой решение обуславливается сильным нагревом карт AMD. Радиатор выполнен из алюминия, а сам вентилятор слегка выпирает. Длина всей видеокарты составляет 19,5 см.


    В игре Metro Last Light результаты неплохие. Ядра работали на частоте 900 МГц. Видеокарта нагружалась на 90-100%, при этом средняя температура не превышала отметку в 46 градусов. Кулеры работали на 33%, а частота оборотов в минуту достигала 2-х тысяч. Кулер практически не издавал шумов.

    Обзор Radeon R7 250

    Внешнее оформление графической карты ничем не отличается от младшей модели. Она также имеет электроизоляционное покрытие из синего текстолита и ширину в 19,5 см. Радиатор такой же громоздкий, как и у AMD Radeon R7 240.

    Отличаются рассматриваемые карты исключительно микросхемами памяти и фазами питания. Radeon R7 250 имеет трёхфазовое питание, в отличии от двухфазового R7 240.

    Результаты тестирования в игре Metro Last Night схожи. Видеокарта стабильно работала на 90-100%, при этом особо не нагревалась. Температура не превышала 46-47 °C.

    Отличие только в количестве оборотов в минуту. Вентилятор работал со скоростью в 1200 об/мин, что в двое меньше скорости Radeon R7 240. Показатель FPS стабильно держался в районе 30-40 кадров.

    Как разогнать видеокарту Radeon R7 200 Series

    Для начала потребуется установить следующие утилиты: MSI Afterburner, 3DMark, TechPowerUp GPU-Z, FurMark.

    1. Запускаем MSI Afterburner и кликаем по кнопке настройки (шестерёнка).
    2. Выбираем вкладку «User interface» и в настройках выставляем нужный язык.
    3. Нажимаем на копку «Settings» и во вкладке «Мониторинг» выносим наверх следующие параметры: частота ядра ГП, частота памяти ГП1, частота кадров, температура ГП1.
    4. Для каждого из выбранных параметров выставляем опцию «Показать в Оверлейном Дисплее» и сохраняем изменения.
    5. Снова кликаем на кнопку «Settings» и во вкладке «Основные» ставим галочки для «Разблокировать управление напряжением» и для «Разблокировать мониторинг напряжения».
    6. Запускаем программу FurMark и выбираем нужное разрешение экрана, а также максимально доступное сглаживание.

    Теперь самый главный этап – разгон видеокарты AMD Radeon R7 200 Series. Начинаем с разгона видеопамяти. Сначала увеличиваем частоту памяти на 100 МГц и сохраняем настройку. После чего прогоняем видеокарту в FurMark. Повторяем данную процедуру до появления первых артефактов.

    Если при тестировании компьютер зависнет, стоит немедленно его перезагрузить. После перезагрузки выставляем те параметры, при которых артефакты отсутствуют.

    Напоследок проверяем карту в программе 3DMark, дабы избежать бликов, пятен и прочих дефектов.

    С разгоном видео ядра ситуация такая же. Выставляем параметр «Power Limit» на максимум, после чего увеличиваем частоту ядра на 10 МГц. Тесты проводим в программах, которые использовали для разгона памяти.

    Если появляются артефакты, то увеличиваем напряжение на ядро. Повторяем процедуру, пока не будет достигнут нужный результат.

    Результаты тестирования в играх

    В GTA V обе видеокарты показывают хороший результат. При низких настройках графики обе видеокарты выдавали в районе 35-40 FPS. На изначальных частотах R7 240 DDR3 немного выигрывает у и выдаёт на 10-15 FPS больше. Такие показатели достигаются не только из-за высокой производительности видеокарт, но и из-за хорошего уровня оптимизации GTA V.

    В игре War Thunder при базовых частотах видеокарты выдают стабильные 35 FPS. А Radeon R7 240 опережает GT 730 на 13 FPS. Ситуация после разгона ещё лучше. Обе видеокарты от AMD не только идут вровень с GeForce GT 730 DDR3 и GeForce GT 730 типа GDDR5, но и опережают их на несколько процентов. Стоит отметить, что настройки графики были выставлены на средние значения.

    Ну и последняя игра – Dota 2. Обе карты от AMD стабильно работают в районе 45 FPS. В сильно нагруженных сценах количество кадров просаживалось до 25-30 FPS. При базовых частотах Radeon R7 240 обгонял GeForce GT 730 на 25 FPS.

    Ситуация с R7 250 немного хуже. Отсутствие разгона частоты видеопамяти сильно влияет на прирост производительности. Поэтому показатель FPS у Radeon R7 250 немного ниже показателя GeForce GT 730 (GDDR5). Тесты проводились на минимальных настройках графики.

    В целом, тесты в играх AMD Radeon R7 200 Series показывают удовлетворительные результаты. Видеокарты способны тянуть вполне современные игры, хоть и на низких настройках. Сравнительный анализ показал, что в большинстве случаев видеокарты от AMD опережают видеокарты от Nvidia. Но нужно учитывать, что видеокарты находятся в бюджетном сегменте.

    Похожие статьи