Почему автомобильный аккумулятор нельзя использовать в ИБП? Автоподзаряд аккумулятора резервного питания

08.07.2019

Для резервирования питания ответственных энергопотребителей используют параллельное соединение нескольких источников питания, исключая при этом взаимное влияние одного источника на другой.
При повреждении или отключении одного из нескольких питающих устройств нагрузка автоматически и без разрыва цепи питания подключится к источнику питания, напряжение которого выше остальных. Обычно в цепях постоянного тока для разделения питающих цепей используют полупроводниковые диоды. Эти диоды препятствуют влиянию одного источника питания на другой. В то же время на этих диодах нерационально расходуется некоторая доля энергии источника питания. В этой связи в схемах резервирования стоит использовать диоды с минимальным падением напряжения на переходе. Обычно это германиевые диоды.
В первую очередь питание на нагрузку подают с основного источника, имеющего обычно (для реализации функции самопереключения на резервное питание) более высокое напряжение. В качестве такого источника чаще всего используют сетевое напряжение (через блок питания). В качестве источника резервного питания обычно используют батарею или аккумулятор, имеющие напряжение заведомо меньшее, чем у основного источника питания.
Самые простые и очевидные схемы резервирования источников постоянного тока показаны на рис. 10.1 и 10.2. Подобным образом можно подключить неограниченное количество источников питания к ответственному радиоэлектронному оборудованию.
Схема резервирования источников питания (рис. 10.2) отличается тем, что роль диодов, разделяющих источники питания, выполняют светодиоды. Свечение светодиода индицирует задействованный источник питания (обычно имеющий более высокое напряжение). Недостатком подобного схемного решения является то, что максимальный ток, потребляемый нагрузкой, невелик и непревышает максимально допустимого прямого тока через свето-диод.

Рис. 10.1. Основная схема резервирования источников питания

Рис. 10.2. Схема резервирования источников питания с использованием светодиодов

Рис. 10.3. Схема резервирования источника питания охранного устройства

Кроме того, на светодиоде падает около двух вольт, необходимых для его работы. Световая индикация неустойчива при несущественной разности напряжений питания.
Схема авторезервирования источника питания для ответственного оборудования - охранного устройства - приведена на рис. 10.3. На схеме условно показан основной - сетевой источник питания. На его выходе - нагрузке RH и конденсаторе С2 - формируется стабильное напряжение 12 6 или более! Батарея резервного питания GB1 подключена к сопротивлению нагрузки через цепочку диодов VD1 и VD2. Поскольку разность напряжения на этих диодах минимальна, ток через диоды в нагрузку не протекает. Однако, стоит отключиться основному
источнику питающего напряжения, как диоды откроются. Таким образом питание подается на нагрузку без перебоев.
Светодиод HL1 индицирует исправное состояние резервного источника питания, а диод VD2 не допускает питание светодио-да от источника основного питания.
Схему можно изменить таким образом, чтобы два светодио-да независимо друг от друга индицировали рабочее состояние обоих источников питания. Для этого достаточно схему (рис. 10.3) дополнить элементами индикации.
Устройство для автоматического включения резервной батареи питания описано в патенте ГДР № 271600 , а его схема показана на рис. 10.4.

Рис. 10.4. Схема устройства для автоматического включения резервной батареи питания

В исходном (штатном) режиме ток от источника основного питания Еа через светодиод-индикатор тока нагрузки поступает в нагрузку. Транзистор VT1 открыт, транзистор VT2 закрыт, резервная батарея питания Еь отключена. Как только произойдет отключение основного источника питания, светодиод HL1 погаснет, закроется транзистор VT1 и, соответственно, откроется транзистор VT2. Батарея Еь подключится к нагрузке.
Недостатком устройства является то, что максимальный ток через нагрузку не может превышать максимально допустимого тока через светодиод. Кроме того, на самом светодиоде теряется до 2 В. Если пожертвовать функцией индикации и заменить светодиод на германиевый диод, рассчитанный на повышенный ток, это ограничение снимется.
Для нормальной работы телефонных автоматических определителей номера (АОН) необходимым условием является
использование резервного источника питания. Схема одного из них показана на рис. 10.5.
Когда источник питания включают в сеть, срабатывает реле К1, которое одновременно является датчиком разряда аккумулятора GB1. Через резистор R2 протекает зарядный ток 5... 10 мА. При отключении сетевого напряжения устройство получает питание от аккумулятора GB1, однако, если напряжение на аккумуляторе упадет ниже 6,5 В, реле отключится. Контакты реле разомкнут цепь питания и защитят таким образом аккумулятор от дальнейшего разряда.

Рис. 10.5. Схема автоматического включения резервного источника питания для АОНа

Аккумуляторная батарея состоит из шести элементов Д-0,55. Ее ресурса хватает для автономной работы телефона в течение часа.
В схеме использовано реле РЭС-64А РС4.569.724.
Налаживают устройство подбором резистора R1, которым устанавливают напряжение отпускания реле К1. Подбором R2 устанавливают величину зарядного тока. Для исключения перезаряда аккумулятора рекомендуется снизить величину зарядного тока до 0,2 мА.
Автоматический перевод питания нагрузки, например, радиоприемника, на резервное батарейное питание при отключении сетевого источника питания позволяет осуществить устройство по схеме на рис. 10.6 . Режим работы устройства индицируется свечением светодиода: зеленый цвет -- работа в штатном режиме; красный - в аварийном (на батареях).
Особенностью индикатора является то, что при работе от батареи ее разряд через подключенный основной блок питания исключен за счет использования диода в цепи затвора полевого транзистора.
Для того чтобы при работе устройства от блока питания не происходила подпитка нагрузки от батареи, выходное напряжение блока питания должно на 0, 7... 0, 8 В превышать напряжение батареи.

Рис. 10.6. Схема автоматического переключения нагрузки на резервное питание с индикацией

Рис. 10.7. Схема автоматического коммутатора питания

Дальнейшим развитием предыдущего устройства является автоматический коммутатор питания (рис. 10.7) . Устройство предназначено для установки в любые носимые и переносные устройства (приемники, плейеры, магнитофоны), имеющие внутренние источники питания. Автоматический коммутатор питания позволяет автоматически переходить от внутреннего к внешнему питанию и обратно.
В исходном состоянии, когда внешний источник питания отключен, реле К1 обесточено, и через его нормально замкнутые контакты напряжение подается с батареи GB1 на нагрузку RH и через диод VD1 на нижний по схеме (красный) диод HL1. При подключении внешнего источника питания реле К1 срабатывает, его контакты К1.1 устанавливаются в нижнее по схеме положение, и питание на нагрузку подается от внешнего источника. Так как на анод верхнего по схеме диода HL1 (зеленого цвета) подается напряжение на 2 В больше, чем на анод нижнего диода HL1 (красного цвета), двухцветный двуханодный светодиод HL1 светится зеленым цветом, указывая на режим работы от сети. При пропадании сетевого напряжения обмотка реле К1 обесточивается, и нагрузка автоматически переключается на работу от батареи GB1. Об этом сигнализирует индикатор HL1, меняя цвет свечения с зеленого на красный. Диод VD1 следует взять типа КД503, КД521 или КД510. Падение напряжения на нем в прямом включении должно быть не менее 0,7 б.-Тогда при свечении зеленого светодиода не будет подсвечиваться красный.
Резистором R2 устанавливают ток через HL1, равный 20 мА. Реле К1 типа РЭС-15 (паспорт РС4.591.005) или другое с рабочим напряжением не более 5 В. Обычно срабатывание реле происходит при напряжении, на 30...40% меньшем его рабочего напряжения.
При настройке устройства резистор R1 подбирают такой величины, чтобы реле К1 надежно срабатывало при напряжении 4 В. При использовании реле К1 других типов с напряжением срабатывания, близким к 4,5 В, резистор R1 можно исключить.
При сетевом питании электронно-механических часов наблюдается неприятный эффект: при отключении сетевого напряжения происходит остановка хода часов.
Более надежными и удобными в эксплуатации являются комбинированные блоки питания - сетевые блоки питания в сочетании с никель-кадмиевыми аккумуляторами Д-0,1 или Д-0,125 (рис. 10.8) .
Здесь конденсаторы С1 и С2 выполняют функцию балластных реактивных элементов, гасящих избыточное напряжение сети. Резистор R2 служит для разрядки конденсаторов С1 и С2 при отключении устройства от сети.
Если контакты выключателя SA1 замкнуты, то при отрицательной полуволне сетевого напряжения на верхнем (по схеме) проводе диод VD2 откроется, и через него будут заряжаться конденсаторы С1 и С2. При положительных же полуволнах конденсаторы станут перезаряжаться, ток потечет, в первую очередь, через открытый диод VD3 и начнет подзаряжаться аккумулятор GB1 и конденсатор СЗ. Напряжение на полностью заряженном аккумуляторе будет не менее 1,35 В, на светодиоде HL1 -- около 2 В. Поэтому светодиод начнет открываться и тем самым ограничивать зарядный ток аккумулятора. Следовательно, аккумулятор постоянно будет в заряженном состоянии.

Рис. 10.8. Комбинированный блок питания электронно-механических часов

При наличии напряжения в сети часы питаются от нее во время положительных полупериодов, а во время отрицательных полупериодов - энергией, запасенной аккумулятором GB1 и конденсатором СЗ. При пропадании сетевого напряжения источником питания становится аккумулятор.
Освещение циферблата включают размыканием контактов выключателя SA1. В этом случае ток зарядки и разрядки конденсаторов С1 и С2 протекает через нити накала ламп EL1 и EL2, и они начинают светиться. А ранее замкнутый двуханодный стабилитрон VD1 теперь выполняет две функции: ограничивает напряжение на лампах до значения, при котором они светятся с небольшим недокалом, а в случае перегорания нити накала одной из ламп пропускает через себя зарядно-разрядный ток конденсаторов, что предотвращает нарушение работы блока питания в целом.
Двуханодный стабилитрон VD1 типа КС213Б можно заменить на два включенных встречно-последовательно стабилитрона Д814Д, КС213Ж, КС512А. Светодиод HL1 - АЛ341 с прямым падением напряжения при токе 10 мА - 1,9...2,1 В. Лампы накаливания EL1 и EL2 типа СМН6,3-20 (на напряжение 6,3 В и ток и м/ч; или аналогичные, корпус выключателя SA1 должен быть надежно изолирован от сети.
В блоке питания для электронных часов (рис. 10.9) гашение избыточного сетевого напряжения осуществляется резисторами R1 и R2 . Это не самое экономичное решение проблемы, но при малых токах потребления вполне оправдано. Кроме того, при случайном касании выхода выпрямителя максимальный ток через тело человека не достигнет опасных значений (не более 4 мА), поскольку величина ограничивающих ток резисторов достаточно велика.

Рис. 10.9. Схема резервированного питания электронных часов

С выхода стабилизатора (аналога стабилитрона и, одновременно, индикатора включения - светодиода HL1) напряжение питания через германиевый диод VD5 подается на электронные часы. В случае отключения сетевого напряжения часы получают питание от батареи GB1, при наличии сетевого напряжения ток выпрямителя подзаряжает элемент питания. В схеме не использован конденсатор фильтра. Роль конденсатора фильтра большой емкости выполняет сам элемент питания.
Электронно-механические часы обычно питают от одного гальванического элемента напряжением 1,5 В. Предлагаемый источник бесперебойного питания (рис. 10.10) для кварцевых электронно-механических часов вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА . Напряжение, снимаемое с емкостного делителя С1 и С2, выпрямляет узел на элементах VD1, VD2, СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.
Рассмотренные ранее устройства автоматического перехода на резервное питания в случае отключения основного источника использовали в качестве базового (основного) источник постоянного тока. Менее известны схемы резервирования устройств, работающие на переменном токе. Схема одного из них, способного работать в цепях как постоянного, так и переменного тока приведена ниже .

Рис. 10.10. Схема низковольтного источника бесперебойного питания

Рис. 10.11. Схема включения источника резервного питания с гальванической развязко й

Схема включения источника резервного питания с гальванической развязкой (ИР/7) питается от источника управляющего сигнала (рис. 10.11), потребляя при этом минимальный ток (доли мА). Управляющий сигнал поступает на резистивный делитель R1, R2. Стабилитрон VD6 и диоды VD1 - VD5 защищают вход устройства от перенапряжения и неправильного подключения полярности. ИР/7 отключен контактами реле К1.1. Напряжение, снимаемое с резистора R2 и стабилитрона VD6, поступает через диод VD5 на электролитический конденсатор С1 большой емкости. Этот конденсатор при первом включении устройства заряжается до 9... 10 В за 2.. .3 минуты, после чего схема готова к работе. Скорость заряда и потребляемый устройством ток определяются резистором R1. Транзистор VT1 закрыт падением напряжения на VD5.

Через диод VD7 и резистор R4 устройство подключено к ИР/7.
При отключении управляющего напряжения переход эмиттер - база входного транзистора устройства более не шунтируется. Транзисторы VT1 и VT2 открываются. Конденсатор С1 разряжается через реле К1 и транзистор VT2. Контакты К1.1 реле замыкаются, включая ИРП. Питание на схему поступает от ИРП. Одновременно контакты реле К1.2 могут управлять другой нагрузкой. Если на входе устройства вновь появляется управляющее напряжение, транзистор VT1 запирается. Соответственно, запирается и транзистор VT2. Реле К1 обесточивается, отключая своими контактами К1.1 ИРП. Напряжение на конденсаторе С1 сохраняется на уровне 9... 10 Б, и схема переходит в ждущий режим работы.

  • Лайфхаки для гиков
  • Предыстория
    На тот момент, когда я первый раз попробовал заменить в ИБП старый аккумулятор ёмкостью 7Ач на старый автомобильный аккумулятор номинальной ёмкостью 65Ач, я ещё не знал, почему этого нельзя делать, и как это может навредить здоровью аккумулятора, самому ИБП и людям, проживающим в одном помещении с ним.

    Доработка бесперебойника не заняла много времени, но профит был заметен сразу же. Сто-ватная нагрузка в виде домашнего «сервера» продержалась порядка двадцати часов без внешнего питания, хотя раньше 10 минут - это был предел, которого хватало разве что на корректное завершение работы. Более длительных отключений за время эксплуатации данной модификации замечено не было, а подключение интернета по технологии GPON позволяло серверу оставаться в сети даже при масштабных отключениях электроэнергии.

    Но это было давно. А год назад мне случайно попалось на глаза объявление о продаже нескольких бывших в употреблении ИБП APC 3000 за смешные деньги, 4000 рублей за штуку, без аккумуляторов, но рабочие. Немного подумав, решил что надо брать, причём сразу два, правда к моменту покупки цена успела подняться до 5000 рублей за штуку, но меня это не остановило, ведь в магазине за те же деньги предлагали лишь варианты на 1кВт, да и то от всяких noname фирм с не очень лестными отзывами и модифицированным синусом.

    Без аккумуляторов ИБП включаться отказался, судя по информации из интернета, ему требовалось восемь аккумуляторов по 12 вольт, т.е. батарея на 96 вольт, но конденсаторы на входе батарей были номиналом 63 вольта. Оказалось, что в картридже две параллельно соединённых цепочки по четыре аккумулятора, по 5Ач каждый. Итого получается батарея на 48 вольт и 10Ач. И вот тут началось самое интересное.

    Выбор АКБ
    Настало время покупать аккумуляторы. Разница в цене между специализированным аккумуляторами для ИБП и обычными автомобильными была примерно раза в два при сопоставимой ёмкости. Зачем платить больше? Решил загуглить и нашёл несколько сайтов продающих АКБ для ИБП, которые почти под копирку приводили несколько доводов, почему стоит заплатить больше. В целом звучит правдоподобно, но давайте их рассмотрим поподробнее.
    Итак, первая значительная разница - это различное напряжение постоянного тока в автомобиле и у источника автономного электроснабжения. У автомобильной батареи напряжение постоянного тока примерно равно 14-14.2 В, а у аккумулятора для источника бесперебойного питания оно составляет 13.5-13.8 В. Напряжение тока заряда у обычных автомобильных и специальных для ИБП рассчитано на различные значения. После того как Вы подсоедините автомобильный аккумулятор к системе резервного электропитания, то результат будет виден такой - постоянно батарея будет недозаряжена. Высокое внутреннее сопротивление имеется у максимально заряженной батареи, так как потребляется небольшой ток при работе с ИБП. С разряженными аккумуляторами дела состоят с точностью наоборот. В конечном итоге присоединение автомобильного аккумулятора может привести к кипению электролита, так как будет потребляться постоянно ток и аккумулятор не будет до конца заряжаться.

    Заглядываем в статью википедии о свинцово-кислотных аккумуляторах и видим, что ЭДС заряженного аккумулятора 2.11-2.17В, для 6 банок это получается 12,66-13,02В. Смотрим на аккумулятор для ИБП и видим надписи о рекомендуемых значениях напряжений: в режим постоянного подзаряда 13.5-13.8В, в циклическом режиме 14.4-15.0В. Смотрим на полностью заряженный автомобильный аккумулятор, видим 12.7В, заводим двигатель, напряжение поднимается до 14.2. Получается что 14.2В - это не напряжение автомобильного аккумулятора, а напряжение которым его заряжает автомобильный генератор. Но разве в автомобиле предусмотрена какая-либо схема заряда аккумулятора? В общем мне показался данный довод несостоятельным.
    Второе отличие - временной этап работы и равномерное выделение электрического тока за счет пластин, которые встроены внутри аккумуляторной батареи. Средняя толщина электрода (пластины) у автомобильного аккумулятора составляет примерно 1-1.2 мм, а у специализированных для ИБП 2-2.5 мм. Движение электронов происходит на менее толстой поверхности. Если подключить автомобильный аккумулятор к источнику бесперебойного питания, то пластины которые находятся внутри быстро разрушатся из-за длительного функционирования цикла.

    Если бы в автомобиле не было сигнализации и магнитолы, то наверное можно было бы поверить в то, что автомобильный аккумулятор не способен длительное время отдавать малые или средние токи, но ведь они питаются от того же аккумулятора. И это не говоря о том, что автомобиль в принципе может некоторое время двигаться без генератора, только лишь на заряде аккумулятора, и после этого достаточно будет просто зарядить аккумулятор и он продолжит работать. По поводу толщины пластин сложно что либо сказать, разве что в аккумуляторах от ИБП некоторым попадаются нанотехнологические вставки из стекла. Стекло добавляет толщины пластинам и вес батареи, правда в химических реакциях не участвует.

    И третье важное отличие - в процессе заряда аккумулятора выделяется водород. Когда батарея установлена под капотом автомобиля, то водород быстро улетучивается и не представляет никакой опасности. Так как источник бесперебойного питания установлен как правило в замкнутом пространстве, то газ начнет скапливаться, а смесь водорода с кислородом образует взрывоопасную смесь, которая может детонировать от любой искры (даже от включения света). Аккумулятор для ИБП полностью герметизирован, в процессе работы он не выделяет водород в атмосферу, а рециркулирует в пространстве батареи.

    Данный довод мне сразу показался подозрительным, ввиду того, что мне не доводилось видеть герметичных аккумуляторов в ИБП. Если посмотреть на аккумулятор, то можно увидеть небольшие отверстия для отвода газов, в отличии от автомобильных аккумуляторов, они закрыты резиновыми колпачками и замурованы под пластиковые заглушки, но вовсе не герметично. Если снять пластиковые заглушки и поставить аккумулятор на зарядку, то некоторые резиновые колпачки весело улетят в неизвестном направлении. Значит вода всё таки распадается на кислород и водород, и простой резиновый колпачок не заставит их преобразоваться обратно в воду, а после определённого давления газы всё равно выйдут наружу. Впрочем ладно, если за несколько лет эксплуатации автомобильного аккумулятора в закрытом шкафу ничего не взорвалось, то в проветриваемом подвале и на балконе наверняка проблем с накоплением водорода не возникнет.

    Автомобильные аккумуляторы имеют разбавленный электролит, а так как в жидкой среде все процессы протекают быстро, то срок службы этих батарей намного меньше чем у специализированных для ИБП. Внутри АКБ для источников бесперебойного питания находится губчатый материал, который пропитан электролитом. И поэтому ток самозаряда получается небольшим. И когда система перейдет на функционирование от аккумулятора, то батареи для ИБП проработают больше.

    Действительно, в автомобильном аккумуляторе электролит находится в жидком состоянии, а в специализированных аккумуляторах для домашних ИБП им пропитан пористый материал, и если перевернуть его с открытыми заглушками, то ничего из него не выльется, это позволяет размещать его внутри ИБП в любом положении, хоть вверх ногами (хотя и не рекомендуется). Как это связано с током саморазряда, полностью электролита и скоростью протекания химических реакций - я не знаю, но вероятнее всего, что никак.

    И не стоит забывать о том, что автомобильный аккумулятор работает в суровых условиях, от него несколько раз в день требуют больших токов, несколько месяцев в году это сопровождается очень низкими температурами, а несколько месяцев высокими, кроме того он испытывает вибрационные и ударные нагрузки во время движения автомобиля, а генератор заряжает его без какого либо контроля, и хорошо, если владелец следит за его состоянием.

    Так же, некоторые высказывают сомнение по поводу того, что ИБП в состоянии зарядить автомобильный аккумулятор, ведь у него значительно большая ёмкость. Но ведь увеличив ёмкость, мы получаем увеличение длительности работы от батареи, странно ожидать, что последующая зарядка будет производиться за прежнее время.

    Прочитав ещё несколько статей о вреде использования автомобильного аккумулятора в быту, стало понятно, что ничего не понятно. Но, учитывая предшествующий положительный опыт, было решено выбрать вариант с большей ёмкостью, т.е. автомобильные аккумуляторы. Для одного ИБП были выбраны самые дешёвые аккумуляторы от Тюменского Медведя на 75Ач, для второго АКБ фирмы BRAVO на 90Ач примерно за ту же стоимость. И вот сейчас, спустя почти год эксплуатации решил попробовать замерить ёмкость аккумуляторов, чтобы понять, насколько всё плохо.

    Результаты замеров

    Параметр АКБ №1 АКБ №2
    Модель BRAVO 6CT-90VL Tyumen Batbear 75
    Ёмкость, макс. ток 90Ач, 760А 75Ач, 610А
    Стоимость на момент покупки 2200 руб 2400 руб
    Дата установки 9 ноября 2014 11 ноября 2014
    ИБП APC Smart-UPS 3000VA, 2700Вт, 230В, чистый синус 50Гц +-3 Гц
    насос газового котла, насос тёплого пола,
    насос скважины с водой, морозильная камера,
    холодильная камера, освещение
    освещение, холодильник
    Циклов заряда-разряда 330+ 10
    Производилась калибровка нет да
    Дата контрольного замера 31 августа 2015 1 сентября 2015
    Контрольный разряд 4 часа 20 минут, 37.22Ач 9 часов, 55.7Ач
    Напряжение после разряда 45.0В под нагрузкой, 48.7В без нагрузки 44.6В под нагрузкой, 46.3В без нагрузки
    Контрольный заряд 9 часов, 37.32Ач 14 часов, 52.28Ач
    Напряжение после заряда 55.4В, плюс-минус 0.02В на каждой батареи
    Уровень электролита Визуально не изменился, уровень выше пластин с запасом
    Графики процесса разрядки-зарядки по данным самого ИБП можно посмотреть и . Одна линия показывает напряжение на батарее, вторая мощность нагрузки в процентах.

    Хотя я не уверен, что правильно произвёл замер, но лучше способа, чем включить цифровой ватт-метр в разрыв между АКБ и ИБП, я придумать не смог. Сомнения в корректности замеров у меня возникли из-за того, что не смотря на постоянно включенную нагрузку, ИБП потреблял ток периодами (3-5 секунд потребление нарастает до номинала и опускается до нуля, 1-2 секунды потребления нет), возможно это связано с тем, что по аккумуляторному входу установлена пара ёмких конденсаторов, которые сглаживают нагрузку на АКБ. Зарядка производится примерно таким же образом (некоторое время подаётся ток, затем пара секунд перерыв). После полной зарядки ИБП продолжает периодически подавать ток на АКБ в районе 1А.

    Не смотря на то, что один бесперебойник нещадно насиловал аккумуляторы каждый день почти полностью разряжая их, а затем вновь заряжая, а второй работал в штатном режиме и разряжал АКБ только при отключениях электричества, спустя год они по-прежнему работают и держат нагрузку. Специализированные аккумуляторы в ИБП, что стоящие с завода, что купленные в процессе эксплуатации не жили у меня даже этого времени, они просто высыхали и переставали держать заявленную ёмкость. В общем я не смог ответить для себя на вопрос, почему же автомобильные аккумуляторы не годятся для использования в ИБП, но через год я постараюсь повторить измерения и сравнить результаты.
    Добавить метки

    Аккумулятор фактически является расходным материалом в или в системе автономного или резервного питания. И чем лучше Вы подберете аккумулятор к своей системе, тем дольше он проработает и тем меньше в конечном итоге будет стоимость электроэнергии, вырабатываемой Вашей системой.

    На что обратить внимание при выборе аккумуляторных батарей?

    Попробуем дать несколько советов, следуя которым можно подобрать оптимальную модель:

    1. Основным параметром любого аккумулятора является его емкость. В зависимости от того, в какой системе он будет применяться, нужно выбирать необходимый номинал.

      В случае, если аккумулятор будет применяться в системе резервного питания и соответственно разряжаться он будет довольно редко (при сбое основного источника электричества), можно рассчитывать необходимую емкость исходя из 100% цикла разряда. И хотя 100% разряд вреден для любых свинцовых аккумуляторов, особенно, если нет возможности сразу их зарядить, в случае эксплуатации резервной системы таких разрядов накопится максимум десяток за год. А любой свинцовый аккумулятор (кроме автомобильных) способен выдержать до 200 полных (на 100%) циклов разрядки. То есть, при таком режиме теоретический срок службы должен составить 200/10=20 лет, однако максимальный срок службы аккумуляторных батарей равен 10 годам. Поэтому для не имеет никакого смысла приобретать избыточные емкости исходя из 30% или 50% цикла разряда.

      Саму же ёмкость нужно рассчитывать исходя из количества энергии, которую необходимо запасти.

      Например, поставлена задача обеспечить круглосуточную работу насоса системы отопления и периодическую работу освещения:

      • мощность насоса — 50 Вт (работает 24 часа в сутки),
      • мощность нескольких энергосберегающих ламп — 100 Вт (работают в общей сложности 3 часа в сутки),
      • срок работы резервной системы — 2 суток.

      Расход электроэнергии за 2 суток составит 50*24*2+100*3*2=3000 Вт*час.

      С учетом потерь в (возьмем для расчета — 10%), необходим запас энергии 3000+10%=3300 Вт*час.

      При напряжении 12 В, необходимый номинал составит 3300/12=275 А*час, т.е. в этом случае необходимы 2 батареи емкостью по 140 А*ч.

      Данный расчет приведен для случая, когда отсутствует автономный источник энергии, например в виде солнечных батарей. Если же в системе резервного питания предусмотрены и допустим они выдают 500 Вт*сутки (а столько выдает одна 100 Ваттная панель в солнечную погоду), то необходимо внести соответствующую поправку в расчет, а именно:

      При напряжении 12 В, необходимый номинал составит (3300-500*2)/12=192 А*час, т.е в этом случае будет достаточно 2-х батарей емкостью по 100 А*ч.

      Для автономной системы желательно производить расчет исходя из 30% разрядного цикла, поскольку в этом случае срок службы аккумуляторов будет фактически определяться количеством циклов заряда/разряда, а это количество тем больше, чем меньше глубина разрядки.

    2. После того, как Вы определились с емкостью, необходимо выбрать конкретную модель/марку аккумулятора.

      При выборе марки нужно обратить внимание на то, для скольки-часового разряда указана емкость . Дело в том, что разные производители указывают номинальную емкость для разных условий, например для 10-и часового или для 20-и часового разряда. Та марка, у которой указан номинал для 10-и часов, будет обладать большей реальной емкостью, чем 20-и часовая при условии одинакового номинала.

    3. Также, при выборе марки стоит сравнить вес аккумуляторных батарей при одинаковой емкости. Дело в том, что фактически емкость свинцовых аккумуляторных батарей определяется весом активной массы свинца, а он занимает большую часть в её весе. Соответственно, батарея с большим весом скорее всего будет обладать лучшими характеристиками (большей реальной емкостью и количеством циклов заряда/разряда).
    4. Одним из важных параметров является тип аккумуляторной батареи — AGM, GEL (гелевый) или жидко-кислотный (чаще всего - автомобильный).

      Для систем автономного питания применять автомобильные не рекомендуется по той причине, что они не предназначены для длительной разрядки малыми токами и имеют минимальное число циклов среди прочих типов (обычно, не более 50). Их основное предназначение — отдать очень большой ток стартеру в течение нескольких секунд при старте двигателя.

      Однако, существует еще один тип жидко-кислотных аккумуляторов, которые специально предназначены для разрядки малыми токами, так называемые OPzS. Этот тип имеет максимальное число циклов заряда/разряда, в большинстве случаев является обслуживаемым (т.е. требующим контроля за параметрами электролита), а кроме того имеет максимальную цену и по этой причине мало распространен.

      Самым распространенным по причине низкой стоимости является AGM тип. Более дорогой, гелевый (GEL) тип также находит свое применение в солнечных электростанциях. О том, читайте на нашем сайте.

    5. При выборе аккумуляторной батареи для автономной системы нужно отдать предпочтение марке с максимальным числом циклов заряда/разряда для требуемой глубины разрядки. О причинах этого уже сказано выше.
    6. В свою очередь, для резервных систем нужно выбирать модель с максимальным сроком службы. Соответственно, лучше отдать предпочтение моделям гелевых или AGM аккумуляторов с 10-и летним сроком службы.

    Надеемся, приведенные выше советы помогут Вам !

    В сети уже давно идут споры на тему, можно ли использовать автомобильные аккумуляторы в источниках бесперебойного питания, и дискуссии эти не случайны - стоимость специализированных аккумуляторов и автомобильных батарей, при равной ёмкости, различается на порядок. Между тем, есть ряд технических проблем, отчасти реальных, отчасти надуманных, которые осложняют использование таких АКБ вместо штатных в ИБП. Однако столкнувшись с необходимостью получить быстро и дёшево мощный источник автономного питания, я успешно реализовал схему такой интеграции, при чём, использовал не новый, а уже отработавший своё автомобильный аккумулятор, т.е. свёл материальные затраты к минимуму. Так что кому интересно, как при минимальных вложениях заставить ИБП работать несколько часов в автономном режиме, рекомендую данный пост к прочтению:

    Так получилось, что жизненная ситуация вынудила задуматься над тем, что бы поставить вместо умершего аккумулятора бесперебойника, валяющейся на чердаке старый аккумулятор от автомобиля. Собственно, живу я в загородном доме, и в последнее время начались перебои с электричеством. При этом у меня там три аквариума и террариум, и всё это требует, что бы перерывы в электроснабжении не превышали 15 минут. А работаю я в Москве, соответственно, надолго покидаю свой дом. В довершение ко всему, аккумулятор моего старенького ИБП сдох полностью и попытки его восстановить успехом не увенчались, а денег на покупку нового аккумулятора в этот момент времени у меня не было. Но, как я часто люблю говорить - у прогресса два основных двигателя, это лень и отсутствие денег.
    И так, взял я с чердака старый аккумулятор, который ещё в зимние морозы отказался заводить двигатель, довёл в нём до нормы уровень электролита (добавил дистиллированной воды) и полностью его зарядил зарядным устройством.

    Потом подсоединил к нему контакты на достаточно толстых медных проводах. На всякий пожарный поставил кнопку прерывания питания (взял на 30А, что бы не сгорела), но это не обязательное условие. Кнопка нужна, главным образом, для транспортировки, что бы случайно контакты не замкнуть (своё устройство я сразу делал с возможностью транспортировать его куда угодно с тем, что бы можно было получить электричество в любом месте, при необходимости).

    Крышки «банок» я открутил, но сверху прикрыл их доской и зафиксировал её так, что бы она защищала от брызг, но не препятствовала газообмену. Герметизировать банки КАТЕГОРИЧЕСКИ ЗАПРЕЩЕНО! Это приведёт к взрыву аккумулятора!

    Далее весь аккумулятор я упаковал в пакет, поверх склеил пакет скотчем, но при этом сознательно сделал его не герметичным для отвода газа. Ну и для пущего удобства я поставил поверх пакета кусок фанеры, на котором расположил кнопку, и приделал ручку тря переноса. Получилось весьма удобно:

    вида аккумулятора


    И так, подготовка аккумулятора завершена - начинаем переделывать сам ИБП.

    Для начала разбираем его и вынимает старый аккумулятор. В принципе, как правило, его ещё можно восстановить и использовать для других целей, где требуется меньшая мощность, так что не спешите его выкидывать, не смотря на то, что в ИБП он нам больше не понадобиться.

    Первой реальной технической сложностью, с которой можно столкнуться при использовании автомобильного аккумулятора совместно с ИБП, является перегрев. В процессе активной работы трансформатора (т.е. при зарядке или разрядке аккумулятора) происходит сильный нагрев. Если при этом используется штатный аккумулятор малой мощности, то нагрев происходит довольно кратковременно и не представляет угрозы. Но если мы планируем использовать аккумулятор под 100 a/ch, то нагрев будет значительным и, с великой долей вероятности, может привести к отказу ИБП.

    Я решил эту проблему путём установки принудительного охлаждения. На место, где был установлена аккумулятор, я поставил вентилятор охлаждения от старого процессора. Это почти идеальный вариант, поскольку такой вентилятор питается от 12В (т.е. можно использовать напряжение аккумулятора), выдерживает перепады напряжения (можно банально запитать от проводов к аккумулятору) и рассчитан на длительную непрерывную работу (при этом, кстати, особенно не шумит). Закрепить вентилятор в корпусе можно как угодно (я для этого использовал саморез, но можно и клей). Главное, что бы обдув был направлен на трансформатор.

    Пространство в корпусе как будто специально предназначалось для вентилятора


    Для того, что бы обеспечить ток воздуха, в корпусе ИБП нужно просверлить дыры в лицевой и торцевой частях

    На фото лицевая сторона - на тыльной аналогично


    Питание вентилятора подключаем к проводам, идущим от аккумулятора. Сами провода разумнее всего снабдить разъёмами, что бы иметь возможность отсоединять аккумулятор от ИБП для транспортировки. Разъём может быть любым, главное, что бы сечение металла в нём не было меньше, чем сечение провода. Лично я использовал клеммы «папа-мама», для чего просверлил дырку в корпусе ИБП и вывел провода наружу. Важное условие, что бы провода не имели физической возможности соприкоснуться. Лучше выводить их на таком расстоянии, что бы это было полностью исключено, ибо короткое замыкание аккумулятора может привести не только к поломке ИБП, но и к пожару.

    Вот так это всё расположилось под моим столом


    Основное достоинство данной схемы - минимальная цена. Учитывая, что используется уже отслуживший своё аккумулятор, который можно просто выкинуть на помойку или, на худой конец, продать за 100 рублей на лом или расплавить на грузила для донки. Конечно, его ёмкость будет ниже, чем у нового, но это всё равно будет в разы больше, чем у штатного аккумулятора ИБП. В моём случаи, при отключении электричества, аккумулятор проработал без напряга 30 минут и сел за это время всего на 3%. Думаю, этого более чем достаточно, при условии фактического отсутствия цены.

    Вот так выглядит моё рабочее место


    Однако учитывая множество скептических мнений и откровенных мифов о невозможности использования ИБП с автомобильным аккумулятором, я более подробно остановлюсь на тех аргументах, которые приводятся скептиками, и опровергну каждый из них, так что если Вы сомневаетесь, читайте дальше:

    Малый срок службы автомобильного аккумулятора в ИБП. Да, относительно специального аккумулятора, автомобильный будет служить меньше, и это действительно связанно с особенностями строения пластин. Но вот в цифрах скептики явно ошибаются - они утверждают, что автомобильный аккумулятор прослужит 3 года, а специальный - 10 лет. Скажу так, мой родной аккумулятор в ИБП умер окончательно и бесповоротно через 5 лет эксплуатации. Сколько прослужит автомобильный, пока сказать не могу, но даже если принять за истину цифру в 3 года, то разница между тремя и пятью годами не такая уж и большая, особенно учитывая разницу в цене.

    Автомобильный аккумулятор умрёт после 10-15 циклов разряда-заряда. И да, и нет. Автомобильные аккумуляторы действительно не любят полного разряда, да и в машине такая ситуация почти никогда и не возникает. Бесперебойник же способен вытянуть заряд почти полностью, и если систематически доводить до такого состояния, т.е. полностью разряжать аккумулятор, то он действительно довольно быстро выйдет из строя. Не через 10-15 раз, конечно, но 30 циклов может и не выдержать.

    Впрочем, эта проблемы очень легко лечиться - любой ИБП можно запрограммировать так, что бы он не дожидался полного разряда аккумулятора, а отключался при падении заряда до некого значения в процентах от полной ёмкости. Так что можно задать отключение при 20% заряда, и долголетие аккумулятора обеспечено. Можно задать и время работы - скажем, три часа. Но мне кажется, что лучше ставить лимит про проценту заряда (впрочем, я сам ничего не лимитировал - мне рыбки дороже аккумулятора, пусть лучше он ломается). Ну и для жителей городских квартир такой вопрос вообще не актуален - очень маловероятно, что электричество будут регулярно отключать на длительный период, так что даже без дополнительной настройки полный разряд аккумулятора в городской квартире маловероятен.

    А если не допускать полного разряда аккумулятора, то служить он будет долго, ибо автомобильный аккумулятор рассчитан на постоянную зарядку-разрядку, при условии, что хоть часть заряда будет всегда оставаться. Наглядное доказательство - работа автомобиля. Водитель каждый день заводит двигатель, т.е. весьма серьёзно разряжает аккумулятор (особенно зимой и на карбюраторном автомобиле), потом в процессе езды АКБ заряжается. На следующий день цикл повторяется. Сколько дней в году эксплуатируется автомобиль? Сколько лет не меняется там аккумулятор? По моим скромным прикидкам, это порядка 1000 циклов зарядки, чего совершенно достаточно для ИБП.

    Автомобильный аккумулятор не будет заряжаться от ИБП. Вот это полный бред и банальные расчёты из школьного курса физики это подтвердят. Зарядный ток ИБП действительно порядка 14В (13,8, как правило). При этом номинальное напряжение АКБ - 12В (на практике, без нагрузки, может быть до 13В). А вот откуда скептики берут, что в автомобиле 15В и что 14В в ИБП будет недостаточно, мне не понятно. Разберёмся детально:

    В автомобиле напряжение не постоянно - оно варьирует от 11В до 15В и в среднем составляет примерно 14В (померьте тестером напряжение на клеммах АКБ автомобиля в разных режимах работы и сами в этом убедитесь). Нет, я не исключу, что современные иномарки могут иметь и более-менее стабильное напряжение, и что оно может быть где-то 14,5В, но вот карбюраторные машины, которые точно с такими же, как и сегодня, аккумуляторами, ездили по дорогам уже не одно десятилетие, явно не имеют такого стабильного и высокого напряжения. Например, у меня на старых машинах 15В было очень редко, напротив, чаще напряжение падало ближе к 13В при полной нагрузке или было на уровне 14В при нагрузке умеренной. И аккумуляторы у меня, как и у всех других автовладельцев, там служили совершенно нормально. Так что 14В в ИБП для зарядки аккумулятора - не помеха.

    Другое дело, что зарядка зависит не столько от напряжения, сколько от силы тока - если говорить простым языком, то напряжение отвечает за саму возможность зарядки аккумулятора, а сила тока - за время этой зарядки. При номинале аккумулятора в 12В и напряжении ИБП в 14В, разницы в 2В более чем достаточно для самого факта зарядки. А вот сила тока в большинстве ИБП значительно меньше, чем у автомобильного генератора. Однако это влияет не на возможность зарядки, а на большую длительность этого процесса. Не исключено, что аккумулятор большого объёма будет заряжаться несколько суток, но он зарядиться полностью, на 100%, это факт.

    Например, у меня с состояния 97% до 100% аккумулятор заряжался примерно 12 часов, но при этом процесс зарядки завершился и при значении в 100% ИБП отключил дальнейшую подзарядку


    Таким образом, невозможность зарядить аккумулятор полностью и то, что ИБП будет постоянно работать в режиме зарядки - это миф, который мы успешно развеяли. Другое дело, что длительность заряда аккумулятора приведёт к перегреву ИБП, но мы уже решили эту проблему установкой принудительного охлаждения. Конечно, для ускорения зарядки можно использовать автомобильное зарядное устройство, но мне это кажется неудобным - я сознательно хотел сделать систему по принципу «включил и забыл», так что именно принудительное охлаждение я считаю более разумным вариантом.

    В процессе зарядки из автомобильного аккумулятора выделится взрывоопасный водород и пары кислоты, в то время, как специальный аккумулятор для ИБП герметичен. Здесь есть сильно преувеличенная правда и чистый вымысле - давайте разбираться.

    Для начала про вымысел - используемые в ИБП аккумуляторы не герметичны! Они имеют клапан, препятствующий протечке электролита, но при этом совершенно спокойно пропускают газ. На самом деле, крышка аккумулятора для ИБП имеет пару еле заметных отверстий, которые сделаны вовсе не для того, что бы эту самую крышку можно было поддеть отвёрткой. Это выходы газоотводных каналов. Под крышкой расположены всё те же банки, каждая из которых снабжена резиновым колпачком, плотно прилегающим к горловине банки и подпёртым сверху крышкой аккумулятора. При повышении давления газа он выходит в специальный канал, и все эти каналы сводятся к тем двум отверстиям, которые есть ан поверхности аккумулятора. Более того, на аккумуляторах из ИБП или из мощных фонарей даже пишут, что их нельзя заряжать в герметичном месте, и пишут это именно из-за того, что бы не допустить взрыва.

    Так что те аккумуляторы, которые используются в ИБП, далеко не герметичны и точно так же способны выделять водород. Да и делают они это весьма активно - не случайно основная причина смерти таких аккумуляторов, это испарение воды из электролита. Были бы они герметичные - воде не куда было бы испаряться.

    Так что для себя уяснили, что аккумулятор, стоящий в ИБП с завода, так же испаряет водород, как и автомобильный аккумулятор.

    Теперь поговорим про преувеличенные факты. Прежде всего, речь идёт о парах кислоты. Да, такие пары могут быть вредными для человека, но вопрос, насколько их много. Для ответа на этот вопрос вспомните, как мы поступаем с АКБ в случаи низкого уровня электролита в банках. Мы доливаем дистиллированную воду, а не раствор кислоты - почему? Да потому, что прежде всего испаряется вода (точнее, гидролизуется, разлагаясь на кислород и водород), а сама кислота остаётся в АКБ практически полностью. Соответственно, со временем концентрация кислоты поднимается, и добавлением воды мы разбавляем её до исходного значения. Из этого всего следует, что кислота практически не испаряется из аккумулятора, вернее испаряется в ничтожно малых количествах, которыми, как говорят математики, можно пренебречь.

    Другой момент, что при кипении электролита, брызги кислоты могут попасть не внешнюю поверхность и потом, за длительное время, испариться полностью. Но, во-первых, испарение электролита возникает только при большой силе тока заряда (напомню, что у нас как раз этот показатель низкий), во-вторых, мы не случайно закрыли поверхность банок доской (даже если брызги полетят, они не вылетят за пределы контура банки).

    Таким образом, кислотное испарении можно признать незначительными и опасности не представляющем.

    Теперь про водород. Да, он испаряется и, скорее всего, несколько в больших количествах, чем при зарядке родного аккумулятора ИБП. Но, смею заметить, в намного меньших количествах, чем при зарядке автомобильного аккумулятора зарядным устройством.

    Думаю, что все те, кто имеют автомобиль, обязательно сталкивались с зарядкой аккумулятора дома. А в зимнее время многие автомобилисты вообще используют два аккумулятора - один в авто, другой дома заряжается. Соответственно, все продаваемые ЗУ имеют большой ампераж, что уменьшает время зарядки, но почти всегда приводит к закипанию электролита. Именно из-за этого мы и откручиваем крышки банок аккумулятора. Естественно, что в процессе зарядки током высокой силы, да ещё при открытых банках, водорода выделяется очень много. Но никаких последствий зафиксировано не было. Более того, не было их и в советские времена, когда почти в каждой квартире автовладельца зимой стоял на зарядке аккумулятор, подключённый к сети через лампочку.

    И здесь надо отметит, что для человеческого здоровья водород, выделяемый при зарядке АКБ, совершенно безвреден. Опасность он представляет только тем, что в смеси с воздухом в пропорции 2:1 образует взрывоопасную смесь. Но, вспомним правило о том, что занимает весь объём, ему предоставленный, и посмотрим, сколько водорода выделяется при зарядке, и сколько при это кислорода содержится в стандартной квартире, не говоря уже о собственном доме. Вывод - соотношение «гремучего газа» в этой ситуации недостижимо, ибо водорода будет сильно меньше необходимого.

    В подтверждение тому - опыт зарядки аккумуляторов дома нашими отцами. Да и новейшая история, насколько мне известно, не имеет массовых примеров, говорящих об опасности водорода, выделяющегося из автомобильного аккумулятора, при его зарядке в домашних условиях. Даже на сайтах скептиков, считающих невозможным использование автомобильного аккумулятора в ИБП, нет ни одного достоверного доказательства опасности такого действия. Так что все разговоры о «взрывоопасной смеси», хоть и имеют под собой физическое обоснование, но не имеют практического подтверждения применительно к зарядке АКБ в домашних условиях (в том числе, от ИБП). Конечно, я бы не рекомендовал ставить аккумулятор около источников открытого огня или использовать его как подставку для пепельницы, но под столом у компьютера водород в таких количествах точно опасности представлять не будет.

    ПО на компьютере и индикатор на ИБП будут некорректно отображать оставшееся время работы. Да, если не перепрошивать ИБП, то здесь есть некоторая проблема. Время оставшейся автономной работы рассчитывается исходя из ёмкости аккумулятора, оставшегося заряда и текущей нагрузки. Соответственно, ёмкость заложена в прошивке ИБП, и именно она используется при вычислении времени, что приводит к некорректной информации. Но это можно исправить, изменив прошивку бесперебойника. Впрочем, не для всех устройств это сделать легко, да и кроме навыков слесаря, здесь ещё понадобятся навыки программиста.

    С другой стороны, это не критично, поскольку заряд аккумулятора будет определяться точно. Заряд рассчитывается как сравнение номинального тока с текущим в цепи АКБ. Соответственно, это величина будет рассчитываться совершенно верно. В итоге мы будем иметь адекватное отображение оставшегося заряда в процентах, чего, как мне кажется, вполне достаточно. Например, на сотовом телефоне мы видим только схематический уровень заряда батареи, ну иногда проценты, но никак не оставшееся время работы. И при этом нам этой информации достаточно. Так же и с ИБП - процент оставшегося заряда является вполне исчерпывающей информацией.

    Таким образом, можно сделать вывод , что использовать автомобильный аккумулятор совместно с ИБП вполне реально. Экономические вопросы пока остаются открытыми, ибо если специально покупать новый АКБ для этих целей, то тут действительно нужно смотреть на живучесть батареи в таких условиях эксплуатации, а это покажет время. Но вот если использовать уже отработавший в машине аккумулятор, как это сделал я, то здесь вывод очевиден - это не просто возможно, это очень выгодно и удобно!

    Похожие статьи