Какая высота геостационарной орбиты. Засветка антенн земных станций. Солнцем и луной

10.05.2019

2007 г.

Основная идея

Этот сайт посвящён вопросам наблюдения искуственных спутников Земли (далее ИСЗ ). Со времени начала космической эры (4 октября 1957 г. был запущен первый ИСЗ - "Спутник-1") человечество создало огромное число спутников, которые кружат вокруг Земли по всевозможным орбитам. На сегодняшний момент число подобных рукотворных объектов превышает десятки тысяч. В основном это "космический мусор" - осколки ИСЗ, отработанные ступени ракет и т.д. Лишь небольшая часть из них составляют действующие ИСЗ.
Среди них есть и исследовательские, и метеорологические, и спутники связи и телекоммуникации, и военные ИСЗ. Пространство вокруг Земли "заселено" ими от высот 200-300 км и до 40000 км. Лишь часть из них доступна для наблюдений с использованием недорогой оптики (бинокли, подзорные трубы, любительские телескопы).

Создавая этот сайт, авторы ставили перед собой цель - собрать воедино информацию о методах наблюдения и съёмки ИСЗ, показать, как расчитывать условия их пролёта над определённой местностью, описать практические аспекты вопроса наблюдения и съёмки. На сайте представлен, в основном, авторский материал, полученный в ходе проведения наблюдений участниками секции "Космонавтика" астрономического клуба "hν" при Минском планетарии (Минск, Беларусь).

И всё же, отвечая на основной вопрос - "Зачем?", нужно сказать следующее. Среди всевозможных хобби, которыми увлекается человек, есть астрономия и космонавтика. Тысячи любителей астрономии наблюдают за планетами, туманностями, галактиками, переменными звёздами, метеорами и прочими астрономическими объектами, фотографируют их, проводят свои конференции и "мастер-классы". Зачем? Это просто хобби, одно из многих. Способ уйти от ежедневных проблем. Даже тогда, когда любители выполняют работы, имеющие научную значимость, они остаются любителями, которые делают это для своего удовольствия. Астрономия и космонавтика - очень "технологичные" увлечения, где можно применить свои знания оптики, электроники, физики и пр. естественно-научных дисциплин. А можно и не применять - и просто получать удовольствие от созерцания. Со спутниками дела обстоят похожим образом. Особенно интересно следить за теми ИСЗ, информация о которых не распространяется в открытых источниках - это военные спутники разведки разных стран. В любом случае, наблюдение ИСЗ - это охота. Часто мы можем заранее указать где и когда покажется спутник, но не всегда. А как он себя будет "вести" - предсказать ещё сложнее.

Благодарности:

Описанные методики были созданы на основе наблюдений и исследований, в которых приняли участие члены клуба любителей астрономии "hν" Минского планетария (Беларусь):

  • Бозбей Максим.
  • Дрёмин Геннадий.
  • Кенько Зоя.
  • Мечинский Виталий.

Также большую помощь оказали члены клуба любителей астрономии "hν" Лебедева Татьяна , Повалишев Владимир и Ткаченко Алексей . Отдельная благодарность Александру Лапшину (Россия), profi-s (Украина), Даниилу Шестакову (Россия) и Анатолию Григорьеву (Россия) за помощь в создании п. II §1 "Фотометрия ИСЗ", Главы 2 и Главы 5, а Елене (Tau , Россия) также за консультации и написание нескольких расчётных программ. Авторы также благодарят Абгаряна Михаила (Беларусь), Горячко Юрия (Беларусь), Григорьева Анатолия (Россия), Еленина Леонида (Россия), Жука Виктора (Беларусь), Молотова Игоря (Россия), Морозова Константина (Беларусь), Плаксу Сергея (Украина), Прокопюка Ивана (Беларусь) за предоставленные иллюстрации для некоторых разделов сайта.

Часть материалов получена в ходе выполнения заказа УП "Геоинформационные системы" Национальной академии наук Беларуси. Представление материалов выполняется на некоммерческой основе в целях популяризации Белорусской космической программы среди детей и молодежи.

Виталий Мечинский, Куратор секции "Космонавтика" астроклуба "hν".

Новости сайта:

  • 01.09.2013: Значительно Обновлён подпункт 2 "Фотометрия ИСЗ за пролёт" п. II §1 -- добавлена информация по двум методикам фотометрии треков ИСЗ (метод фотометрического профиля трека и метод изофотной фотометрии).
  • 01.09.2013: Обновлён подпункт п. II §1 -- добавлена информация по работе с рограммой "Highecl" для расчёта вероятных вспышек от ГСС.
  • 30.01.2013: Обновлена "Глава 3" -- добавлена информация по работе с рограммой "MagVision" для расчёта падения проницания от засветки со стороны Солнца и Луны.
  • 22.01.2013: Обновлена Глава 2. Добавлена анимация движения спутников по небу за одну минуту.
  • 19.01.2013: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про устройства подогрева электроники и оптики для защиты от выпадения росы, инея и от излищнего охлаждения.
  • 19.01.2013: Добавлена в "Главу 3" информация про падение проницания при засветке от Луны и сумерек.
  • 09.01.2013: Добавлен подпункт "Вспышки от лидара ИСЗ "CALIPSO" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения вспышек от лазерного лидара ИСЗ "CALIPSO" и процесс подготовки к ним.
  • 05.11.2012: Обновлена вводная часть §2 Главы 5. Добавлена информация о необходимом минимуме оборудования для радионаблюдений ИСЗ, а также приведена схема светодиодного индикатора уровня сигнала, который используется для выставления безопасного для диктофона уровня входного аудио-сигнала.
  • 04.11.2012: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про звёздный атлас Брно, а также про красную плёнку на ЖКИ-экраны электронных устройств, используемых при наблюдениях.
  • 14.04.2012: Обновлён подпункт подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "SatIR" для отождествления ИСЗ на фотографиях с широким полем зрения, а также определение координат концов треков ИСЗ на них.
  • 13.04.2012: Обновлён подпункт "Астрометрия ИСЗ на полученных снимках: фото и видео" подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "AstroTortilla" для определения координат центра поля зрения снимков участков звёздного неба.
  • 20.03.2012: Обновлён подпункт п.2 "Классификация орбит ИСЗ по величине большой полуоси" §1 Главы 2. Добавлена информация про величину дрейфа ГСС и возмущений орбиты.
  • 02.03.2012: Добавлен подпункт "Наблюдения и съемка запусков ракет на отдалении" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения полёта ракет-носителей на этапе выведения.
  • "Конвертирование астрометрии в IOD-формат" подпункта "Фото/видео съёмка ИСЗ" п.I "Определение орбит ИСЗ" §1 Главы 5. Добавлено описание работы с программой "ObsEntry for Window" для конвертации астрометрии ИСЗ в IOD-формат -- аналог программы "OBSENTRY", но для ОС Windows.
  • 25.02.2012: Обновлён подпункт "Солнечно-синхронные орбиты" п.1 "Классификация орбит ИСЗ по наклонению" §1 Главы 2. Добавлена информация о расчёте значения наклонения i ss солнечно-синхронной орбиты ИСЗ в зависимости от эксцентриситета и большой полуоси орбиты.
  • 21.09.2011: Обновлён подпункт подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о синодическом эффекте, искажающем определение периода вращения ИСЗ.
  • 14.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Один пролёт" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе "SatID" для идентификации спутника (используя полученные TLE) среди спутников из сторонней базы TLE, а также описан метод идентификации спутника в программе "Heavensat" на основе увиденного пролёта возле опорной звезды.
  • 12.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Несколько пролётов" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе пересчёта TLE-элементов на нужную дату.
  • 12.09.2011: Добавлен подпункт "Вхождение ИСЗ в атмосферу Земли" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по работе с программой "SatEvo" для предсказания даты вхождения ИСЗ в плотные слои атмосферы Земли.
  • "Вспышки от геостационарных ИСЗ" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о периоде видимости вспышек ГСС.
  • 08.09.2011: Обновлён подпункт "Изменение блеска ИСЗ в течении пролёта" подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о виде фазовой функции для нескольких примеров отражающих поверхностей.
  • подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о неравномерности шкалы времени вдоль изображения трека ИСЗ на матрице фотоприёмника.
  • 07.09.2011: Обновлён подпункт "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлен пример сложной кривой блеска ИСЗ "NanoSail-D" (SCN:37361) и моделирование его вращения.
  • "Вспышки от низкоорбитальных ИСЗ" подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлены фотография и фотометрический профиль вспышки от LEO ИСЗ "METEOR 1-29".
  • 06.09.2011: Обновлён подпункт "Геостационарные и геосинхронные орбиты ИСЗ" §1 Главы 2. Добавлена информация по классификации геостационарных ИСЗ, информация о форме траекторий ГСС.
  • 06.09.2011: Обновлён подпункт "Съёмка пролёта ИСЗ: оборудование для съёмки. Оптические элементы" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлены ссылки на обзоры отечественных объективов в применении к съёмке ИСЗ.
  • 06.09.2011: Обновлён подпункт "Фазовый угол" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена анимация изменения фазы спутника в зависимости от фазового угла.
  • 13.07.2011: Закончено заполнение всех глав и разделов сайта.
  • 09.07.2011: Закончено написание вводной части к п. II "Фотометрия ИСЗ" §1 Главы 5.
  • 05.07.2011: Закончено написание вводной части к §2 "Радионаблюдения ИСЗ" Главы 5.
  • 04.07.2011: Обновлён подпункт "Обработка наблюдений" п. I "Приём телеметрии ИСЗ" §2 Главы 5.
  • 04.07.2011: Закончено написание п. II "Получение снимков облачности" §2 Главы 5.
  • 02.07.2011: Закончено написание п. I "Приём телеметрии ИСЗ" §2 Главы 5.
  • 01.07.2011: Закончено написание подпункта "Фото/видео съёмка ИСЗ" п. I §1 Главы 5.
  • 25.06.2011: Закончено написание Приложений .
  • 25.06.2011: Закончено написание вводной части к Главе 5: "Что и как наблюдать?"
  • 25.06.2011: Закончено написание вводной части к §1 "Оптические наблюдения" Главы 5.
  • 25.06.2011: Закончено написание вводной части к п. I "Определение орбит ИСЗ" §1 Главы 5.
  • 25.06.2011: Закончено написание Главы 4: "О времени" .
  • 25.01.2011: Закончено написание Главы 2: "Какие орбиты и ИСЗ бывают?" .
  • 07.01.2011: Закончено написание Главы 3: "Подготовка к наблюдениям" .
  • 07.01.2011: Закончено написание Главы 1: "Как движутся ИСЗ?"

Мы редко задумываемся, как организовано движение в околоземном пространстве. Например, о том, что от Земли до космической станции — рукой подать, меньше чем от Москвы до Питера, а принятый спутниковой тарелкой сигнал проделал больший путь, чем средний автомобиль проходит за пять лет. К тому же каждому запуску предшествует тщательное проектирование орбиты, по которой аппарат будет двигаться в космическом пространстве. Орбиты, которые мы выбираем

Когда в 1961 году специалисты королёвского ОКБ-1 приступили к созданию первого советского спутника связи «Молния-1» для телевизионной системы «Орбита», перед ними встала проблема выбора целевой орбиты для своего детища. Самой эффективной, на первый взгляд, казалась геостационарная орбита высотой 36 тысяч километров. Находящийся на ней спутник круглосуточно пребывает в прямой видимости примерно для 1/3 поверхности Земли. Однако с такой орбиты невозможно обеспечить связь в высоких широтах и телевещание в районах Крайнего Севера. Кроме того, Советский Союз не располагал тогда носителями для вывода тяжелых спутников на геостационарную орбиту.

Выход нашли баллистики, придумавшие орбиту, на которую спутник связи можно было выводить ракетой, уже находившейся в разработке. Это была сильно вытянутая орбита с минимальной высотой (перигеем) 500 километров, а максимальной (апогеем) - 40 000 километров. Период обращения составлял 12 часов, причем в соответствии с законами небесной механики большую часть времени спутник проводил в районе апогея. Наклонение орбиты (63,4°) было выбрано так, чтобы в этот период спутник был виден с большей части территории СССР. Благоприятные условия для связи длились восемь часов, после чего спутник уходил на другую сторону Земли, а на следующем витке проходил апогей над Северной Америкой. Вновь он становился доступен для ретрансляции телевидения только через 16 часов.

Успешно вывести на эту орбиту спутник связи «Молния-1» удалось с третьей попытки 23 апреля 1965 года, и уже на следующий день состоялся первый в Советском Союзе сеанс космической связи между Москвой и Владивостоком. Для круглосуточного телевещания приходилось держать в космосе одновременно три спутника «Молния», а на Земле строить сложные антенны. Большие параболические «зеркала» отслеживали замысловатую траекторию спутника в небе: он быстро восходил на западе, поднимался в зенит, переваливал через него, потом начинал двигаться в обратную сторону, снова разворачивался и, ускоряясь, спускался к восточному горизонту. Еще одним осложняющим фактором были значительные изменения скорости при движении по вытянутой орбите, в результате чего из-за эффекта Доплера постоянно менялась частота принимаемого на Земле сигнала.

Траектория, выбранная для первого советского спутника связи, позднее получила название орбита «Молния». Ее развитием с появлением более мощных ракет стала высокоэллиптическая орбита «Тундра» с перигеем 500 километров, апогеем 71 000 и периодом обращения 24 часа. Орбиты с таким периодом называют геосинхронными, поскольку, двигаясь по ним, космический аппарат всегда проходит апогей над одним и тем же районом Земли. Эффективность использования спутников на орбите «Тундра» значительно повышается, так как они могут обслуживать выбранную территорию более 12 часов на каждом витке, а для организации круглосуточной связи достаточно двух аппаратов. Однако наземное оборудование по-прежнему остается сложным, ведь геосинхронные спутники постоянно меняют свое положение на небе, и за ними приходится следить.

Зависшие в небе

Приемное оборудование радикально упрощается, если спутник остается неподвижным относительно Земли. Из всего множества геосинхронных орбит это достигается только на одной круговой, расположенной строго над экватором (наклонение 0°). Эта орбита называется геостационарной, поскольку на ней спутник словно бы зависает над выбранной точкой экватора на высоте 35 786 километров.

Американцы первыми запустили геостационарный спутник, но удалось им это не сразу. Первые две попытки в 1963 году окончились неудачей, и только 10 сентября 1964 года на ГСО вышел спутник «Синком-3». Интересно, что в космос он стартовал еще 19 августа, и почти месяц с помощью собственного двигателя подкрадывался к выбранной для него точке стояния. Первый отечественный геостационарный спутник «Радуга-1» был запущен лишь 22 декабря 1975 года. С тех пор ГСО постоянно пополняется, и сегодня на ней расположено более 400 спутников и еще 600 аппаратов движутся вблизи нее.

Строго говоря, из-за различных возмущений и погрешностей выведения геостационарный спутник не «висит» совсем неподвижно над экватором, а совершает колебательное движение относительно своей точки стояния. В проекции на земную поверхность его траектория напоминает небольшую восьмерку. Вдобавок из-за гравитационных возмущений аппарат может «дрейфовать» вдоль орбиты. Чтобы удержаться в выбранной точке стояния и не выйти из створа наземных антенн, аппарат должен регулярно корректировать свою орбиту. Для этого на борту имеется запас топлива. Именно от него порой зависит срок службы геостационарного спутника.

Несложные геометрические построения показывают, что на широтах выше 81° геостационарные спутники находятся под горизонтом, а значит, связь с их помощью в полярных районах невозможна. На практике мобильная связь через геостационарный спутник ограничивается широтой 65-70°, а фиксированная - 70-75°. Связь через ГСО имеет и еще один серьезный недостаток. По пути к спутнику и обратно радио сигнал преодолевает более 70 тысяч километров, затрачивая на это четверть секунды. С учетом времени на обработку сигнала и его передачу по наземным линиям связи задержка может заметно превышать полсекунды. В результате интернет-сервисы через спутник откликаются медленно, а телефонное общение становится некомфортным, поскольку даже современные средства «эхоподавления» не всегда справляются с большими задержками. Чтобы избавиться от этих недостатков, приходится уменьшать высоту спутников.

Элементы орбиты

Слово «орбита» по-латыни означает «колея» или «путь». Околоземную орбиту характеризует ряд параметров: наименьшая и наибольшая высота (перигей и апогей, которые также определяют период обращения), наклонение (угол между плоскостью орбиты и плоскостью земного экватора), долгота восходящего узла, задающая, «в какую сторону» (вокруг какой линии в плоскости экватора) наклонена орбита, и аргумент перигея, указывающий, как повернута эллиптическая орбита в своей собственной плоскости. Гравитационные возмущения со стороны других планет, давление солнечного излучения, несферическая форма Земли, ее магнитное поле и атмосфера приводят к тому, что орбиты спутников могут заметно меняться во времени. Поэтому в ходе эксплуатации спутника регулярно проводятся траекторные измерения, и при необходимости его орбита корректируется.

Созвездие Iridium

На сравнительно невысоких орбитах формируются коммерческие и правительственные системы спутников связи. Технически эти траектории нельзя назвать удобными для связи, поскольку спутники на них большую часть времени видны низко над горизонтом, что негативно сказывается на качестве приема, а при гористом рельефе может сделать его невозможным. Поэтому чем ниже орбита, тем больше спутников должно быть в системе. Если для глобальной системы связи на ГСО достаточно трех спутников, то на орбитах средней высоты (5000-15 000 километров) требуется уже от 8 до 12 космических аппаратов. А для высот 500-2000 километров нужно более полусотни спутников.

И все же к концу 1980-х годов сложились предпосылки для реализации низкоорбитальных систем связи. Во-первых, на ГСО спутникам становилось все теснее. «Парковочные места» на этой орбите подлежат международной регистрации, причем расположенные по соседству спутники не должны работать на одних и тех же радиочастотах, чтобы не создавать друг другу помех. Во-вторых, прогресс в области радиоэлектроники позволил создавать недорогие (а главное - легкие) спутники с достаточно широкими возможностями. Ракета, способная вывести на ГСО всего один большой спутник связи, могла забросить на низкую орбиту целую «пачку» таких аппаратов. В-третьих, завершение «холодной войны» и процесс разоружения высвобождали сотни межконтинентальных баллистических ракет, которые могли по «бросовым ценам» использоваться для запуска небольших спутников. И наконец, именно в эти годы стал быстро расти спрос на мобильную связь, для которой характерно использование маломощных ненаправленных антенн, «не добивающих» до ГСО. Все эти факторы делали запуск даже очень большого числа недорогих низкоорбитальных спутников выгоднее создания группировки из нескольких тяжелых геостационарных аппаратов.

Среди первых низкоорбитальных систем связи были Orbcomm (США) и «Гонец» (Россия). Они не обеспечивали передачу голоса, а предназначались для отправки текстовых сообщений и сбора информации с различных датчиков, например метеорологических. На сегодня Orbcomm включает 29 спутников массой 42 килограмма на орбитах высотой 775 километров. Система «Гонец» первоначально содержала всего 6 спутников, из-за чего время доставки сообщений могло затягиваться на несколько часов. Сейчас в ней сменяется уже третье поколение спутников, число работающих аппаратов достигло девяти, но в перспективе должно быть доведено до 45 - по девять штук на пяти почти полярных орбитах (наклонение 82,5°) высотой 1500 километров.

Полярными называют орбиты, которые проходят над Северным и Южным полюсами Земли, то есть располагаются перпендикулярно экватору. В поле зрения спутника на полярной орбите периодически попадает любой участок земной поверхности. Если использовать несколько таких орбит, повернутых под углом друг к другу, и по каждой с равными интервалами запустить несколько спутников, можно непрерывно обозревать всю поверхность Земли. Именно так работает сеть спутниковой телефонии Iridium. В ней используются полярные орбиты с наклонением 86,4° и высотой 780 километров. Первоначально на них размещалось 77 спутников, откуда и возникло название системы: иридий - 77-й элемент Периодической системы Менделеева. Однако через девять месяцев после запуска, в ноябре 1998 года, компания Iridium обанкротилась. Цена разговора, доходившая до семи долларов в минуту, оказалась слишком высокой для потребителей, отчасти из-за того, что система Iridium обеспечила по-настоящему глобальную связь - от полюса до полюса. Стартовавшая чуть позже система GlobalStar ради экономии использует вместо полярных орбиты с наклонением 52°, что ограничивает связь 70-й параллелью (примерно на широте Ямала). Зато для работы хватает 48 спутников (плюс четыре запасных), а стоимость связи в том же 1999 году составляла не более двух долларов в минуту.

Спутники Iridium уже готовились свести с орбиты и сжечь в плотных слоях атмосферы, когда всю систему выкупило американское министерство обороны. По сей день Iridium остается единственной спутниковой системой связи, которая непрерывно обеспечивает телефонную связь по всему земному шару. Например, через нее с 2006 года обеспечивается постоянное подключение к Интернету полярной станции Амундсен-Скотт на Южном полюсе. Скорость соединения составляет 28,8 килобит в секунду, как на старом телефонном модеме.

Использование околоземного пространства

В первом приближении орбиты спутников делятся на низкие (до 2000 километров от Земли), средние (ниже геостационарной орбиты) и высокие. Пилотируемые полеты совершаются не выше 600 километров, поскольку космические корабли не должны входить в окружающие нашу планету радиационные пояса. Энергичные протоны внутреннего радиационного пояса создают опасность для жизни космонавтов. Максимальная интенсивность облучения достигается на высоте около 3000 километров, которой избегают все космические аппараты. Внешний электронный пояс не так опасен. Его максимум лежит где-то между зонами навигационных и геостационарных спутников. Еще выше обычно поднимаются спутники, работающие на сильно вытянутых эллиптических орбитах. Таковы, например, рентгеновская обсерватория «Чандра» (США), которая во избежание помех наблюдает вдали от радиационных поясов, и будущая российская обсерватория «Радиоастрон», данные которой тем точнее, чем больше расстояние от работающих с ней в паре земных радиотелескопов. Самые высокие околоземные орбиты, которые в равной мере можно считать околосолнечными, лежат на высоте 1,5 миллиона километров вблизи так называемых точек Лагранжа.

Вместе с солнцем

К полярным близок еще один важный класс орбит, называемых солнечносинхронными (ССО), которые всегда имеют постоянную ориентацию относительно Солнца. На первый взгляд кажется, что это противоречит законам небесной механики, согласно которым плоскость орбиты остается постоянной, а значит, в ходе движения Земли вокруг Солнца она должна поворачиваться к нему то одной, то другой стороной. Но если учесть, что Земля имеет приплюснутую форму, то оказывается, что плоскость орбиты испытывает прецессию, то есть немного поворачивается от витка к витку. Правильно подобрав высоту и наклонение, можно добиться того, чтобы поворот плоскости орбиты как раз соответствовал дуге, пройденной Землей вокруг Солнца. Например, для высоты орбиты 200 километров наклонение должно составлять чуть больше 96° градусов, а для 1000 километров - уже более 99° (цифры более 90° соответствуют движению по орбите против суточного вращения Земли).

Ценность ССО состоит в том, что, двигаясь по ней, спутник пролетает над земными объектами всегда в одно и то же время суток, что важно для проведения космической съемки. Кроме того, благодаря близости ССО к полярным орбитам с них можно следить за всей земной поверхностью, что важно для метеорологических, картографических и разведывательных спутников, которые собирательно называются спутниками дистанционного зондирования Земли (ДЗЗ). Определенный выбор параметров ССО позволяет спутнику никогда не уходить в тень Земли, всегда оставаясь на солнце вблизи границы дня и ночи. Спутник при этом не испытывает перепадов температуры, а солнечные батареи непрерывно обеспечивают его энергией. Такие орбиты удобны для радарного картирования земной поверхности.

Гражданские спутники ДЗЗ, от которых требуется различать предметы размером порядка метра, обычно работают на высотах 500-600 километров. Для военных спутников-разведчиков с разрешением съемки в 10-30 сантиметров такие высоты слишком велики. Поэтому их орбиты часто выбирают так, чтобы перигей лежал над точкой съемки. Если «объект внимания» не один, разведчику приходится менять форму орбиты с помощью двигателя, иногда совершая «нырки» к верхним слоям атмосферы, снижаясь до высот около 150 километ ров. Необходимость «подбираться» как можно ближе к Земле имеет существенный недостаток - сопротивление атмосферы резко сокращает срок пребывания спутника в космосе. Чуть зазеваешься - и атмосфера утащит спутник в свою пучину, где он неизбежно сгорит. Из-за этого на борту низкоорбитальных «шпионов» приходится держать большие запасы топлива для коррекции орбиты и периодического подъема высоты. Например, из 18 тонн стартовой массы американского фоторазведчика KH-11 на топливо приходится примерно 40%. Таким образом, выбранная орбита может непосредственно влиять на конструкцию, а иногда и на внешний вид аппарата.

Особенно ярко эта зависимость проявилась в конструкции европейского научного аппарата GOCE, запущенного недавно с российского космодрома Плесецк. Он имеет необычную стреловидную форму, непохожую на угловатые контуры большинства современных спутников, и даже вызывает ассоциации со скоростным самолетом. Дело в том, что для спутника, изучающего гравитационное поле Земли, выбрана низкая ССО высотой 240-250 километров. Она оптимальна с точки зрения точности измерений, но чтобы противостоять тормозящему действию атмосферы, спутнику придали форму с минимальным поперечным сечением. Кроме того, в кормовой части аппарата установлены ионные электроракетные двигатели для коррекции траектории.

«Орбита Кларка»

Вероятно, первыми о возможности геостационарных спутников заговорили Константин Эдуардович Циолковский и Герман Поточник, теоретик космонавтики из Словении, более известный как Герман Ноордунг. Однако широкое распространение идея их использования для связи получила с подачи известного британского ученого и писателя-фантаста Артура Кларка. В 1945 году он опубликовал в журнале Wireless World научно-популярную статью с описанием спутников связи на геостационарной орбите (ГСО), которую теперь нередко называют «Орбитой Кларка».

Глобальный взгляд

Но не всем спутникам ДЗЗ требуется высокое разрешение. Что проку от возможности обнаружить объект размером 30 сантиметров, если задача аппарата - отслеживать региональные или глобальные перемещения воздушных масс и тепловые режимы крупных регионов. Для ее осуществления гораздо важнее широта охвата. При глобальном метеорологическом мониторинге спутники обычно размещают на ГСО или высокой ССО, а при региональном - на орбите сравнительно небольшой высоты (500-1000 километров) с наклонением, позволяющим регулярно проводить съемку выбранного района. К примеру, перспективный российский спутник

«Метеор-М» должен проводить мониторинг гидрометеорологической ситуации в глобальном масштабе с ССО высотой 830 километров. А для аппарата «Электро-Л» была выбрана ГСО, поскольку его основным назначением будет съемка всего диска Земли в видимом и инфракрасном диапазонах. Кроме того, ГСО в данном случае оптимальна для получения информации о глобальных атмосферных процессах, протекающих в приэкваториальной зоне.

Именно потому, что с ГСО можно обозревать значительную часть земной поверхности, ее «заселяют» не только аппараты связи и метеоспутники, но и системы предупреждения о ракетном нападении. Их основная задача - обнаруживать пуски баллистических ракет, для чего в состав аппаратуры включается инфракрасный телескоп, способный засечь факел работающего двигателя. Недостатки ГСО в данном случае роли не играют - ведь спутнику не надо передавать информацию на Северный или Южный полюс, зато треть земной поверхности как на ладони.

Весьма непростым оказался выбор параметров орбиты для спутников глобальных навигационных систем GPS и ГЛОНАСС. Хотя сама идея (по задержке сигнала измерять расстояние до спутников с хорошо известными координатами) была очевидна, ее реализация затянулась на десятилетия. В СССР исследования в этом направлении начались еще в 1958 году. Через пять лет стартовала работа над первой спутниковой навигационной системой «Цикада», которую сдали в эксплуатацию только через 16 лет. Четыре ее навигационных спутника работали на низких круговых орбитах высотой 1000 километров с наклонением 83°. Плоскости их орбит были равномерно распределены вдоль экватора. Примерно раз в полтора-два часа потребитель мог войти в радиоконтакт с одним из спутников «Цикада» и после 5-6 минут связи определить свои широту и долготу. Разумеется, военных заказчиков спутниковой навигации такой режим работы не устраивал. Им требовалось в произвольный момент и в любой точке Земли определять три пространственные координаты, вектор скорости и точное время. Для этого необходимо одновременно принимать сигналы не менее четырех спутников. На низких орбитах для этого потребовалось бы разместить сотни космических аппаратов, что было бы не только безумно дорого, но и попросту неосуществимо. Дело в том, что срок эксплуатации советских спутников не превышал одного-двух лет (а чаще - нескольких месяцев), и получилось бы, что вся ракетно-космическая промышленность работала бы исключительно на изготовление и запуск навигационных спутников. Вдобавок низкоорбитальные спутники испытывают значительные возмущения из-за влияния земной атмосферы, что сказывается на точности определяемых по ним координат.

Исследования показали, что необходимые параметры навигационной системы обеспечиваются при размещении спутников на круговых траекториях высотой 19 000-20 000 километров (для ГЛОНАСС выбрана высота 19 100 километров) с наклонением около 64°. Влияние атмосферы здесь уже незначительно, а гравитационные возмущения со стороны Луны и Солнца еще не приводят к быстрым изменениям орбиты.

Кладбище спутников

В последние 20 лет все больше стран обзаводились собственными телекоммуникационными, метеорологическими и военными спутниками на геостационарной орбите. В результате на ГСО стало тесно. Среднее расстояние между спутниками составляет около 500 километров, а на некоторых ее участках тяжелые аппараты «висят» всего в нескольких десятках километров друг от друга. Это может вызывать помехи при связи и даже приводить к столкновениям. Возвращать спутники с высокой орбиты на Землю слишком дорого. Поэтому для расчистки ГСО было решено, что после завершения активной эксплуатации они должны на остатках топлива переводиться на «орбиту захоронения», расположенную на 200-300 километров выше. Это «кладбище спутников» пока гораздо свободнее рабочей орбиты.

Теоретически на такой высоте достаточно 18 спутников в трех орбитальных плоскостях, чтобы из любой точки на Земле было видно не менее четырех аппаратов одновременно. Но на самом деле для повышения точности определения местоположения самих космических аппаратов группировку ГЛОНАСС придется расширить до 24 работающих спутников, а с учетом резерва в системе надо иметь 27-30 спутников. Примерно на таких же принципах строятся и остальные навигационные системы - GPS (США), Galileo (Европа) и «Бэйдоу» (Китай). Их спутниковые группировки располагаются на круговых орбитах высотой 20 000-23 500 километров с наклонением 55-56°.

Трассы для пилотов

Орбиты пилотируемых аппаратов выбираются особо. Так, при строительстве Международной космической станции (МКС) учитывались удобство запуска к ней новых модулей и космических кораблей, безопасность экипажа, расход топлива на поддержание высоты. В результате станция была выведена на орбиту высотой около 400 километров. Это немного ниже границы радиационного пояса Земли, в котором под действием магнитного поля нашей планеты накапливаются заряженные частицы солнечного ветра. Длительное нахождение внутри радиационного пояса подвергало бы экипаж опасному облучению или потребовало бы мощных средств радиационной защиты орбитальной станции. Существенно ниже опустить орбиту тоже нельзя, иначе из-за значительного аэродинамического сопротивления станция будет тормозиться и потребуется много топлива для поддержания ее высоты. Наклонение орбитальной плоскости (51,6°) определяется условиями запусков с Байконура, самого северного космодрома, откуда осуществляются пилотируемые полеты.

Сходными соображениями продиктован выбор орбиты для космического телескопа Хаббла, поскольку с самого начала предполагалось, что его будут периодически посещать астронавты. Потому наклонение орбиты 28,5° было выбрано по широте американского космодрома Канаверал. В результате орбиты МКС и телескопа расположены под значительным углом друг к другу, и космический челнок не может посетить их в одном полете, ведь смена плоскости орбиты - один из самых «дорогих» маневров, у шаттла для него просто недостаточно топлива. Из-за этого работа космического телескопа едва не завершилась преждевременно. После катастрофы шаттла «Колумбия» в 2003 году было решено, что астронавты должны иметь возможность укрыться на МКС, если в полете будут обнаружены серьезные повреждения корабля. Полет к телескопу Хаббла исключал такую возможность и едва не был отменен. В итоге его все-таки одобрили, и после серьезной модернизации в 2009 году «Хаббл», который находился на грани выхода из строя, сможет проработать еще лет пять, пока ему на смену не придет новый телескоп имени Джеймса Вебба. Правда, тот будет запущен уже не на околоземную орбиту, а гораздо дальше - в точку Лагранжа на высоте 1,5 миллиона километров, где период обращения в точности равен году, и телескоп будет постоянно прятаться от Солнца позади Земли. Туда пилотируемые полеты пока не осуществляются.

Мы описали целый ряд разных орбит, но на этом их многообразие отнюдь не исчерпывается. Для любого типа орбит существуют вариации, призванные усилить их положительные и ослабить отрицательные свойства. Например, некоторые спутники движутся вблизи геостационарной орбиты с наклонением до 10°. Это позволяет им периодически «заглядывать» в высокие широты, но наземным антеннам при этом требуется умение наклоняться вверх-вниз, отслеживая колебания спутника. Важную роль играют различные переходные траектории, соединяющие две орбиты. С распространением ионных двигателей малой тяги в околоземном пространстве стали использоваться сложные спиральные пути. Выбором траектории космического аппарата занимаются баллистики. Есть даже термин «баллистическое проектирование», означающий совместную разработку оптимальной траектории полета аппарата, его облика и основных проектных параметров. Иначе говоря, орбита разрабатывается вместе со спутником и ракетой, которая его выводит.

Весьма популярной спутниковой орбитой является геостационарная орбита. Она используется для размещения спутников многих типов, включая спутники, ведущие прямое телерадиовещание, спутники, обеспечивающие связь, а также релейные системы.

Преимуществом геостационарной орбиты является то, что спутник, находящийся на ней, постоянно располагается в одной и той же позиции, что позволяет направлять на него фиксированную антенну наземной станции.

Читайте также:

Этот фактор является чрезвычайно важным для организации таких систем, как прямое телерадиовещание через спутник, где использование постоянно движущейся антенны, следующей за спутником, было бы крайне непрактичным.

Необходимо внимательно относиться к использованию сокращений, принятых для обозначения геостационарной орбиты. Мы можем встретить аббревиатуры GEO и GSO, и обе они используются для обозначения как геостационарной, так и геосинхронной орбиты.

Развитие геостационарных орбит

Идеи относительно возможности использования геостационарной орбиты для размещения на ней спутников выдвигались на протяжении многих лет. В качестве возможного автора положений, лежащих в основе данной идеи, часто называют российского теоретика и научного фантаста Константина Циолковского. Однако впервые о возможности размещения космических аппаратов на высоте 35 900 километров над Землёй с периодом обращения в 24 часа, дающим им возможность «парить» в одной точке над экватором, написали Герман Оберт и Герман Поточник.

Следующий важный шаг на пути к рождению Геостационарной орбиты был сделан в октябре 1945 года, когда научный фантаст Артур Чарльз Кларк написал серьёзную статью для Wireless World – ведущего британского издания в области радио и электроники. Статья была озаглавлена как «Внеземная релейная связь: смогут ли космические ракеты обеспечить охват сигналом всего мира?».

Кларк попытался экстраполировать то, что уже было возможно благодаря использованию существующих на тот момент ракетных технологий, разработанных немецкими учёными, на то, что могло бы стать возможным в будущем. Он высказал мысль о возможности покрытия сигналом всей Земли при использовании всего трёх геостационарных спутников.

В своей статье Кларк указал необходимые характеристики орбиты, а также уровни мощности передатчиков, возможности выработки электроэнергии при помощи солнечных батарей и даже рассчитал возможное влияние солнечных затмений.

Статья Кларка значительно опережала время. Лишь в 1963 году агентство NASA смогло запустить в космос спутники, способные проверить данную теорию на практике. Первым полноценным спутником, способным начать практические испытания теории Кларка, стал спутник Syncom 2, запущенный 26 июля 1963 года (по правде говоря, спутник Syncom 2 не смог этого сделать, поскольку его не удалось доставить на необходимую геостационарную орбиту).

Основы теории Геостационарной орбиты

С увеличением высоты орбиты, на которой находится спутник, увеличивается и период его обращения по данной орбите. На высоте 35 790 километров над Землёй спутнику требуется 24 часа для полного витка вокруг планеты. Такая орбита известна как геосинхронная, так как она синхронизирована с периодом обращения Земли вокруг своей оси.

Частным случаем геосинхронной орбиты является геостационарная орбита. При использовании такой орбиты направление движения спутника вокруг Земли соответствует направлению вращения самой планеты, а период обращения космического аппарата примерно равен 24 часам. Это значит, что спутник вращается с той же угловой скоростью, что и Земля, в том же направлении и, стало быть, постоянно находится в одной и той же точке относительно поверхности планеты.

Читайте также:

Чтобы гарантировать то, что спутник обращается вокруг Земли с той же скоростью, с которой обращается вокруг своей оси сама планета, необходимо чётко уяснить – каков же на самом деле период обращения Земли вокруг своей оси. Большинство хронометражных устройств измеряет обращение Земли относительно текущего положения Солнца, а вращение Земли вокруг своей оси в сочетании с её вращением вокруг Солнца даёт продолжительность дня. Однако это совсем не тот период обращения Земли, который интересует нас с точки зрения расчета геостационарной орбиты – время, необходимое для одного полного обращения. Этот отрезок времени известен как «звёздные сутки», продолжительность которых составляет 23 часа 56 минут и 4 секунды.

Законы геометрии говорят нам о том, что единственный вариант для того, чтобы, делая один виток в сутки, спутник всегда оставался над одной точкой земной поверхности, состоит в его обращении в том же направлении, в котором вращается сама Земля. Кроме того, спутник не должен смещаться на своей орбите ни на север, ни на юг. Всего этого можно достичь лишь в том случае, если орбита спутника проходит над экватором.

На диаграмме показаны различные типы орбит. Поскольку плоскость любой орбиты должна проходить через центр Земли, на рисунке представлены два возможных варианта. При этом даже если обращение космических аппаратов на обеих орбитах будет осуществляться со скоростями, равными скорости вращения Земли вокруг своей оси, орбита, обозначенная как «геосинхронная», будет полдня смещаться на север относительно экватора, а оставшиеся полдня – на юг и, стало быть, не будет стационарной. Для того, чтобы спутник стал стационарным, он должен располагаться над экватором.

Дрейф на геостационарной орбите

Даже если спутник расположен на геостационарной орбите, на него воздействуют некоторые силы, способные медленно изменять его позицию в течение времени.

Такие факторы, как эллиптическая форма Земли, притяжение Солнца и Луны, а также ряд других увеличивают потенциальную возможность отклонения спутника от своей орбиты. В частности, не совсем круглая форма Земли в районе экватора приводит к тому, что спутник притягивает к двум устойчивым точкам равновесия – одна из них находится над Индийским океаном, а вторая – приблизительно на противоположной части Земли. В результате имеет место явление, получившее название либрации с востока на запад, или движение вперёд и назад.

Для того чтобы преодолеть последствия такого движения, на борту спутника имеется определённый запас топлива, который позволяет ему проводить «поддерживающие манёвры», возвращающие аппарат чётко в необходимую орбитальную позицию. Необходимый промежуток между временем проведения таких «поддерживающих манёвров» определяется в соответствии с так называемым допуском отклонения спутника, который устанавливается, главным образом, с учётом ширины луча антенны наземной станции. Это значит, что при нормальной работе спутника не требуется никакой подстройки антенны.

Читайте также:

Очень часто период активной эксплуатации спутника рассчитывается из количества топлива на его борту, необходимого для поддержания расположения спутника в одной орбитальной позиции. Чаще всего этот период составляет несколько лет. После чего спутник начинает дрейфовать в направлении одной из точек равновесия, после чего возможно его снижение и последующее вхождение в атмосферу Земли. Поэтому желательно использовать последнее имеющееся у него на борту топливо для того, чтобы поднять спутник на более высокую орбиту, дабы избежать его возможного негативного воздействия на работу других космических аппаратов.

Покрытие с геостационарной орбиты

Совершенно очевидным является тот факт, что один геостационарный спутник не способен обеспечить полного покрытия сигналом поверхности Земли. Однако, каждый геостационарный спутник «видит» примерно 42% земной поверхности, при этом охват падает по направлению к спутнику, который не может «видеть» поверхность. Это происходит вокруг экватора и также в направлении полярных регионов.

Расположив на геостационарной орбите группировку из трёх равноудалённых друг от друга спутников, можно обеспечить покрытие сигналом всей поверхности Земли от экватора и вплоть до 81° северной и южной широты.

Отсутствие покрытия в полярных регионах не является проблемой для большинства пользователей, однако при необходимости обеспечения стабильного покрытия полярных широт требуется использования спутников, вращающихся на других орбитах.

Геостационарная орбита
и длина пути сигнала

Одной из проблем, возникающих при использовании спутников, находящихся на геостационарной орбите, является задержка сигнала, вызванная расстоянием, которое он вынужден проделывать.

Минимальное расстояние до любого из геостационарных спутников составляет 35790 км. И это лишь в том случае, если пользователь находится непосредственно под спутником, и сигнал попадает к нему по кратчайшему пути. В действительности же пользователь вряд ли будет находиться точно в данной точке, а стало быть расстояние, которое вынужден будет проделать сигнал, в реальности гораздо больше.

Исходя из длины кратчайшего расстояния от наземной станции до спутника, расчётное минимальное время движения сигнала в одну сторону – то есть, с Земли на спутник или со спутника на Землю – составляет примерно 120 миллисекунд. А это значит, что время полного маршрута сигнала – с Земли на спутник и со спутника назад на Землю – составляет примерно четверть секунды.

Таким образом, для того, чтобы получить ответ в процессе диалога, проходящего через спутник, требуется полсекунды, поскольку сигнал должен пройти через спутник дважды: один раз – в движении в направлении удалённого слушателя, а второй раз назад – с ответом. Эта задержка усложняет телефонные разговоры, для проведения которых используется спутниковый канал связи. Репортёру, получившему вопрос из студии вещания, требуется некоторое время на то, чтобы ответить. Наличие такого эффекта задержки стало причиной того, что многие линии дальней связи используют кабельные каналы вместо спутниковых, ибо задержки в кабеле намного меньшие.

Преимущества и недостатки спутников,
расположенных на геостационарной орбите

Несмотря на то, что геостационарная орбита широко используется на практике для развёртывания различных технологий, она всё же подходит не для всех ситуаций. Размышляя над возможным использованием данной орбиты следует учесть целый ряд её преимуществ и недостатков:

Преимущества Недостатки
  • Спутник постоянно находится в одной точке относительно Земли – соответственно, не требуется перенаправление антенн
  • Сигнал проделывает большее расстояние, а стало быть, наблюдаются большие, в сравнении с LEO или MEO, потери.
  • Стоимость доставки и размещения спутника на GEO-орбиту выше – в силу большей высоты над Землёй.
  • Длинное расстояние от Земли до спутника приводит к задержкам сигнала.
  • Геостационарная спутниковая орбита может пролегать исключительно над экватором, в связи с чем отсутствует покрытие полярных широт.

Однако, несмотря на все имеющиеся недостатки геостационарной орбиты, спутники, расположенные на ней, широко используются во всём мире благодаря главному их преимуществу, которое способно перевесить все недостатки: геостационарный спутник всегда находится в одной орбитальной позиции относительно той или иной точки на Земле.

Геостационарная орбита с нулевым наклонением и высотой в 35756 км и по сегодняшний день остаётся стратегически важной орбитой для искусственных спутников Земли. Размещенные на этой орбите спутники обращаются вокруг центра Земли с той же угловой скоростью, как и земная поверхность. Благодарю этому, для спутниковых антенн отсутствует необходимость слежения за геостационарными спутниками - геостационарный спутник для определенного места поверхности Земли всегда расположен в одной точке неба.



Пример группировки российских геостационарных спутников связи в 2005 году:

Но проверка последнего графика с помощью сайта Гюнтера показывает, что в 2017 году было запущено не более 40 геостационарных спутников, даже если в это число включать запуски спутников на ГПО (геопереходную орбиту) и орбиты типа Молния (Космос-2518 ). В связи с этим разночтением я попытался самостоятельно оценить динамику ежегодных запусков на геостационарную орбиту и динамику изменения общей массы запускаемых геостационарных спутников с помощью того же сайта Гюнтера.

Большинство геостационарных спутников запускаются на геопереходные орбиты (ГПО) , и затем уже осуществляют с помощью собственных двигателей подъем перигелия и выход на геостационарную орбиту. Это вызвано стремлением минимизировать засорение стратегически важной геостационарной орбиты (разгонные блоки РН на ГПО сгорают гораздо быстрее, чем на ГСО из-за низкого перигелия орбит). В связи с этим чаще всего указывается стартовая масса геостационарных спутников при первоначальном выводе на ГПО. Поэтому я решил подсчитывать массу геостационарных спутников на ГПО, а так же включать в расчет спутники, которые были изначально предназначены для работы на ГПО или других эллиптических орбитах, находящихся между низкими и геостационарными орбитами (в основном это орбиты типа Молния). С другой стороны в некоторых случаях осуществляется прямой вывод спутников на геостационарную орбиту (к примеру, в случае советских, российских и американских военных спутников), кроме того для военных спутников масса часто просто неизвестна (в этом случае приходится указывать верхний предел возможностей РН при запусках на ГПО). В связи с этим расчеты являются лишь предварительными. На данный момент удалось обработать 35 годов из 60 лет космической эры, и имеет место следующая ситуация по годам:

1) По выводимой массе на ГПО и Молния орбиты в 2017 году действительно был установлен новый рекорд (192 тонны):

2) По количеству запускаемых аппаратов на эти типы орбит особого роста не наблюдается (черная линия - это линия тренда):

3) Похожая ситуация наблюдается и с количеством запусков:

В целом наблюдается тенденция стабильного увеличения грузопотока на высокоэллиптические высокие орбиты. Средние значения по десятилетиям:

По средней площади космических объектов (cumulative cross sectional area , измеряется в квадратных метрах) геостационарные спутники ещё больше превосходят низкоорбитальные аппараты (даже если учитывать разгонные блоки - RB ):

Вероятно, это связано с большим количеством разворачиваемых конструкций у геостационарных спутников (антенн, солнечных батарей и батарей терморегуляции).

С годами непрерывно растет и количество работающих спутников на геостационарной орбите. Только в нынешнем десятилетии их число выросло с четырех до пяти сотен:

Согласно базе данных действующих спутников в настоящее время старейшим действующим спутником на ГСО является спутник-ретранслятор TDRS-3 , запущенный в 1988 году. Всего сейчас на ГСО работают 40 аппаратов, чей возраст превысил 20 лет:

Общее число геостационарных спутников с учетом орбит захоронения уже превышает тысячу аппаратов (при минимальном количестве разгонных блоков (RB ) ракет на этих орбитах):

Примеры геостационарных группировок спутников:

Растущая переполненность геостационарной орбиты приводит к продолжению тенденции утяжеления геостационарных спутников. Если первые ГСО спутники весили всего 68 кг, то в 2017 году Китай попытался запустить 7.6-тонный аппарат . Очевидно, что растущая переполненность геостационарной орбиты приведет в будущем к созданию там крупных геостационарных платформ с элементами многоразового использования. Вероятно, подобные платформы будут решать сразу несколько задач: связь и наблюдение за поверхностью Земли для метеорологии, оборонных нужд и так далее.


Геостационарный спутник связи массой в 7.6 тонн, созданный на базе новой китайской платформы DFH-5

Точка стояния

,

где - масса спутника, - масса Земли в килограммах , - гравитационная постоянная , а - расстояние в метрах от спутника до центра Земли или, в данном случае, радиус орбиты.

Величина центробежной силы равна:

,

где - центростремительное ускорение, возникающее при круговом движении по орбите.

Как можно видеть, масса спутника присутствует как множитель в выражениях для центробежной силы и для гравитационной силы, то есть высота орбиты не зависит от массы спутника, что справедливо для любых орбит и является следствием равенства гравитационной и инертной массы . Следовательно, геостационарная орбита определяется лишь высотой, при которых центробежная сила будет равна по модулю и противоположна по направлению гравитационной силе, создаваемой притяжением Земли на данной высоте.

Центростремительное ускорение равно:

,

где - угловая скорость вращения спутника, в радианах в секунду.

Сделаем одно важное уточнение. В действительности, центростремительное ускорение имеет физический смысл только в инерциальной системе отсчета, в то время как центробежная сила является так называемой мнимой силой и имеет место исключительно в системах отсчета (координат), которые связаны с вращающимися телами. Центростремительная сила (в данном случае - сила гравитации) вызывает центростремительное ускорение. По модулю центростремительное ускорение в инерциальной системе отсчета равно центробежному в системе отсчета, связанной в нашем случае со спутником. Поэтому далее, с учетом сделанного замечания, мы можем употреблять термин «центростремительное ускорение» вместе с термином «центробежная сила».

Уравнивая выражения для гравитационной и центробежной сил с подстановкой центростремительного ускорения, получаем:

.

Сокращая , переводя влево, а вправо, получаем:

.

Можно записать это выражение иначе, заменив на - геоцентрическую гравитационную постоянную:

Угловая скорость вычисляется делением угла, пройденного за один оборот ( радиан) на период обращения (время, за которое совершается один полный оборот по орбите: один сидерический день , или 86 164 секунды). Получаем:

рад/с

Полученный радиус орбиты составляет 42 164 км. Вычитая экваториальный радиус Земли, 6 378 км, получаем высоту 35 786 км.

Можно сделать вычисления и иначе. Высота геостационарной орбиты - это такое удаление от центра Земли, где угловая скорость спутника, совпадающая с угловой скоростью вращения Земли, порождает орбитальную (линейную) скорость, равную первой космической скорости (для обеспечения круговой орбиты) на данной высоте.

Линейная скорость спутника, движущегося с угловой скоростью на расстоянии от центра вращения равна

Первая космическая скорость на расстоянии от объекта массой равна

Приравняв правые части уравнений друг другу, приходим к полученному ранее выражению радиуса ГСО:

Орбитальная скорость

Скорость движения по геостационарной орбите вычисляется умножением угловой скорости на радиус орбиты:

км/с

Это примерно в 2.5 раза меньше, чем первая космическая скорость равная 8 км/с на околоземной орбите (с радиусом 6400 км). Так как квадрат скорости для круговой орбиты обратно пропорционален её радиусу,

то уменьшение скорости по отношению к первой космической достигается увеличением радиуса орбиты более чем в 6 раз.

Длина орбиты

Длина геостационарной орбиты: . При радиусе орбиты 42 164 км получаем длину орбиты 264 924 км.

Длина орбиты крайне важна для вычисления «точек стояния» спутников.

Удержание спутника в орбитальной позиции на геостационарной орбите

Спутник, обращающийся на геостационарной орбите, находится под воздействием ряда сил (возмущений), изменяющих параметры этой орбиты. В частности, к таким возмущениям относятся гравитационные лунно-солнечные возмущения, влияние неоднородности гравитационного поля Земли, эллиптичность экватора и т. д. Деградация орбиты выражается в двух основных явлениях:

1) Спутник смещается вдоль орбиты от своей первоначальной орбитальной позиции в сторону одной из четырех точек стабильного равновесия, т. н. «потенциальных ям геостационарной орбиты» (их долготы 75,3°E, 104,7°W, 165,3°E, и 14,7°W) над экватором Земли;

2) Наклонение орбиты к экватору увеличивается (от первоначального 0) со скоростью порядка 0,85 градусов в год и достигает максимального значения 15 градусов за 26,5 лет.

Для компенсации этих возмущений и удержания спутника в назначенной точке стояния спутник оснащается двигательной установкой (химической или электроракетной). Периодическими включениями двигателей малой тяги (коррекция «север-юг» для компенсации роста наклонения орбиты и «запад-восток» для компенсации дрейфа вдоль орбиты) спутник удерживается в назначенной точке стояния. Такие включения производятся по нескольку раз в несколько (10-15) суток. Существенно, что для коррекции «север-юг» требуется значительно большее приращение характеристической скорости (около 45-50 м/с в год), чем для долготной коррекции (около 2 м/с в год). Для обеспечения коррекции орбиты спутника на протяжении всего срока его эксплуатации (12-15 лет для современных телевизионных спутников) требуется значительный запас топлива на борту (сотни килограммов, в случае применения химического двигателя). Химический ракетный двигатель спутника имеет вытеснительную подачу топлива (газ наддува-гелий), работает на долгохранимых высококипящих компонентах (обычно несимметричный диметилгидразин и диазотный тетраоксид). На ряде спутников устанавливаются плазменные двигатели. Их тяга существенно меньше по отношению к химическим, однако большая эффективность позволяет (за счет продолжительной работы, измеряемой десятками минут для единичного маневра) радикально снизить потребную массу топлива на борту. Выбор типа двигательной установки определяется конкретными техническими особенностями аппарата.

Эта же двигательная установка используется, при необходимости, для маневра перевода спутника в другую орбитальную позицию. В некоторых случаях - как правило, в конце срока эксплуатации спутника, для сокращения расхода топлива коррекция орбиты «север-юг» прекращается, а остаток топлива используется только для коррекции «запад-восток».

Запас топлива является основным лимитирующим фактором срока службы спутника на геостационарной орбите.

Недостатки геостационарной орбиты

Задержка сигнала

Связь через геостационарные спутники характеризуется большими задержками в распространении сигнала. При высоте орбиты 35 786 км и скорости света около 300 000 км/с ход луча «Земля-спутник» требует около 0,12 с. Ход луча «Земля (передатчик) → спутник → Земля (приемник)» ≈0,24 с. Ping (ответ) составит полсекунды (точнее 0,48 с). С учетом задержки сигнала в аппаратуре ИСЗ и аппаратуре наземных служб общая задержка сигнала на маршруте «Земля → спутник → Земля» может достигать 2-4 секунд . Такая задержка делает невозможной применение спутниковой связи с использованием ГСО в различных сервисах реального времени (например в онлайн-играх) .

Невидимость ГСО с высоких широт

Так как геостационарная орбита не видна с высоких широт (приблизительно от 81° до полюсов), а на широтах выше 75° наблюдается очень низко над горизонтом (в реальных условиях, спутники просто скрываются выступающими объектами и рельефом местности) и виден лишь небольшой участок орбиты (см. таблицу ), то невозможна связь и телетрансляция с использованием ГСО в высокоширотных районах Крайнего Севера (Арктики) и Антарктиды . К примеру, американские полярники на станции Амундсен-Скотт для связи с внешним миром (телефония, интернет) используют оптоволоконный кабель длиной 1670 километров до расположеной на 75° ю.ш. французской станции Конкордия , с которой уже видно несколько американских геостационарных спутников .

Таблица наблюдаемого сектора геостационарной орбиты в зависимости от широты места
Все данные приведены в градусах и их долях.

Широта
местности
Видимый сектор орбиты
Теоретический
сектор
Реальный
(с уч. рельефа)
сектор
90 -- --
82 -- --
81 29,7 --
80 58,9 --
79 75,2 --
78 86,7 26,2
75 108,5 77
60 144,8 132,2
50 152,8 143,3
40 157,2 149,3
20 161,5 155,1
0 162,6 156,6

Из вышележащей таблицы видно например, что если на широте С.-Петербурга (~60°) видимый сектор орбиты (и соответственно кол-во принимаемых спутников) равен 84 % от максимально возможного (на экваторе), то на широте по-ва Таймыр (~75°) видимый сектор составляет 49 %, а на широте Шпицбергена и мыса Челюскина (~78°) лишь 16 % от наблюдаемого на экваторе. В этот сектор орбиты в районе Сибири попадает 1-2 спутника (не всегда необходимой страны).

Солнечная интерференция

Одним из самых неприятных недостатков геостационарной орбиты, является уменьшение и полное отсутствие сигнала в ситуации, когда солнце и спутник-передатчик находятся на одной линии с приёмной антенной (положение «солнце за спутником»). Данное явление присуще и другим орбитам, но именно на геостационарной, когда спутник «неподвижен» на небе, проявляется особенно ярко. В средних широтах северного полушария солнечная интерференция проявляется в периоды с 22 февраля по 11 марта и с 3 по 21 октября, с максимальной длительностью до десяти минут . В ясную погоду, сфокусированые светлым покрытием антенны солнечные лучи могут повредить (расплавить) приёмо-передающую аппаратуру спутниковой антенны .

См. также

  • Квази-геостационарная орбита

Примечания

  1. Noordung Hermann The Problem With Space Travel. - DIANE Publishing, 1995. - P. 72. - ISBN 978-0788118494
  2. Extra-Terrestrial Relays - Can Rocket Stations Give Worldwide Radio Coverage? (англ.) (pdf). Arthur C. Clark (October 1945). Архивировано
  3. Требование неподвижности спутников относительно Земли на своих орбитальных позициях на геостационарной орбите, а также большое количество спутников на этой орбите в разных её точках, приводят к интересному эффекту при наблюдении и фотографировании звёзд с помощью телескопа с использованием гидирования - удержания ориентации телескопа на заданной точке звёздного неба для компенсации суточного вращения Земли (задача, обратная геостационарной радиосвязи). Если наблюдать в такой телескоп звёздное небо вблизи небесного экватора , где проходит геостационарная орбита, то при определённых условиях можно видеть, как спутники друг за другом проходят на фоне неподвижных звёзд в пределах узкого коридора, как автомобили по оживлённой автотрассе. Особенно хорошо это заметно на фотографиях звёзд с длительными экспозициями, смотри, например: Babak A. Tafreshi. GeoStationary HighWay. (англ.) . The World At Night (TWAN). Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010. Источник: Бабак Тафреши (Ночной мир). Геостационарная магистраль. (рус.) . Астронет.ру. Архивировано из первоисточника 23 августа 2011. Проверено 25 февраля 2010.
  4. для орбит спутников, масса которых пренебрежимо мала по сравнению с массой притягивающего его астрономического объекта
  5. Орбиты искусственных спутников Земли. Вывод спутников на орбиту
  6. The Teledesic Network: Using Low-Earth-Orbit Satellites to Provide Broadband, Wireless, Real-Time Internet Access Worldwide
  7. Журнал «Вокруг Света».№ 9 Сентябрь 2009. Орбиты, которые мы выбираем
  8. Мозаика. Часть II
  9. взято превышение спутником горизонта в 3°
  10. Внимание! Настаёт период активной солнечной интерференции!
  11. Солнечная интерференция

Ссылки

Похожие статьи