Двухдиапазонная J-антенна на высокочастотные KB диапазоны. Полуволновые антенны с резонаторным питанием Подключение j антенны на диапазон 145 мгц

21.01.2022

Поговорим о двух разновидностях антенн. Обе состоят в некоем родстве, авторы сочли логичным обсудить конструкции в одном обзоре. Речь пойдет о j-pole и антенне Франклина. Рассмотрим внешний вид, предпосылки для выбора, нюансы реализации предпочтенной концепции. Разберёмся, как сделать антенну, постараемся преподнести материал, собранный из многочисленных источников, с комментариями.

Уже писали про упомянутые разновидности антенн. J – исторический предок Франклина, хотя дату изобретения в точности источники не приводят. Указанный тип антенны изобретен немцами – не исключено, фашистами. Известно, что нынешнюю форму конструкция приобрела в 1943 году, изначально создавалась для военных дирижаблей. Именовалась Zeppelin. J – сокращение от длинного слова. Кстати, российским читателям со специализированных форумов, факт генезиса аббревиатуры прекрасно известен, знатоки называют J-антенны дирижаблями.

Смысл устройства: в нижней части вибратора длиною 5/8 волны (точный расчет смотрите ниже) идет согласующая линия. Распределение токов по J-антенне таково, что сопротивление меняется от:

  • десятков тысяч Ом в верхней части, где разрыв;
  • до нуля в нижней части, где линия замыкается на вибратор.

За счет перемены создаются предпосылки для достижения точного согласования. Если для распространенных среди обывателей антенн приходится изготавливать четвертьволновые трансформаторы, то J соединится со шлейфом напрямую – с навыками настройки изделия. Люди опытные говорят, что лучше пользоваться КСВ-метром, как делают радиоинженеры. Ротхаммель упоминает об использовании для аналогичных целей низковольтного светодиода либо лампочки. Указанное устройство подключается параллельно ненагруженному шлейфу. В идеальной точке подключения свечение ярче, нежели в прочих местах.

До согласования антенну следует возбудить произвольным передатчиком через эфир. Напоминаем, что в радиовещании принята вертикальная поляризация, антенну располагайте должным образом (отвесно). Для согласования достаточен короткий отрезок шлейфа в пределах метра, на конец которого уже подключайте лампочку. Смотрится логично, но Ротхаммель тоже умный малый, не беремся перечить.

Настройка J-антенны ведется сравнительно простым образом, согласно указанным постулатам Ротхаммеля.

Поговорим о внешнем виде антенны и параметрах. Представьте букву U с прямыми углами либо перевернутую букву П. Высота составляет 21502/f см, где f – частота в МГц. Для 300 МГц получается 72 см. Теперь одну ножку срежем до длины 7132/f см, получается примерно четверть волны. Антенна готова. Осталось правильно запитать кабелем. На 671/f см от верхней грани нижней горизонтальной перемычки припаиваем кабель питания жилой на вибратор, экраном на четвертьволновый отрезок. Про выбор места говорили ранее. Каково сопротивление для указанных условий?

J-антенна разработана для связи, поляризация вертикальная. Следовательно, шлейф имеет сопротивление 50 Ом. Получается, что для телевизора антенну следует развернуть горизонтально, пайку вести чуть выше. Как искать точное место стыковки, уже обсудили. Теперь о конструкции.

Оба штыря делаются по традиции из медной трубки. Расстояние в 640/f см дается между ближайшими гранями. Измерения ведите штангенциркулем. Материал для изготовления антенны собственноручно: трубки из тормозной системы авто, старые кондиционеры и холодильники и проч. Допустимо вести пайку, обжимать муфтами, гнуть, паять. Обратите внимание на два момента:

  1. Не всегда J-антенна работает в точности, как задумано. Порой хочется чуть изменить частоту. Это актуально для каналов WiFi модемов и роутеров. Для этого франкоязычный канадец с индийскими корнями Питю Наги предлагает каждый из двух штырей оборудовать подстроечными элементами. Что касается короткой линии, на вершине трубки монтируется гайка, куда вкручивается стопорный болт. От силы вкручивания элемента зависят характеристики антенны. На конце вибратора гайка ставится в стенку трубки. Из окончания вытягивается изрядный кусок стальной упругой проволоки. Этим изменяется частота. В месте стыковки проволоки (наподобие телескопической конструкции) возникает отражение сигнала. Потому трубку разорвем небольшим отрезком плотного пластика, оборванные концы соединим линией из прежней трубки половины длины волны. Получится согласующее устройство, своеобразный мостик к антенне Франклина.
  2. У J-антенны несомненный плюс, помимо указанных для работы на крыше дома. Нижнюю часть заземлите, получится отличный громоотвод. Это не влияет на работу оборудования, зато защитит домашний приемник от грозы. Ловлю каналов возможно не прерывать на время непогоды.
  3. Учтите, что медь в условиях попадания влаги агрессивна по отношению к прочим металлам. Возникнет электрохимическая коррозия. Только оцинкованная сталь противостоит медному натиску. Возьмите на заметку при выборе крепежа.

Сделать антенну самостоятельно по указанной схеме сумеет большинство читателей, согласование ведется относительно простыми методами. Остался вопрос с толщиной трубки, но он не акцентируется в литературе, а подстроечные элементы помогут получить максимальный эффект. Разумеется, нужен сильный источник волны, чтобы провести согласования. Причём не получится использовать вольтметр вместо лампочки, частота относительно высокая. Полагаем, что истинные радиолюбители соберут подстроечный прибор собственными руками из усилителя, выпрямителя и любого индикатора, включая китайские мультиметры.

Усиление J-антенны лучше полуволнового вибратора, по утверждениям очевидцев.

Франклин работал на Маркони, не был президентом США. Однако изобретений в начале 20-го века выдал немало. Среди прочего – подстроечный конденсатор. В 1924 году изобрел знаменитую антенну, по которой сегодня строятся китайские штыри для WiFi. Отличие: равноплечая конструкция лишилась одной половины, а согласующие шлейфы загнулись в катушки. Подобную конструирует ZikValera в выложенном видео. Пример расчета приведен в первом томе Ротхаммеля на странице 232.

Представьте волновой вибратор, с концами, увенчанными двумя согласующими шлейфами, каждый по половине волны. Устройство оканчивается еще одним разорванным вибратором, с плечами, в сумме равными длине волны. В результате получается антенна Франклина, сигнал с устройства снимается по центральной линии, а сопротивление излучения зависит от точки входа шлейфа. Для понимания привели скромный рисунок, где показана антенна Франклина.

Полагаем, что из указанного изображения уже понятно, как согнуть из проволоки нужную форму. Размеры велики, целесообразно антенны Франклина использовать в диапазоне ДМВ и выше, хотя в сети полно конструкций на гораздо более низкие частоты. Приготовьтесь отрядить специальный столб во дворе под конструкцию, либо создать распорки приличной длины на крыше.

У антенны Франклина хорошее усиление (благо, размер немалый) 3,2 дБ. Для указанной на рисунке конструкции в точке подвода шлейфа посередине сопротивление излучения составит 300 Ом. Если добавить по вибратору с каждой стороны, станет 500 Ом. Усиление превысит 5 дБ. Добавим, что ширина линии согласования некритична. К примеру, 7 мм на длине волны 32 см.

Отметим два недостатка конструкции:

  1. Питание нужно вести в идеале двухпроводной линией, хотя любители паяют кабель, как показано на рисунке. Никто не жалуется.
  2. Начиная делать антенну собственноручно, убедитесь, что сумеете точно выравнять плечи. Они лежат чётко по одной линии, согласующие участки возможно чуть гнуть (китайцы вообще делают катушки, учитывая индуктивность при изготовлении антенны).

Расчет антенны Франклина не считается простым делом, в исходном виде не всегда получается использовать указанный тип устройств. Рекомендуется копировать китайские модели, измерить которые поможет штангенциркуль. В этом случае самодельная антенна гарантированно показывает хорошие характеристики. Даже на форумах коллинеарные линии не изучены толком. Это явно не лучший путь сделать простую антенну.

Публикация посвящается светлой памяти ушедшего от нас авдеевского радиолюбителя Николая US5IMU, который в свое время любезно предоставил автору этих строк материал для изготовления данной антенны.

В последнее время ситуация на рынке радиолюбительских радиостанций УКВ изменилась в лучшую, для нас, радиолюбителей, сторону. Сегодня FM радиостанция на 2-метровый диапазон стала доступна каждому. Ввиду этого стоит вопрос, какую антенну выбрать радиолюбителю, который впервые осваивает этот интересный диапазон? Ответов можно услышать много, но сегодня мы остановимся на всенаправленной штыревой антенне, внешний вид которой напоминает английскую букву J. Это антенна для начинающего, для дачи, для местных связей на УКВ.

Физику работы этой антенны подробно рассматривать не будем. Кто желает, может ознакомиться с ней в . Лишь отметим, что согласование антенны с линией передачи осуществляется с помощью четвертьволнового шлейфа, который эквивалентен катушке индуктивности и емкости.

Итак, переходим к практической части. Схематический вид антенны изображен на рисунке 1.

Рис. 1. Схематическое изображение J-антенны.

Используя формулы, приведенные на рисунке 1, или воспользовавшись готовым калькулятором в получим размеры антенны A, B, C и D.

Для частоты 145,5 МГц:

A = 148.29 (см)

B = 49.19 (см)

C = 4.63 (см) (для Rфидера=50 Ом)

Материал - медь или алюминий, трубка или проволока. Что есть под рукой. Мною был использован алюминиевый провод круглого сечения диаметром 9 мм. Единственно, нужно помнить о коэффициенте укорочения k, который связывает электрическую длину полотна антенны с ее геометрической длиной. Чем больше толщина проводника, тем больше это различие. Для того, чтобы не прогадать с длиной антенны, рекомендуется сделать размер B немного больше, а затем откусить лишнее в процессе настройки.

Настройка антенны производилась по КСВ метру. В моем случае использовался КСВ метр RS-40, изображенный на рисунке 2.

Рис. 2. Показания КСВ метра в режиме передачи.

Центральную жилу кабеля присоединяем на крокодилах к длинному элементу (A), а оплетку к короткому (B). И начинаем попеременно включать на передачу, смотря на КСВ метр и двигать крокодилы, добиваясь минимума КСВ на рабочей частоте. Включили, посмотрели на КСВ метр, выключили, передвинули крокодилы. В районе 4-6 сантиметров от перемычки должен быть минимум КСВ. Если не удается добиться КСВ близкий к 1,1-1,2, то стоит поиграться длиной B, откусывая по нескольку миллиметров. Во время измерений антенну рекомендуется положить между двумя спинками стульев, подальше от пола, окружающих предметов, и тем более металла.

После настройки, зажать кабель на болты с хомутами, проверить, не сбилась ли настройка, а затем залить контакты автомобильным или сантехническим герметиком.

Спустя несколько сантиметров от точки подключения рекомендуют намотать фильтр, представляющий собой 4-5 витков этого же кабеля на каркасе, к примеру, от 10 кубового шприца. Это несколько уменьшит затекание ВЧ токов на оплетку кабеля и снизит возможные помехи ТВ.

Кабель можно использовать любой 50-омный. В моем случае это маленький кусок метра 3-4 тонкого RG-58U от точки подключения антенна до балкона, а дальше через разъем около 25 метров толстого RG-8. Замечу, что чем толще кабель, тем, как правило, меньше его коэффициент затухания. Чем тоньше - тем потери полезного сигнала больше. С длиной кабеля подобная ситуация, чем длиннее кабель от антенны до трансивера, тем больше будут потери полезного сигнала. Другими словами, для минимизации потерь в кабеле стараемся придерживаться правила « чем кабель толще и короче, тем лучше».

Фотография моей антенны изображена на рисунке 3. Стоит уже второй год, пережила все ураганы, порывы и обледенения.

Рис. 3. Внешний вид j-антенны на мачте 5 этажного дома. Фотографировалось снизу.

Литература.

1. Карл Ротхаммель: Антенны. Том 2. Издание 11. Издательство Лайт ЛТД., 2007 г., стр. 103.

Александр US6IGL

Эксклюзивно для журнала РАДОН

Позвонил один из радиолюбителей по соседству (наша же область) и спросил почему он не слышит Оскар -7, хотя по расчётам тот пролетал прямо над Гончаровским. Поскольку вопрос возник не впервые, думаю надо будет повториться. Хороший обзор по причинам GUHOR я давал на Хаммании . Думаю что дублировать этот материал не нужно, и поэтому отвечу по этой конкретной ситуации. Здесь несколько логических "И" приведших к тому что он не услышит спутник пожалуй и впредь.

  • Гоша пришелец;-)

    Читая какого-либо автора иногда трудно себе представить его. Например в юности я читал много Александра Грина, который на самом деле много чего написал кроме "Алых парусов". Но когда увидел его портрет не поверил своим глазам. Исключение, пожалуй только Маяковский, как пишет, так и выглядит. Чтоб никто не сомневался как выглядит Гоша радист, Саша Литвиненко UR5RP прислал фото. "Гоша радист пишет на сайт". А кто не поверил моему хорошему прогнозу ВЧ диапазонов на эти три дня - сам виноват: только за последние пол-часа в телеграфе Ямайка, Лесото, Сенегал и Доминикана. В RTTY Того, чего ранее не имел.

  • OQRS: QSL из интернета

    Я уже писал ранее про то, как получить карточку через интернет. Способ прижился и теперь почти все DX педиции запускают эту службу, потому что она упрощает и удешевляет обмен для обоих сторон. Для тех, кому трудно разобраться в английских терминах и сокращениях я "расшифрую" описание как надо это делать. Ну для начала надо иметь перед глазами все данные за связи с данной экспедицией. В моём случае это будет 7О6Т. Для этого идём стандартным путём начинаем с QRZ.COM, переходим далее по ссылкам пока не увидим картинку оnline check ваших QSO. Внизу есть кнопочка REQUEST QSL. На неё и жмём.

    Теперь работа потруднее: В левой колонке начальные сведения про связи,

  • SDR и LAN

    Понятно, что жизнь без проводов - лучше. Я говорю про Wi-Fi и проч. беспроводные технологии. А вот еще один плюс. Первый УКВ SDR у меня был запаян в металлической коробочке, с хорошим экранированным антенным вводом, (кто помнит фото ранее). А сейчас у меня тюнер в родном корпусе (фото двумя постами ниже), прорезиненный, с удобным разъёмом-защелкой вместо резьбы или байонета. Работает хорошо, но вот надумал я посмотреть по своему новому ящику 3D кино. Фильм, конечно, лежит на ноутбуке, телевизор его читает Wi-Fi. Но притормаживает время от времени. Я решил, что тормозит из-за радиопомех Wi-Fi, больно эпизодическим было торможение, редко, тоесть. Включил обычный LAN роутер, воткнул эзернет кабель и ужаснулся: мой SDR приёмник "заткнулся".

  • SDR панорама в УКВ трансиверах

    Сергей UA0ADX


    Работая через спутники, в частности SSB и CW, столкнулся с проблемой: орбита короткая, участок диапазона довольно широкий. Бывает и корреспондентов много, но не всегда их найдешь, работая на поиск. То на прием перейдут и ты пробежишь мимо, то работаешь на общий вызов и никого не слышишь, кто работает ниже или выше. Спутник пролетает быстро, бывает и без результата. Данное обстоятельство и заставило меня задуматься об СДР панораме. Первым делом надо было приобрести СДР приемник. Выбор пал на самый бюджетный из продвинутых)) - SDRplay RSP-1, есть еще несколько неплохих RTL SDR, о которых я узнал к сожалению уже после приобретения RSP-1. Далее надо было придумать как его "подцепить" к той же антенне или антеннам, на которых соответственно работаю, чтобы видеть реальную картину, при этом избежать всяких коммутаций, обходов и т.п, из-за ненадежности которых может выгореть не один девайс)).

  • SV2AGW Packet Engine

    Век живи, век учись! :-) Я только что узнал, что широко используемый эмулятор пакетных сетей и нодов на аудиокарточке может конвертировать сигналы с двухдиапазонных трансиверов на один логический конвертор. Я имею в виду KISS AGW от DK3WN. Немного вводной информации для тех, кто не так как я любит спутники. То что передают в строках телеметрии спутники наши Windowsы выводят на экран в виде допустимых экранных символов того или иного расклада (греческий, кирилица или латиница). Для того, чтобы эту информацию правильно распознать и на её основе вывести реальные данные телеметрии, полученные строки сначала надо привести к виду ASCII строк (файлов), а уже потом программы декодеры её "пережёвывают". Так вот в качестве модема для своего конвертора (как один из вариантов KISS AGW) DK3WN использует как раз SV2AGW sound modem. В его настройках можно использовать оба из стереоканалов вашей аудиокарточки.

  • Маяк на Ардуино часть 2

    Подключение модулей, как правило, осуществляется по пяти проводам: VCC - питание, GND - земля, CLK - тактовые импульсы, STR - строб и DATA (IO). На всех модулях есть обозначения пинов со стороны модуля, а пин со стороны Ардуино назначается в программе. Например датчик температуры не требует тактирования и его выход подключается к аналоговому входу А1. Часы, например, имеют данные к передаче, поэтому подключение пятипроводное. Назначенные пины можно найти в теле программы. То же самое с платой кнопок и дисплея. С простыми сигналами типа PTT, CW манипуляцией, подключением дополнительной антенны или включение дополнительного ветилятора достаточно только одного пина. Они тоже назначаются в программе и через оптопары подключаются к исполнительным устройствам: трансиверу, коммутатору, вентилятору и т.д. На схеме это всё прозрачно. Пин 10 Ардуино используется для подачи разрешения на "пищалку" и подключается непосредственно к BUZZER. Так как современные трансиверы все имеют самоконтроль в телеграфе, в этой модели он не включен. Но, если вы захотите включить, например, этот маяк в режиме FM, этот сигнал вам понадобиться.

  • Публикация посвящается светлой памяти ушедшего от нас авдеевского радиолюбителя Николая US5IMU, который в свое время любезно предоставил автору этих строк материал для изготовления данной антенны.

    В последнее время ситуация на рынке радиолюбительских радиостанций УКВ изменилась в лучшую, для нас, радиолюбителей, сторону. Сегодня FM радиостанция на 2-метровый диапазон стала доступна каждому. Ввиду этого стоит вопрос, какую антенну выбрать радиолюбителю, который впервые осваивает этот интересный диапазон? Ответов можно услышать много, но сегодня мы остановимся на всенаправленной штыревой антенне, внешний вид которой напоминает английскую букву J. Это антенна для начинающего, для дачи, для местных связей на УКВ.

    Физику работы этой антенны подробно рассматривать не будем. Кто желает, может ознакомиться с ней в . Лишь отметим, что согласование антенны с линией передачи осуществляется с помощью четвертьволнового шлейфа, который эквивалентен катушке индуктивности и емкости.

    Итак, переходим к практической части. Схематический вид антенны изображен на рисунке 1.

    Рис. 1. Схематическое изображение J-антенны.

    Используя формулы, приведенные на рисунке 1, или воспользовавшись готовым калькулятором в получим размеры антенны A, B, C и D.

    Для частоты 145,5 МГц:

    A = 148.29 (см)

    B = 49.19 (см)

    C = 4.63 (см) (для Rфидера=50 Ом)

    Материал - медь или алюминий, трубка или проволока. Что есть под рукой. Мною был использован алюминиевый провод круглого сечения диаметром 9 мм. Единственно, нужно помнить о коэффициенте укорочения k, который связывает электрическую длину полотна антенны с ее геометрической длиной. Чем больше толщина проводника, тем больше это различие. Для того, чтобы не прогадать с длиной антенны, рекомендуется сделать размер B немного больше, а затем откусить лишнее в процессе настройки.

    Настройка антенны производилась по КСВ метру. В моем случае использовался КСВ метр RS-40, изображенный на рисунке 2.

    Рис. 2. Показания КСВ метра в режиме передачи.

    Центральную жилу кабеля присоединяем на крокодилах к длинному элементу (A), а оплетку к короткому (B). И начинаем попеременно включать на передачу, смотря на КСВ метр и двигать крокодилы, добиваясь минимума КСВ на рабочей частоте. Включили, посмотрели на КСВ метр, выключили, передвинули крокодилы. В районе 4-6 сантиметров от перемычки должен быть минимум КСВ. Если не удается добиться КСВ близкий к 1,1-1,2, то стоит поиграться длиной B, откусывая по нескольку миллиметров. Во время измерений антенну рекомендуется положить между двумя спинками стульев, подальше от пола, окружающих предметов, и тем более металла.

    После настройки, зажать кабель на болты с хомутами, проверить, не сбилась ли настройка, а затем залить контакты автомобильным или сантехническим герметиком.

    Спустя несколько сантиметров от точки подключения рекомендуют намотать фильтр, представляющий собой 4-5 витков этого же кабеля на каркасе, к примеру, от 10 кубового шприца. Это несколько уменьшит затекание ВЧ токов на оплетку кабеля и снизит возможные помехи ТВ.

    Кабель можно использовать любой 50-омный. В моем случае это маленький кусок метра 3-4 тонкого RG-58U от точки подключения антенна до балкона, а дальше через разъем около 25 метров толстого RG-8. Замечу, что чем толще кабель, тем, как правило, меньше его коэффициент затухания. Чем тоньше - тем потери полезного сигнала больше. С длиной кабеля подобная ситуация, чем длиннее кабель от антенны до трансивера, тем больше будут потери полезного сигнала. Другими словами, для минимизации потерь в кабеле стараемся придерживаться правила « чем кабель толще и короче, тем лучше».

    Фотография моей антенны изображена на рисунке 3. Стоит уже второй год, пережила все ураганы, порывы и обледенения.

    Рис. 3. Внешний вид j-антенны на мачте 5 этажного дома. Фотографировалось снизу.

    Литература.

    1. Карл Ротхаммель: Антенны. Том 2. Издание 11. Издательство Лайт ЛТД., 2007 г., стр. 103.

    Александр US6IGL

    Эксклюзивно для журнала РАДОН

    Предлагаем несложный вариант двухдиапазонной KB J-антенны, испытанной на диапазонах 21 и 28 МГц. Авторам давно хотелось практически проверить такую антенну в работе. Виктор, UA6G, взял на себя разработку и выполнение механической конструкции, а Владимир, UA6HGW, сделал необходимые расчёты и провел настройку антенны.

    В KB и УКВ диапазонах широко используют различные вертикальные штыревые антенны. Причем чаще всего применяют четвертьволновые вертикальные вибраторы с системами противовесов или «искусственной земли», благодаря которым эти антенны и работают, будучи, в принципе, аналогами полуволнового вибратора. К сожалению, выполнить качественную систему «искусственной земли» или противовесов не так просто , а некачественная система резко снижает КПД антенны в целом. Тем не менее, антенны типа Ground Plane пользуются у радиолюбителей большой популярностью. При этом многие уделяют внимание лишь качественному выполнению самого четвертьволнового излучателя и, в связи с недостатком площади для размещения полноценной системы заземления», часто не обращают внимания на «землю», используя различные суррогатные системы противовесов либо заземления. Необходимо сделать оговорку, что в УКВ диапазоне такой проблемы практически не существует, т.к. основание антенны и противовесы можно поднять на достаточную высоту, что позволяет разместить систему, рассчитанную для работы даже на самых длинных метровых волнах.

    Если площади для размещения антенн других типов недостаточно, то для высокочастотного участка KB диапазона лучше использовать вертикальный полуволновой вибратор, питаемый с нижнего конца и установленный без растяжек. Для согласования его высокого сопротивления с низким сопротивлением фидера используют различные согласующие устройства - как резонансные, так и широкополосные. Один из наиболее известных и простых способов согласования - с помощью четвертьволнового трансформатора сопротивлений. Причем различают два способа питания с помощью такого трансформатора - последовательный и параллельный .

    При последовательном питании используется четвертьволновая линия, которая может быть выполнена в виде воздушной линии либо линии с твердым диэлектриком. Чаще для этого используют симметричные линии. Недостаток этого способа питания - необходимость установки на нижнем конце вибратора изолятора, что на KB диапазонах вызывает конструктивные трудности и снижает надежность конструкции.

    При параллельном питании нижний конец линии трансформатора, который иногда называют шлейфом, можно закорачивать с вибратором и заземлять, что конструктивно более удобно, т.к. позволяет отказаться от применения громоздкого опорного изолятора. Точки подключения фидера в этом случае выбирают выше, на заранее рассчитанном расстоянии от нижнего конца линии, которое потом уточняют в процессе настройки антенны по минимуму КСВ. Это несколько затрудняет настройку антенны и сужает полосу рабочих частот, а также требует применения дополнительных мер для снижения антенного эффекта фидера.

    В обоих случаях волновое сопротивление линии четвертьволнового трансформатора должно быть правильно рассчитано и одинаково на всем ее протяжении. Классической J-антенной чаще всего называют именно такую конструкцию. У нее длина основного вертикального элемента - излучатель плюс линия - составляет 3/4Lamda*К ,
    где К - коэффициент укорочения, зависящий от конфигурации и поперечных размеров этих элементов.

    Как показал опыт, эти размеры могут быть различными для разных участков излучателя и линии.

    Радиолюбители чаще всего используют J-антенны в диапазоне УКВ и высокочастотной части KB диапазона, где их конструкции, обладая необходимой прочностью, не слишком сложны и громоздки.

    Основной вертикальный элемент 1 (рис.1) - заземленная мачта, служащая также излучателем, выполнена из трех стальных труб разного диаметра, соединенных по телескопическому принципу. Трубы звеньев были точно подобраны по диаметрам так, чтобы они плотно входили друг в друга. Длина труб была выбрана с таким расчетом, чтобы конец одной заходил в другую на расстояние, достаточное для того, чтобы вся конструкция антенны прочно держалась и не качалась без растяжек. Поэтому точную длину всего вертикального элемента в сборе указать трудно, но она, по нашим расчетам, оказалась не менее 12 м. Нижняя труба - основание антенны длиной около 5 м и наружным диаметром 90 мм - была установлена на уровне земли на бетонном основании внутри небольшого помещения и выходила через отверстие в плоской железобетонной крыше 6, которая электрически соединена с контуром заземления. После сборки системы в узлах соединений трубы крепились с помощью двух винтов диаметром 10мм с гайками. Гайки были заранее надежно приварены к наружной поверхности на конце труб в плоскости, перпендикулярной плоскости расположения согласующих элементов 2. Винты 7 вкручивали в гайки, зажимая основание трубы следующего звена.

    Элементы 2 согласующих воздушных линий выполнены из стальной трубы диаметром 0,5 дюйма для диапазона 21 МГц и оцинкованного прутка диаметром около 8 мм для 28 МГц. В связи с тем, что элемент 1 и элементы 2 пришлось выполнить разного диаметра, некоторую сложность вызвал предварительный расчет размеров излучателей и воздушных линий, т.к. при такой конструкции коэффициенты укорочения К будут различными не только для разных диапазонов в соответствии с частотой, но и в связи с изменением соотношения диаметров труб. По этой причине для расчета было выбрано несколько различных приближенных практических формул. Они приведены в табл.1 вместе с результатами вычислений.

    По нашему мнению, в подобных случаях расстояние D лучше указывать для воздушного промежутка между элементами 1 и 2, меньше которого его делать не следует. Расстояние С предварительно взято 0.03Lamda. Практика показала, что точное значение можно определить лишь после настройки конкретной антенны на выбранные частоты.

    Первоначальный расчет антенны был сделан для работы в телеграфном участке диапазона 21 МГц. Все размеры для практического выполнения конструкции мы выбрали исходя из компромисса между реальными возможностями и расчетами, которые можно было корректировать, проверяя с помощью программы MMANA-GAL. Для обеспечения надежного электрического контакта с верхнего конца мачты к нижнему были проложены два медных проводника из антенного канатика в плоскости расположения согласующих элементов, которые дополнительно прикреплялись к каждому звену с помощью обычных плоских хомутиков, стягиваемых винтами с гайками. Чтобы не загружать рис.1, на нем условно показан только один из канатиков 3. На трубках согласующих линий также желательно закрепить дополнительные медные проводники из антенного канатика либо одножильного медного провода. При выборе таких конструктивных решений была учтена «склонность» некоторых граждан к «охоте» за цветным металлом, поэтому большинство основных элементов были выполнены из стали. Следует учесть, что при использовании разнородных металлов может возникнуть их коррозия, и как результат - увеличение шумов при приеме. Поэтому желательно использовать металлы, расположенные в гальваническом ряду как можно ближе друг к другу, или прибегнуть к дополнительным мерам (например, к облуживанию медных проводников свинцово-оловянным припоем и улучшению контактов с помощью пайки). Это относится даже к мелким элементам, используемым в конструкциях, - к болтам, шайбам, гайкам и т.п.

    В табл.2 приведена часть гальванического ряда наиболее часто используемых металлов.

    Другой особенностью конструкции является то, что элементы согласующих линий пришлось выполнить из стальной трубки и прутка меньшего диаметра, чем вибратор, т.е. не так, как рекомендуется в литературе. Поэтому расстояние между вибратором и согласующими вертикальными элементами 2 было выбрано компромиссное и оказалось несколько меньше расчетного, полученного с помощью программы MMANA. Это вызывало некоторые сомнения в возможности получения хорошего согласования с кабелем питания. В линиях установлены еще несколько важных элементов, которые не показаны на рис.1, чтобы не загружать его. Это пластины, установленные для прочности и фиксации воздушного промежутка между вибратором и согласующими линиями. Их нужно выполнить из изоляционного материала с хорошими изоляционными свойствами на высоких частотах, не теряющего их под воздействием влажности (например, из стеклотекстолита или оргстекла, по несколько штук для элемента 2 каждого диапазона). Причем нижние пластины можно объединить непосредственно с хомутиками 5, а верхние установить ближе к концам линий. Их положение можно изменять при настройке, фиксируя металлические хомутики на трубах винтами. С помощью хомутиков 5 можно регулировать точки подключения кабеля, центральная жила и оплетка которого должны быть надежно соединены с ними, лучше всего с помощью пайки. Для облегчения процесса настройки на согласующих звеньях также установлены подвижные хомутики 4, с помощью которых можно подбирать полную рабочую длину вибратора антенны и длину согласующих элементов. После окончательной настройки их желательно соединить с дополнительными медными проводниками 3.

    Сомнения вызывал вопрос выбора наилучшего варианта подключения центральной жилы кабеля и оплетки . В литературе трудно найти конкретный ответ, т.к. встречаются различные варианты, т.е. подключение к согласующим элементам либо к основному вибратору, что чаще используют в УКВ диапазоне. На удивление, практически выяснилось, что в данном случае хорошего согласования можно достичь, только подключив центральную жилу к элементам 2, а оплетку - к вибратору 1.

    Процесс предварительной настройки антенны оказался сложным, но, в итоге, успешным. Настройка осуществлялась с помощью прибора MFJ259. Затем ее результаты корректировались по показаниям КСВ-метра уже при достаточной мощности передатчика, и окончательно - при полной мощности в разных участках диапазонов.

    Так как в антенне используется параллельное питание, проявились все его недостатки. Два 50-омных кабеля фидеров 8 марки РК50-9-12 были проложены внутри основной мачты, для чего в ней пришлось сделать 4 отверстия необходимого диаметра. Этого оказалось недостаточно, и на выходе из мачты излишки кабелей пришлось свернуть в две отдельные бухты, что позволило уменьшить антенный эффект. Переключение антенны с одного диапазона на другой производилось без каких-либо переключателей, с помощью разъемов, что не исключает применение специальных коаксиальных переключателей, механических или на коаксиальных реле.

    Антенну первоначально изготовили и настроили в телеграфный участок диапазона 21 МГц. Как показала практика, вначале необходимо подобрать длину вибратора А1 и линии В1, настроив их на необходимую резонансную частоту с помощью подвижного хомутика-перемычки 4, который фиксируется винтами с гайками. Это лучше всего сделать, используя индикатор резонанса (ГИР) или анализатор антенн (например, MFJ259), если к нему имеются специальные дополнительные элементы, позволяющие осуществлять связь прибора с антенной без подключения к ней. Затем надо предварительно выбрать расстояние С1 - т.е. место подключения кабеля по минимуму КСВ на выбранной частоте, регулируя его хомутиками 5, и откорректировать настройку более точно, несколько раз повторив все указанные регулировки.

    После испытания антенны на этом диапазоне, убедившись, что она достаточно эффективна, мы добавили к ней элементы согласования для диапазона 28 МГц и настроили систему на этот диапазон тем же способом. После того как настроили антенну для этого диапазона, пришлось немного откорректировать согласование на 21 МГц и затем опять проверить настройку на 28 МГц. В процессе корректировки подстройку на разных диапазонах приходилось повторять несколько раз. При практической работе на диапазоне 28 МГц мы также неоднократно убеждались в высокой эффективности антенны, т.к. при небольшой мощности удавалось успешно проводить радиосвязи как с ближними, так и с дальними корреспондентами.

    На рис.2 и 3 показана зависимость КСВ от частоты, полученная в итоге настройки для диапазонов 21 и 28 МГц, а на рис.4 и 5 - диаграммы направленности, полученные в соответствии с расчетами для оптимальных вариантов J-антенны по программе MMANA.

    Необходимо отметить, что хорошей работе антенны, вероятно, способствовал и тот факт, что вблизи на значительном расстоянии не было никаких более высоких посторонних предметов, т.к. иногда ее хорошая работа даже удивляла тем, что дальние корреспонденты давали более высокие оценки сигнала по сравнению со станциями, работающими недалеко от нашего населенного пункта и использующими направленные антенны и более мощные передатчики.

    Подобную конструкцию, по нашему мнению, можно предложить и для других высокочастотных KB диапазонов, пересчитав антенну. Вероятно, к ней можно добавить верхнее звено, рассчитанное для работы на 144МГц. Примеры подобных комбинированных J-антенн в практике имеются.

    За время использования антенны на трансивере мощностью не более 100 Вт удалось провести большое количество дальних радиосвязей. Это подтвердило, что она не только эффективно работает при передаче, но и обеспечивает хороший дальний прием с низким уровнем помех. Конструкция оказалась прочной и надежной - антенна простояла уже более 5 лет и, несмотря на очень сложные, резко меняющиеся метеоусловия в нашем регионе, хорошо выдержала все испытания.

    Похожие статьи