Что позволяет реализовать последовательный протокол uart. Способы программной реализации работы UART. Особенности представления текстовой информации

26.04.2019

Большинство разработчиков встраиваемых систем знают, что такое UART: Universal Asynchronous Receiver/Transmitter (универсальный асинхронный приемник/передатчик). Это периферийное устройство микроконтроллера, преобразующее входящие и исходящие байты в последовательный поток данных. Стартовый бит инициирует начало передачи потока битов, а стоповый бит (или два) завершает слово данных. Кроме того, для выявления ошибок при передаче данных UART может вставлять в поток контрольный бит. На Рисунке 1 показан стандартный пример того, что ожидают увидеть инженеры при передаче данных через UART.

USART - Universal Synchronous/Asynchronous Receiver/Transmitter (универсальный синхронный /асинхронный приемник/передатчик) - ‘это периферийное устройство микроконтроллера, преобразующее входящие и исходящие байты в последовательный поток данных. Хм. Определение USART ничем не отличается от UART, за исключением одного добавленного слова «синхронный». Но должны же быть какие-то более значимые различия? Иначе USART был бы известен просто как UART.

Да, различия есть, причем весьма существенные. Первое отличие USART от UART определяется тем, каким образом могут синхронизироваться последовательные данные. Сигналы тактирования UART генерируются внутри микроконтроллера и синхронизируются с потоком данных по переходу стартового бита. Каких-либо входящих синхросигналов, связанных с данными, здесь нет, поэтому для правильной обработки принимаемых данных приемник должен заранее знать, какой будет скорость передачи.

Напротив, USART может быть настроен для работы в синхронном режиме. В этом режиме отправляющая данные периферия генерирует сигнал синхронизации, который периферией приемной стороны может быть извлечен из потока данных без априорной информации о скорости передачи. Возможен и другой вариант, когда для сигнала синхронизации выделяется отдельная линия. Использование внешнего сигнала синхронизации позволяет USART работать на скоростях до 4 Мбит/с - недостижимых для стандартных UART.

Другое важное отличие USART от UART заключается в количестве поддерживаемых периферийных протоколов. UART прост, и может предложить лишь небольшие вариации базового формата - количество стоповых бит и способ контроля ошибок (по четности или нечетности). USART намного сложнее и способен формировать потоки данных, совместимые со многими стандартными протоколами; IrDA, LIN, Smart Card, Driver Enable для RS-485 и Modbus - лишь несколько из них. При этом USART может, как и UART, работать в асинхронном режиме, что позволяет ему генерировать точно такие же типы последовательных данных, какие показаны на Рисунке 1.

Периферийные устройства USART и UART имеют определенно различные возможности и могут быть полезны в различных ситуациях, поэтому в стандартном микроконтроллере разработчик может обнаружить оба интерфейса. К примеру, возьмем микроконтроллеры семейства STM32, основной областью применения которых являются микромощные приложения. Среди периферийных устройств на кристаллах этих приборов есть как USART, так и UART. USART предназначен для выполнения «тяжелой работы» по последовательному обмену в периоды «большого» расхода энергии. Когда же микроконтроллер находится в спящем режиме или в режиме с пониженным потреблением, используется UART, способный выполнять низкоскоростной обмен, не выходя за рамки допустимого лимита энергии.

Так можно ли говорить, что USART и UART - это одно и тоже? Технически правильный ответ - «нет». USART, как правило, имеет набор функций, расширенный по сравнению с UART, и способен обрабатывать синхронизированные потоки данных на скоростях, во много раз превышающих скорости UART. Действительно, USART может выполнять все функции UART, и, возможно, поэтому во многих приложениях разработчики, имея в руках всю мощь USART, используют их как простые UART, игнорируя преимущества синхронного тактирования. Неудивительно, что очень многие используют эти термины так, будто они являются синонимами.

» я описывал, что значит последовательный универсальный порт и какова его логика работы. Я заметил, что многие путают понятия UART , RS-232 , COM и т.п. В данном посте я хочу немного прояснить ясность.



UART описывает логику работу , здесь логическая 1-а подразумевается как высокий уровень сигнала , а логический 0-ль, как низкий уровень сигнала . Физически…, что такое низкий и высокий уровень сигнала зависит от технологии на которой построена микросхема TTL , CMOS и т.д.

Т.к. большинство микросхем являются TTL , то, под логической единицей и нулем в UART понимается и +5В , как было сказано ранее. Но для передачи данных на расстояние , т.е. вне платы, использовать такие уровни уже нельзя, из-за плохой помехозащищенности . Поэтому, были разработаны следующие физические уровни UART:

  • RS-232 (он же COM порт);
  • RS-422
  • RS-423 (используется для автоматизации в промышленности);
  • RS-485 (используется для автоматизации в промышленности);
  • IrDA (UART с использованием инфракрасного диапазона световых волн, по другому ИК порт)

RS-232 ранее применялся в домашних компьютерах под именем COM порт и служил для подключения мышек, модемов, принтеров . Можно сказать — это самый распространенный из физических уровней UART . Название строится из словосочетания «Recommended Standard 232 «, стандарт был разработан «Ассоциацией электронной промышленности (EIA) » в далеком 1962 году.

Стандарт со временем развивался:

  • RS-232C (1968 г.);
  • EIA-232D (1987 г.) — с 1986 года EIA вместо RS стала использовать аббревиатуру EIA;
  • TIA/EIA 232-E (1991);
  • ANSI/TIA/EIA-232-F (1997 г.).

На самом деле, когда говорят о RS-232 имеют как правило, какой нибудь из этих стандартов .

RS-232 был настолько успешен , что на его основе были созданы идентичные как отечественные так и зарубежные стандарты:

  • (2000 г.);
  • (1993 г.);
  • ГОСТ 18145-81
  • ГОСТ Р 50668-94

и т.д. Вся фишка в том, что бесплатно скачать стандарты серии 232 не возможно…, вы можете найти только вышеуказанные стандарты и использовать их как первоисточник для изучения RS-232 и UART .

(если вам все-таки понадобятся оригинальные стандарты, купить их можно можно на сайте TIA (ассоциация телекоммуникационной промышленности США))

В качестве разъема для RS-232 используется 25-и пиновые и 9-и пиновые разъёмы типа D-sub , которые имеют сокращенную запись DB25 и DB9 (иногда называемая CANNON 25 и CANNON 9 ).

Больше прижились разъемы DB9 .

Зачем столько контактов, если для последовательного универсального порта (UART) достаточно два провода данных TX и RX и провод GND?

Дело в том, что, в стандарте RS-232 помимо вышеуказанных применяются еще и сервисные сигналы, наподобие «готовность терминала «, «запрос на отправку «, «готовность приема » и т.п. Сейчас сервисные сигналы далеко не всегда применяются в оборудование, не исключено что они ограничиваются только TX , RX и GND как в «чистом» UART .

Важно заметить что в RS-232 в качестве уровня логической единицы используется диапазон от -3В до -12В , а логический ноль от +3В до +12 .

(изображение заимствованно из «Гук М. Аппаратные интерфейсы ПК»)

От-3В до +3В , считается зоной неопределенности .

Стандарт RS-232 манипулирует двумя типами оборудования

  • DTE — «оборудования ввода данных», это как привило компьютер
  • DCE — «оконечное оборудование линии связи», это как правило модем/мышь/принтер и т.п.

Для DTE используются разъема типа «папа «, для «DCE » разъемы типа «мама «. Если у вас на компьютере есть COM порт, посмотрите… вы увидите разъем с штырями , т.е. «папа».

Зачем я об этом? Дело в том, что для для соединения устройств с COM портом есть прямой и обратный кабель . Что-бы соединить DTE и DCE (например компьютер и модем) необходимо напрямую соединить все ножки и разъемы, это означает что, ножка отвечающая за передачу данных (RxD ) входит в одноименный разъем (RxD ). Такой соединение называют прямое , а кабель прямой или «модемный «.

Бывают случае когда надо соединить два DTE (например два компьютера), тогда используют обратное соединение , называемое «нуль-модемный » кабель. В этом случае с RxD 1-ого компьютера соединяется с TxD 2-ого и TxD 1-ого с RxD 2-ого .

Если вы хотите поподробнее ознакомиться с RS-232, рекомендую прочесть обзор стандарта на сайте .

Вам будет интересно:

UART - Universal Asynchronous Receiver-Transmitter, или по русски Универсальный Асинхронный Приёмопередатчик - УАПП. Используется для организации связи компьютера с различными цифровыми устройствами в электронике. Интерфейс преобразует передаваемые данные в последовательный код так, чтобы была возможна их передача по одной цифровой линии другому электронному устройству. Прямого описания протокола UART все таки есть, но его косвенное описание можно увидеть в стандартах на широко известные физический протоколы RS-232, RS-422, RS-423, RS-485

В чем разница между этими интерфейсами. В последовательном интерфейсе данные посылаются по одному проводу последовательно, друг за другом, а у "параллельного" имеется шина состоящая из нескольких проводов, по которым части сообщения передаются параллельно.

Главным достоинством параллельной передачи можно считать то, что за один момент посылается сразу группа битов. К тому же внутри микроконтроллера также используется параллельная передача данных, благодаря этому не требуется их дополнительное преобразовании. Но есть и существенные минусы. Главный из них состоит в том, что биты по проводам могут приходить не параллельно и необходимы дополнительные схемотехнические решения для получения точных посылок. Это ограничивает скорость передачи.

При последовательном передаче передаваемые биты данных сначала требуется преобразовать в параллельный код, на это расходуется дополнительное временя. Но зато отпадает необходимость в синхронизации следования битов по каждому отдельному проводу, что в данном случае, увеличивает возможности скоростной передачи данных.

Универсальный Асинхронный Приёмопередатчик - УАПП применяется с начала 60-х годов прошлого века и с тех пор претерпевал серьезные модернизации. Даже в 21 столетии последовательные протоколы UART всё ещё представляют один из основных методов обмена битами между различными цифровыми устройствами на небольшие расстояния.

UART является базой так широко используемого в прошлом . В самом простом виде UART интерфейс представляет собой три провода: передача, приём и земля.


Существенный минус универсального асинхронного приёмопередатчика кроется в том, что нет возможности определить какое из цифровых устройств является ведущим, а какое ведомым (мастер / раб). Обычно, это определяет то кто проектирует схему может назвать этот провод как TX и задать работу устройства, в соответствии с рисунком ниже:


В данном случае микроконтроллер принимает, и передаёт данные. А можно сделать следующим образом:


В соответствие с этой схемой микроконтроллер всегда передаёт (TX) получателю (RX) и наоборот. Какая из двух схем все таки правильная? Оказывается обе, все зависит только от производителя микросхемы и готового цифрового устройства.

Внимание TX, подключенный к TX и RX-RX, в большинстве случаев приведет к сгоранию микросхемы, так что это хороший пример того, что надо читать документацию перед тем как соединять чипы по UART, так как существует несколько способов соединения.

Если приемник и передатчик находятся на одной печатной плате, тогда уровень сигнала при приеме-передаче практически равен уровню напряжения питания микроконтроллера. Допустим, уровень логической единицы - "1" будет передаваться с потенциалом 3.3В, а ноль, с потенциалом, не более 0,5 Вольта. С передачей сигнала на большие расстояния начинают появляться проблемы в виде искажения сигнала и растет , появляются ошибки передачи, вплоть до полной остановки.

Для того, чтобы исключить такие проблемы в линию передачи и приема добавляют дополнительные буферы, которые усиливают сигнал. После этого их можно передавать на десятки метров без потери информации. Но в д.с для передачи уровня логической единицы применяется напряжение -3В..-15В, а для "0" - +3В до +15В.


Вместо инхронизации в UART применяется, так называемый "стартовый бит" подготавливающий цифровую схему к передачи сообщения. После стартового бита иду данные, а затем в линию посылается "стоп-бит", говорящий о завершении передачи информации. Вместе выходит 10 бит: первый - старт-бит, 8 бит данных, и последний стоп-бит, смотри осциллограмму передачи данных по протоколу UART интерфейса на рисунке ниже.


Биты передаются с определенной скоростью передачи, которая измеряется в битах в секунду или, в бодах. Так 9600 бод эквивалентно 9600 бит/сек. А так как у нас передаётся 10 бит за одно сообщение, это значит, что мы при этой скорости можем передать 960 сообщений за одну секунду.

Значение скорости передачи не передаётся вместе с сообщением, то в приёмнике и передатчике должны быть заранее заданы равные скорости. Интерфейс UART допускает до 5% рассинхронизации таймеров. В этом интервале он может получать и принимать верные информационные данные.

Можно сказать со 100% уверенностью, что каждый современный микроконтроллер имеет в своем составе универсальный последовательный интерфейс - UART. Умея работать с этим портом вы можете согласовать работу старых и современных электронных устройств, передать или принять данные в различные электронные устройства.

В современных микроконтроллерах, вместо UART интерфейса используют полностью с ним совместимый стандарт USART (универсальный асинхронный/синхронный приёмопередатчик).

USART это более гибкий в плане настройки UART с дополнительными функциями. В USART можно регулировать длину слова с более большим интервалом (от 5 до 9) чем в UART (от 8 до 9). В USART возможна как синхронная так асинхронная и передача данных (в UART осуществляется только асинхронная). При синхронной передачи помимо двух линий - данных и питания, применяется дополнительная шина (XCK) с синхросигналом. С такой настройкой USART уже пересекается с интерфейсом SPI и его можно применять как «ведущий» в интерфейсе SPI.

Рассмотрим классический случай, когда интерфейс асинхронный (т.е. с отсутствующей линией синхронизации).

Передача данных в UART интерфейсе происходит по одному биту в одинаковые временные промежутки. Этот промежуток задается скоростью UART и для конкретного типа соединения обозначается в бодах, что соответствует количество бит в секунду. В электронике имеется общепринятый ряд типовых скоростей: 300; 600; 1200; 2400; 4800; 9600; 19200; 38400; 57600; 115200; 230400;460800; 921600 бод;

Скорость (S, бод) и длительность бита (T, секунд) связаны между собой общеизвестной формулой

Байт данных отправляются в пакетах (первый бит идет перед байтом данных и второй бит следует после, количество бит опциональны)


Для приема и передачи данных в интерфейсе UART применяются всего две линии данных и земля:

передающая шина данных (TXD или TX);
принимающая линия данных (RXD или RX);
земля (GND).

Уровню логической единицы и нуля аналогичны типовым уровням TTL:

лог. "1" - +5 Вольт;
лог. "0" 0 Вольт.

Разновидность UART - интерфейс RS-485

Сети, построенные на основе интерфейсов RS-485 и RS-422, представляет собой приемопередатчики, подключенные с помощью витой пары. В основе RS-485 лежит принцип дифференциальной (балансной) передачи данных. Основа ее базируется на передаче одного сигнала по двум проводам. Причем по первому проводу (A) интерфейса следует оригинальный сигнал, а по второму - его инверсная копия. Простыми словами, если на А "1", то на В "0" и наоборот, т.е, между двумя проводами витой пары всегда существует разность потенциалов: при "1" уровне она положительная, при "нулевом" - отрицательная.

В этом уроке я расскажу про UART интерфейс в микроконтроллерах AVR и про работу с ним в . UART это универсальный асинхронный приёмопередатчик. Сам интерфейс достаточно распространён и имеется практически во всех AVR микроконтроллерах, исключения лишь составляет микроконтроллер Attiny13 и еще некоторые. Передача данных осуществляется по биту в равные промежутки времени, этот промежуток времени задаётся скоростью в бодах, вот например стандартные скорости: 4800 бод, 9600 бод, 19200 бод, 38400 бод и т.д. Следует также учесть, что скорость должна быть одинаковой с обеих сторон подключения. Кстати приёмник и передатчик работают независимо. Подключение UART осуществляется по трём линиям: RXD – приём, TXD – передача и GND – общий (минус). Подключать UART надо, так сказать "наоборот" RXD к TXD, а TXD к RXD как на картинке ниже:

С помощью UART также можно можно связать микроконтроллер и компьютер, но есть одна проблема: у UART интерфейса логические уровни 0 и +5 вольт, а в компьютере логические уровни в интерфейсе RS-232 могут быть от -25 до -3 вольт и от +3 до +25 вольт. Решить эту проблему нам поможет конвертер уровней, его можно собрать на транзисторах, а лучше использовать специальную микросхему MAX232. Вот самая распространенная схема подключения MAX232:

Работа с UART в BASCOM-AVR

Прежде всего, перед началом работы с UART нужно указать скорость в бодах, делается это командой: $baud = (скорость). Например: $baud = 9600 .Также не забываем указывать реальную частоту тактового генератора командой $crystal = (скорость Hz), в ином случае скорость работы программы будет не совпадать со скоростью работы микроконтроллера и в итоге приём или передача данных будет неверная. Пример написания команды $crystal на частоту 8МГц: $crystal = 8000000 . Кстати, имеет смысл открыть окно настроек в BASCOM-AVR (Options>Compiler>Communications):

В этом окне настроек вы можете указать скорость работы UART, тактовую частоту тактового генератора и посмотреть процент ошибок при выбранной тактовой частоте. Но лучше указывать скорость и тактовую частоту непосредственно в самой программе. Кстати процент ошибок при тактовой частоте в 4МГц очень мал (0.16%), но все, же есть. Если вы хотите чтобы процент ошибок был нулевой надо подобрать такую тактовую частоту, которая будет кратна скорости работы UART. Например, при тактовой частоте 3.6864 МГц и скорости работы UART в 115 200 бод процент ошибок будет нулевым.

И так, после указания тактовой частоты и скорости работы UART можно приступить к работе с самим интерфейсом. Чтобы послать, что-либо в UART есть команда Print (переменная или текст в кавычках), вот пример её использования: Print "Hello, world!" . Кроме текста в кавычках можно выводить и переменные, причём сразу несколько разделяя точкой с запитой, например: Print "Weight:" ; a ; "kg" или так Print "Hello," ; "world!" . Также с UART можно и принять, делается это командой Input (текст или переменная в кавычках для посылки), (переменная, куда записывать полученные данные). Как видим всё очень просто: сначала пишем в кавычках текст, который передастся в UART, а потом указываем переменную, в которую запишутся данные полученные данные из UART. Вот пример: Input "Weight:", a

Работа с UART на практике

Ну а теперь попробуем "порулить" UART на практике, сначала соберём простую схему:

Потом наберём простую программку, (используя полученные знания) и откомпилируем её. Вот и она:

$crystal = 8000000 $baud = 9600 Dim A As Byte Print "Hello, world!" Print "Hello http://сайт" Input "Size:" , A Print "Size=" ; A ; "bytes" End

А работать эта программка будет так: сначала будет посылать в UART текст, а потом будет ждать приёма данных (в данном случае числа) которые запишутся в переменную a и позже пошлёт текст вместе с переменой. Для тех, кому лень компилировать, в файлах к уроку есть готовая прошивка. Прошиваем микроконтроллер, подключаем выводы микроконтроллера RXD, TXD (подключаем, как я писал выше) и GND к COM порту компьютера (через конвертер уровней) или к USB (USB – UART переходник), открываем на компьютере программу для работы с COM портами, например: Terminal by Bray, Hyper Terminal или Terminal emulator в BASCOM-AVR, указываем COM порт к которому подключились, указываем скорость в бодах, смотрим в окно программы, подаём питание на микроконтроллер и радуемся. Необходимо также учесть, что после прошивки микроконтроллера необходимо установить фьюз биты на нужную нам тактовую частоту генератора в данном случае (для программки выше) на 8МГц. На 8МГц можно использовать внутренний тактовый генератор микроконтроллера и установить фьюз биты вот так (для ).

UART микроконтроллеров AVR.

Одним из самых распространенных протоколов взаимодействия микроконтроллера с внешними устройствами является UART (Universal Asynchronous Receiver-Transmitter ) - Универсальный асинхронный приёмопередатчик . Данный протокол аппаратно реализован в большинстве микроконтроллеров AVR , что позволяет разработчику не вдаваться в особенности реализации данного интерфейса. Для его использования достаточно настроить всего несколько регистров!

Рассмотрим кратко принцип работы UART .

Данный протокол является последовательным, то есть данные идут строго друг за другом, что в некоторой мере ограничивает скорость работы. Так как протокол является асинхронным, приемник и передатчик должны работать строго на одной частоте, которую необходимо настроить ещё до начала работы.

При передаче байта передатчик изначально выставляет логический 0 на выводе TX (Transmitter ). Это так называемый старт-бит, означающий начало передачи. После этого передатчик выставляет биты передаваемого байта через определенные промежутки времени, заданные частотой. Далее может быть передан бит четности, который служит для проверки качества передачи. Когда переданы все биты, выставляется стоп-бит, то есть логическая 1 на линии передачи. Число стоп-битов может быть различным:1 ; 1 , 5 ; 2.

Огромным плюсом данного интерфейса является возможность его использования для настройки связи с ПК. Для этого необходимо изготовить UART —RS 232 или UART —USB переходники, основанные на микросхемах MAX 232 и FT 232RL соответственно.

Подробнее о переходниках здесь.

За работу с UART (на самом деле USART , о днако, для нас это сейчас не важно) отвечают следующие регистры:

UDR - Регистр данных UART . При передаче в него записываются данные, которые необходимо отправить, а при чтении — принятые данные. Всё просто.

UCSRA - Регистр контроля и статуса UART . Рассмотрим биты данного регистра подробнее:

  • RXC (Receive Complete ) - флаг окончания приема данных. Устанавливается в 1 при наличии несчитанных данных и сбрасывается в 0 по окончании приема данных.
  • TXC (Transmit Complete ) - флаг окончания передачи данных. Сбрасывается в 0 по окончании передачи данных и устанавливается в 1 при наличии непереданных данных.
  • UDRE (Data Register Empty ) - флаг, означающий готовность регистра UDR получать новые данные. Когда UDRE равен 1, регистр UDR пуст и готов к приему новых данных.
  • FE (Frame Error) - флаг ошибки фрейма.
  • DOR (Data OverRun ) - флаг переполнения регистра данных.
  • PE (Parity Error) - флаг ошибки четности
  • U 2 X - бит, позволяющий увеличить скорость передачи вдвое. При записи 1 в данный бит предделитель тактовой частоты модуля UART уменьшается вдвое, что позволяет вдвое увеличить скорость передачи данных.
  • MPCM - мультипроцессорный режим коммуникации.

UCSRB - Регистр контроля и статуса UART .

  • RXCIE (RX Complete Interrupt Enable ) - Бит, разрешающий или запрещающий генерацию прерывания по окончании приема. При записи 1 в данный бит прерывание по окончании приема разрешено, при записи 0 — запрещено.
  • TXCIE (TX Complete Interrupt Enable ) - При записи 1 в данный бит прерывание по окончании передачи данных разрешено, при записи 0 — запрещено.
  • UDRIE (Data register empty Interrupt Enable ) - Бит, разрешающий или запрещающий возникновение прерывания по флагу UDRE .
  • RXEN (Reciever Enable ) - Запись 1 в данный бит включает приемник UART модуля, запись 0 — выключает.
  • TXEN (Transmitter Enable ) - Запись 1 в данный бит включает передатчик UART модуля, запись 0 — выключает.
  • UCSZ 2 (Character Size ) - В паре с битами UCSZ 1 и UCSZ 0 задает число передаваемых бит.То есть мы можем передавать не только побайтно, но и по 5,6,7,8,9 бит.
  • RXB 8 (Receive Data Bit 8) - 9 бит принимаемых данных при передаче по 9 бит. Должен быть считан перед операциями с регистром UDR .
  • TXB 8 (Transmit Data Bit 8) - 9 бит отсылаемых данных при передаче по 9 бит. Должен быть записан перед записью других бит в UDR .

UCSR С - Регистр контроля и статуса UART .


  • UCPOL - Данный бит позволяет настроить, по какому фронту будет происходить обмен данными при синхронном режиме передачи. При работе в асинхронном режиме передачи необходимо установить данный бит в 0.

Регистры UBRRL и UBRRH отвечают за настройку скорости работы приемопередатчика. Следует помнить, что при работе с регистром UBRRH бит URSEL должен быть равен 0.

Для получения необходимой скорости работы UART значение UBRR (Пары регистров UBRRH и UBRRL ) рассчитывается по следующей формуле:

UBRR = (F osc /(B*16))-1

Где,

F osc - частота работы микроконтроллера (Гц).

B - необходимая скорость работы UART (Бит/сек).

Например, необходимо настроить скорость передачи 9600 бит/ сек при работе микроконтроллера на частоте 8 МГЦ(8000000 Гц).

UBRR = (8000000/(9600*16))-1 = 51.083333

Округляем до целого числа, то есть до 51.И уже данное число записываем в регистры UBRRL:UBRRH.

Урок получился достаточно объемным, поэтому практическую реализацию протокола UART на микроконтроллерах AVR рассмотрим в следующем уроке.

Любое копирование, воспроизведение, цитирование материала, или его частей разрешено только с письменного согласия администрации MKPROG .RU . Незаконное копирование, цитирование, воспроизведение преследуется по закону!

Похожие статьи